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Abstract. We present a novel approach to face recognition by constructing facial identity structures across views
and over time, referred to as identity surfaces, in a Kernel Discriminant Analysis (KDA) feature space. This
approach is aimed at addressing three challenging problems in face recognition: modelling faces across multiple
views, extracting non-linear discriminatory features, and recognising faces over time. First, a multi-view face model
is designed which can be automatically fitted to face images and sequences to extract the normalised facial texture
patterns. This model is capable of dealing with faces with large pose variation. Second, KDA is developed to
compute the most significant non-linear basis vectors with the intention of maximising the between-class variance
and minimising the within-class variance. We applied KDA to the problem of multi-view face recognition, and a
significant improvement has been achieved in reliability and accuracy. Third, identity surfaces are constructed in
a pose-parameterised discriminatory feature space. Dynamic face recognition is then performed by matching the
object trajectory computed from a video input and model trajectories constructed on the identity surfaces. These
two types of trajectories encode the spatio-temporal dynamics of moving faces.
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1. Introduction

Face recognition, an important visual perceptual task,
has been of great interest in recent years both theo-
retically and practically. Applications of face recogni-
tion cover various areas including integrated surveil-
lance, visually mediated interaction, human-machine
interface, multimedia and teleconferencing. Various
approaches have been proposed to address the prob-
lem under different assumptions and conditions. In the
rest of this section, we first review the previous studies
in this area in Section 1.1, then discuss the limitations
of the previous work in Section 1.2 and introduce our

approach to dynamic face recognition using identity
surfaces in Section 1.3.

1.1. Previous Work

Shape based methods for face recognition have been
developed in numerical studies. The Active Contour
Model (Snake) (Kass et al., 1987) is one of the most
popular models adopted in this area (Waite and Welsh,
1990; Wu et al., 1996; Okubo and Watanabe, 1998;
Yokoyama et al., 1998). However, the Active Con-
tour Model imposes soft rather than problem-specific
constraints to the favoured shapes. By using a
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parametric shape vector with few degrees of freedom,
one can achieve the so-called “Deformable Model”,
where hard constraints and default shapes of more spe-
cific classes of shapes are explicitly defined. Examples
of using Deformable Models for face recognition in-
clude (Yuille et al., 1992; Craw et al., 1992; Bennett
and Craw, 1991; Brunelli and Poggio, 1993).

Cootes et al. (1995) developed the Active Shape
Models (ASMs) where the characteristics of a class
of objects are learnt from a training set of correctly
annotated images. New shapes of the class can be rep-
resented by a weighted sum of a small number of signif-
icant basis shape vectors. These models can be used for
image search through an iterative refinement algorithm
analogous to that employed by Active Contour Models.
The key difference is that ASMs can only deform to fit
the data in ways consistent with the training set (Cootes
et al., 1994, 1995). The ASMs have been successfully
applied to face recognition (Lanitis et al., 1997). Com-
pared with the classical geometric deformable shape
model, the significant advantage of ASMs lies in the
fact that the class-specific shape constraints are learnt
directly from training examples rather than handcrafted
by geometric shapes.

The ASMs were originally developed as linear
models. However, non-linear extensions have been
proposed, for example, Edwards et al. (1998a) have
described a non-linear ASM built from a Multi-Layer
Perceptron, and Romdhani et al. (1999) introduced
a non-linear shape model to address the problem
of corresponding faces with large pose variation us-
ing Kernel Principal Component Analysis (Scholkopf,
1997; Scholkopf et al., 1997).

In contrast to shape, modelling faces by their 2D
appearance seeks to capture the holistic characteristics
of faces rather than a set of individual features. One
of the straightforward approaches is to represent faces
by a set of generic templates, which can be either
natural face images or synthesised images. Brunelli
and Poggio (1993) compared a geometrical-feature-
based algorithm with a template-based algorithm. They
claimed that the results obtained for the testing sets
show about 90% correct recognition using geometric
features and perfect recognition using template match-
ing. Sung and Poggio (1994) generated 6 face proto-
types and 6 near-face-nonface prototypes as templates
to match a new image pattern. A well-tuned Neural Net-
work is employed to synthesise these matching results.
Another approach using Support Vector Machines is
presented by Osuna and Poggio, where the most rep-

resentative examples, known as Support Vectors, are
extracted automatically (Osuna et al., 1997a, 1997b).

Statistical techniques like Principal Component
Analysis (PCA) (Bishop, 1995; Sirovich and Kirby,
1987), Linear Discriminant Analysis (LDA) (Fisher,
1938; Fukunaga, 1972) and Kernel Principal Compo-
nent Analysis (KPCA) (Scholkopf, 1997; Scholkopf
et al., 1997) have been widely adopted to extract
the abstract features of face patterns. Sirovich and
Kirby (1987) first introduced PCA, also known as
the Karhunen-Loeve transform, to face recognition.
This approach is commonly referred to as the “eigen-
face” method. Turk and Pentland (1989) used a similar
method to code face images and capture face features.
Moghaddam and Pentland (1997) extended this ap-
proach to view-based and modular eigenspaces with an
intention of recognising faces under varying views and
locating facial features, such as eyes and mouth. They
also modelled two mutually exclusive classes of vari-
ation between facial images: intra-personal and extra-
personal variations using eigenspace density estima-
tion (Moghaddam et al., 1998). Romdhani et al. (1999)
have applied KPCA to model the non-linearity of facial
appearance caused from large pose change.

LDA proved to be an appropriate linear technique
to extract the most discriminatory features. Swets and
Weng (1996) applied LDA to face recognition and
compared the performance with that of PCA. Their
experiments showed an improved performance with
the LDA method when a large number of training
images of each face class are available. To avoid
the singular problem which may occur when eigen-
decomposing the scatter matrix in LDA, a PCA is usu-
ally performed prior to LDA to provide an adequately
small dimensionality for further analysis (Swets and
Weng, 1996; Zhao et al., 1998). Edwards et al. (1996)
adopted LDA to select discriminant parameters based
on Active Appearance Models. They claimed that
these parameters can be used effectively to decouple
identity variance from pose, lighting and expression
variance.

Shape and texture are often employed complement-
arily to represent faces. Vetter and Poggio (Vetter,
1998) proposed to synthesise faces in different views
using linear combination of shape and texture pro-
totype patterns. Lanitis et al. (1997) developed a
face identification system using both facial shape and
texture information where the shape information is
obtained through an ASM and texture patterns are
sampled around landmarks or computed as shape-free
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grey-level. Cootes et al. (1998) introduced the Active
Appearance Model which combines both the shape and
grey-level variation within a single statistical model.

Faces can also be modelled by a 3D mesh de-
scribing the geometric configuration and a texture
map expressing the surface properties. DeCarlo and
Metaxas (2000) presented a 3D deformable face model
with a polygon mesh. The model is formed from ten
component parts, each with its own set of deforma-
tion. Jebara and Pentland (1997) proposed an approach
to recover the 3D face structure using Structure from
Motion. The estimation of the 3D structure is further
constrained for reliable feature tracking by a 3D generic
face model which is formed offline from a database of
range face data. Vetter and Blanz (1998) introduced a
flexible 3D face model learnt from examples of indi-
vidual 3D face data. 3D face models have also been
used for person-independent face tracking and feature
detection (Li et al., 1993; Shakunaga et al., 1998).

Apart from the research on static images, video based
face recognition has attracted great interest recently.
Gong et al. (1994) have addressed the issue of encod-
ing and recognising moving faces using temporal sig-
natures in a multi-view eigenspace. Howell and Buxton
(1996) reported a preliminary system for face recog-
nition from image sequences based on Radial Basis
Function networks. McKenna and Gong (1998) de-
scribed an integrated system for recognising moving
faces in poorly constrained dynamic scenes. Steffens
et al. (1998) presented a real-time face recognition sys-
tem which is able to capture, track and recognise a per-
son walking toward or passing a pair of stereo cameras.
Choudhury et al. (1999) proposed a person identifica-
tion system to recognise and verify people from uncon-
strained video and audio. Edwards et al. (1998b, 1999)
proposed an approach to learning the class-specific cor-
rection of identity parameters from image sequences.

1.2. Limitations of Previous Work

It is important to point out that most of the previ-
ous work in face recognition is mainly concerned with
frontal-view. Recognising faces across views is more
challenging than that at a fixed view, e.g. frontal view,
because of the severe non-linearity caused by rotation
in depth, self-occlusion, self-shading and illumina-
tion change. The eigenface method has been extended
to view-based and modular eigenspaces with the in-
tention of recognising faces under varying views by
Moghaddam and Pentland (1994). Li et al. (2000b)

presented a view-based piece-wise SVM model of the
face space. Cootes et al. (2000) proposed the view-
based Active Appearance Models which employ three
models for profile, half-profile and frontal views. How-
ever the division of the face space in these methods is
rather arbitrary, ad hoc and often coarse.

Another limitation of the previous work is that the
methods proposed for recognition are largely based on
matching static face images. Psychology and physi-
ology research depicts that the human vision system’s
ability to recognise animated faces is better than that
on randomly ordered still face images (i.e. the same
set of images, but displayed in random order without
the temporal context of moving faces). Knight and
Johnston (1997) showed that recognition of famous
faces in photographic negatives can be significantly
enhanced when the faces were shown moving rather
than static. Bruce et al. (1998a, 1998b) extended this
result to other conditions where recognition is made
difficult, e.g. by thresholding the images or showing
them in blurred or pixellated formats. Although some
preliminary results obtained from techniques such
as the temporal signature method (Gong et al., 1994),
the subspace method (Yamaguchi et al., 1998) and the
identity trajectory method (Li et al., 2000a), have been
reported, the issue of recognising the dynamics of
faces under a spatio-temporal context remains largely
unresolved.

1.3. Our Approach

In this paper, we present a novel and comprehensive ap-
proach to modelling facial identities across views and
over time. To model faces with large pose variation,
a multi-view face model with 3D shape, normalised
facial texture and affine geometrical information is de-
veloped. With a stochastic fitting algorithm, this model
can be automatically fitted to face images or sequences
to obtain the shape, texture and geometry descriptions
of faces. To address the severe non-linearity of multi-
view faces, a non-linear discriminatory method, Kernel
Discriminant Analysis (KDA), is adopted, which em-
ploys the kernel technique to maximise the between-
class variance and minimise the within-class variance.
Aimed at dynamic face recognition, a spatio-temporal
identity surface of each face class is constructed in a
kernel discriminatory feature space. A video-based ap-
proach using pattern distances and trajectory distances
to the identity surfaces is presented to perform online
face recognition dynamically. The rest of this paper is
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arranged as follows: The multi-view face model is pre-
sented in Section 2, including the model components,
model training and fitting algorithm. The issue of
extracting non-linear discriminatory features from
multi-view faces using KDA is discussed in Section 3.
Section 4 describes an approach to video-based face
recognition using identity surfaces. Conclusions are
drawn in Section 5.

2. Multi-View Dynamic Model

Our multi-view dynamic face model consists of a sparse
3D Point Distribution Model (PDM) (Cootes et al.,
1995) learnt from 2D images in different views, a
shape-and-pose-free texture model, and an affine geo-
metrical model which controls the rotation, scale and
translation of faces. The first two parts of the model
aim to represent the identities of faces to be analysed,
while the latter is used for alignment and tracking.

2.1. Constructing 3D Shape from Labelled
2D Images

Modelling the appearance of faces with large pose vari-
ation is non-trivial for 2D models owing to the se-
vere non-linearity. But if 3D geometrical information
is available, this situation can be alleviated to a certain
extent. A straight-forward way to collect 3D informa-
tion about faces is to use sensors such as a 3D laser
scanner. However, the huge amount of 3D range data
involved may bring a heavy burden to the computation.
Another difficulty comes from establishing the corres-
pondence between dense 3D data. In this work, we learn
a 3D face shape model containing only a sparse set of
feature points from 2D face images at different views.

Our database includes 2D face images from 12 sub-
jects, 133 poses of each subject. All face images were
chosen without spectacles on (see Gong et al. (2000))
for more details of the data acquisition process). The
pose of a face is defined by two parameters: tilt and yaw
(α, β), the rotation angles about horizontal and vertical
axes respectively. The rotation in the image plane is not
taken into account on the basis that human heads are
assumed to be mostly upright. A sparse set of 44 land-
marks locating the mouth, nose, eyes, and face contour
were semi-automatically labelled on each face image.
Figure 1 illustrates the landmarks used in this work and
the triangulation formed from these landmarks which
can be used to warp multi-view faces onto the frontal
view (details will be discussed in Section 2.3). Figure 2

Figure 1. Landmarks and triangulation of the face model.

shows the sample face images used to construct the
model (a) and the landmarks labelled on each image (b).

Given a set of 2D face images with known positions
of the landmarks and pose, the 3D positions of the
landmarks can be estimated using linear regression.
The rotation centre used to measure the pose angles is
assumed at the centre of the eye centres and the mouth
centre. We define this point as the origin of the object
coordinate system.

Orthographic projection is adopted for simplicity.
Suppose the 3D coordinates of a landmark in the ob-
ject coordinate system is (X, Y, Z ), the position of this
landmark in the 2D image with pose (α, β) is given by:

(x, y)T = R(α, β) (X, Y, Z )T (1)

where R(α, β) is the rotation matrix for pose (α, β)
obtained by rotating about the horizontal axis first by
α and then about the vertical axis by β.

R(α, β) =
[

cos(β) 0 sin(β)

sin(α) sin(β) cos(α) − sin(α) cos(β)

]
(2)

Note that the results are only slightly different if rotat-
ing in the reverse order, i.e. first β, then α.

If M(M ≥ 2) face images in different poses are avail-
able, one can estimate the 3D coordinates (X, Y, Z ) of
a landmark using linear regression by

Minimise
M∑

i=1

((x − xi )
2 + (y − yi )

2) (3)

Subject to (xi , yi )
T = R(αi , βi ) (X, Y, Z )T,

i = 1, 2, . . . , M (4)
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Figure 2. Multi-view face model.

where (xi , yi ) is the known 2D position of the landmark
and (αi , βi ) is the pose of the landmark in the i th face
image. Then the 3D shape vector p is obtained as:

p = (
X1, Y1, Z1, X2, Y2, Z2, . . . , X Nl , YNl , Z Nl

)T
(5)

where Nl is the number of landmarks.
Figure 2(c) shows a 3D shape pattern with tilt fixed

on 0◦ and yaw changing from −40◦ to +40◦. This shape
pattern is estimated from the labelled face images in
Fig. 2(b).

Ideally, the larger the range of poses covered by the
training images, the more accurate the 3D position.
However, when a face rotates to nearly profile view,
some of the landmarks are invisible in the image. There-
fore, for each subject, 45 of the 133 face images with
poses between [−20◦, 20◦] in tilt and [−40◦, 40◦] in
yaw are selected for training. Also, the training set
M should be adequately large. In our experiments, a
random selection of 20 out of 45 face images from

each subject is used to learn the 3D shape vector of
all landmarks. For each subject, 50 shape vectors are
estimated in this manner in order to learn the statisti-
cal 3D PDM of faces. This will be further discussed in
Section 2.2.

2.2. A Sparse 3D PDM of Faces

Although only a sparse set of 44 landmarks are chosen
to represent the 3D shape of faces, the dimensionality
is still too high to fit the shape model. The shapes of
human faces are able to be represented in an even lower
dimensional shape space since they share a very similar
structure. The PDM is adopted to construct this low
dimensional shape space.

Performing PCA on N given 3D face shape vectors
{pi , i = 1, 2, . . . , N }, which are estimated using the
method described in Section 2.1, one obtains the mean
shape p̄ and the matrix U which is comprised of the
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first Ns significant eigenvectors

U = [
u1u2 . . . uNs

]
(6)

A shape pattern p can then be represented by a vector
in the PDM space

s = UT(p − p̄) (7)

whose dimension is Ns . The reconstructed 3D shape
from s is

pr = Us + p̄ (8)

We trained the PDM on a set of 600 3D shape pat-
terns from 12 different subjects (50 of each subject)
with pose changes between [−20◦, 20◦] in tilt and
[−40◦, 40◦] in yaw. Each 3D shape pattern was esti-
mated from a random selection of 20 of 45 face images
of the same subject as stated in Section 2.1. The first
10 eigenshapes account for 95.5% of all variance.

It is important to point out that the reason for using
the small range of pose in the training stage is to make
sure all landmarks are visible in the image. Otherwise,
if some landmarks are invisible, it would be difficult to
locate the positions of these landmarks. However, this
constraint is not imposed when fitting the model onto a
novel image or sequence. It will be shown in Section 5
that the model can be fitted successfully even in the
profile view where nearly half of a face is invisible in
a 2D image.

2.3. A Shape-and-Pose-Free Texture Model

There is no doubt that texture carries as important in-
formation as shape. However, accurately modelling fa-
cial texture is non-trivial owing to its sensitivity to
changes in illumination, pose, and expression. In this
work, we focus mainly on the problem of modelling
facial texture variation arising from pose change. Ex-
plicitly modelling surface reflection and shading prop-
erties provides one possible solution to this problem
(Atick et al., 1996; Zhao and Chellappa, 2000). As an
alternative, we present here a statistical approach to
model face textures by extracting shape-and-pose-free
texture information.

To decouple the covariance between facial texture
and shape, the facial texture is warped to the mean shape
at frontal view (with 0◦ in both tilt and yaw). This is

implemented by forming a triangulation from the land-
marks and employing a piece-wise affine transforma-
tion between each of the triangle pairs (see Fig. 1). By
warping to the mean shape, one obtains the shape-free
texture of a given face image. Furthermore, by warping
to the frontal view, a pose-free texture representation
is achieved.

The aim of warping the facial texture to the shape-
and-pose-free patterns is to establish the correspon-
dence for faces in different shapes and across multiple
views, so that an accurate statistical model can be con-
structed from these normalised texture patterns. The
so-called “pose-free” in this context is in the sense of
geometry only, i.e. facial texture is normalised by geo-
metrical parameters (landmark positions and pose an-
gles) only. The variation from other sources which may
also be related to pose, for example, the self-shading
and illumination change while a face is rotating out of
the image plane, has not been studied at the current
stage.

Figure 2(d) illustrates the shape-and-pose-free tex-
ture patterns of the face images shown in Fig. 2(a). It
is noted that when one side of a face becomes partially
invisible, the texture pattern is constructed from the
visible side using the bilateral symmetry of faces.

We applied PCA to a set of 540 shape-and-pose-free
face textures from 12 subjects with pose changes bet-
ween [−20◦, 20◦] in tilt and [−40◦, 40◦] in yaw (45
from each subject). The first 12 eigenmodes account
for 96.4% of all variance.

During the fitting process, a shape-and-pose-free
texture pattern q of a face image, which is already
warped to the mean shape in the frontal view, can be
represented by

t = VT(q − q̄) (9)

where q̄ is the mean texture, and V is constructed by
the first Nt significant eigenvectors of the texture PCA

V = [
v1v2 . . . vNs

]
(10)

The reconstruction of the texture pattern is given by

qr = Vt + q̄ (11)

2.4. Representing Face Patterns

Based on the analysis above, a face pattern can be rep-
resented in the following way. First, a 3D shape model
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is fitted to a given image or video sequence contain-
ing faces. The shape parameters of the fitted face are
given by Eq. (7). The face texture is warped onto the
mean shape of the 3D PDM model at the frontal view.
Then the texture parameters of the face are computed
using Eq. (9). Finally, by adding parameters control-
ling pose, shift and scale, the complete parameter set
of the dynamic model for a given face pattern is

c = (s, t, α, β, dx, dy, r ) (12)

where (α, β) is pose in tilt and yaw, (dx, dy) is the
translation of the centroid of the face, and r is its scale.

The parameter set consists of two parts: the identity
information (s, t) which is crucial to face recognition
and facial analysis, and the geometrical information
(α, β, dx, dy, r ) which is important for face alignment
and tracking.

2.5. Model Fitting

Model fitting in this context is the problem of searching
for the optimal parameters of the model for an unknown
face image to be interpreted, and it is given by:

c∗ = argmin(L(c)) (13)

where L(c) is a loss function which evaluates how well
the model fits onto the image.

2.5.1. Loss Function for Fitting. We formulate the
loss function as

L(c) = ‖qr (c) − q‖ + ξ

Nl∑
i=1

wiM(F̂i (c), Fi0)

+ η

Nl∑
i=1

wiM(F̂i (c), F̂i (c−1)) (14)

The first term on the right-hand side evaluates the differ-
ence between the image appearance and the synthesised
appearance, where qr (c) is the reconstructed texture
given by (11), and q is the original texture warped onto
the mean shape at frontal view. This is based on the
principle of analysis-by-synthesis (Ezzat and Poggio,
1996; Cootes et al., 1998; Vetter and Blanz, 1998). The
better the model fits, the smaller the difference.

The second term, which is measured in Mahalanobis
distance, describes the local texture similarity of each

landmark to the template of this specific landmark esti-
mated from training images, where F̂i (c) is the response
of Gabor wavelet filters (Lades et al., 1993) or deriva-
tive of Gaussian, on the current position of the i th land-
mark. The same filters have been applied to the training
face images described in Section 2.3. A set of tem-
plates, one for each landmark, is obtained using PCA.
Fi0 denotes the template centroid. The Mahalanobis
distance M(F̂i (c), Fi0) is calculated using the notion
of distance-in-feature-space (DIFS) (Moghaddam and
Pentland, 1997). Each M(F̂i (c), Fi0) is weighted by
wi , which measures the visibility of the i th landmark.
The value of wi is computed from the normal of the
landmark on the 3D shape. ξ is a normalisation coeffi-
cient, and Nl is the number of landmarks. It was noted
in our experiments that the Gabor wavelet filter does
not outperform the simpler derivative of Gaussian.

The last term, which is only enabled when the input is
a video sequence, compares the difference between the
filtered local texture around each landmark F̂i (c) and
that in the previous frame F̂i (c−1). The Mahalanobis
distance M(F̂i (c), F̂i (c−1)) is also calculated using
DIFS. η is a normalisation coefficient.

The loss function defined in (14) can be interpreted
as follows: it is a weighted summation of the fitting
criterion of the global appearance to the model syn-
thesised appearance, the local fitting criterion around
each landmark, and the temporal fitting criterion to the
pattern in the previous frame.

2.5.2. A Fitting Algorithm. Based on stochastic
search, the fitting algorithm of the multi-view face
model is described in Table 1. The evaluation of the
loss function used in step 4 is carried out as described
in Table 2.

The Support Vector Machine based method de-
scribed in Li et al. (2000b) was used for real-time pose
estimation in Step 1. Figure 3 illustrates the process of
applying the above algorithm to a face image.

2.6. Fitting the Model to Sequences Over Time

By fitting the multi-view face model to face im-
ages, one extracts and separates the identity parame-
ters and geometrical parameters from the raw images.
A solution to this problem can be greatly improved
when a continuous video input is available. From
video sequences, not only can more information across
views and over time be used for model fitting, but
also, the temporal continuity provides the possibility
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Table 1. Fitting algorithm.

1. Assume initial parameter c0 = (s, α, β, r, dx, dy);
2. Randomly sample n parameter points around the initial c0;
3. Randomly sample m parameter points around each of the n points;
4. Evaluate the values of the loss function L(c) for each of the m×n parameters;
5. Sort the loss function values in ascending order;
6. If no improvement from the top value, stop;
7. Otherwise, save the first n parameters, then go to 3.

Table 2. Evaluation of L(c).

1. Perform pose estimation using (s, r, dx, dy);
2. Restore 2D shape using (s, α, β, r, dx, dy)

• reconstruct 3D shape pr from s using (8);
• project pr to (α, β);
• scale to r and translate to (dx, dy);

3. Evaluate the global fitting criterion given as the first term in (14)

• warp the texture enclosed by the 2D shape to the mean shape at frontal view to obtain the shape-and-pose-free texture q;
• compute the texture parameter t by projecting q using (9);
• reconstruct qr using (11);
• calculate the similarity;

4. Sample and filter the local texture around each landmark;
5. Evaluate the local fitting criterion of landmarks given by the second term in (14);
6. Evaluate the temporal fitting criterion of landmarks, if necessary, given by the third term in (14);
7. Compute the overall loss in (14).

Figure 3. Fit the multi-view face model to a face image. The first row shows the original face image and the reconstructed texture of the fitted
pattern warped on the original image. The second row lists the fitting results in 10 iterations.

to exploit the facial dynamics encoded in the input
stream.

Suppose an input sequence contains one subject
whose identity is unchanged throughout the sequence.
Fitting the model onto a sequence frame by frame

independently is likely to yield a fluctuating estimate
of the model parameters for the following reasons:

1. There is no identity constancy constraint imposed
on the fitting process. Instead, in each frame, it
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only tries to minimise the loss function given
in (14).

2. The fitting algorithm may be attracted to local op-
tima and image noise.

3. Expression and illumination changes may also af-
fect the estimation of model parameters.

Under these circumstances, the model fitting prob-
lem should be regarded as dynamic parameter
estimation of an underlying stochastic process where
the identity parameters (s, t) are kept constant and the
geometrical parameters change freely. In the following
discussion, we assume that the purpose of model fit-
ting is face recognition, i.e. temporally estimating the
identity parameters of faces.

A straightforward approach to estimate the iden-
tity parameters temporally is performing Gaussian es-
timation (Brammer and Siffling, 1989) based on the
least squares principle. However, this method com-
putes all the information accumulated in a batch way
which is not appropriate for dynamic model fitting.
Alternatively, a temporal model such as Kalman fil-
ters (Brammer and Siffling, 1989) provides a recursive
solution to this problem.

3. Extracting Non-Linear Discriminatory
Features of Multi-View Faces

Owing to the severe non-linearity caused by rotation
in depth, self-occlusion, self-shading and illumination
change, modelling the appearance of faces across mul-
tiple views is much more challenging than that from a
fixed view, e.g. frontal view. Moreover, the appearance
similarity between different persons from a same view
is not less than that of one person from different views,
i.e. the variation from different face identities may be
overshadowed by that from pose change. This makes
the task of recognising identities of multi-view faces
even more challenging. However, it is not a difficult task
for the human vision system to recognise faces across
views, which suggests that our biological vision system
may perform this task with a discriminatory mecha-
nism rather than based on the low-level appearance
features.

3.1. Statistical Methods of Feature Extraction

The high dimensionality of raw images is problematic
in computation. To address this, PCA (Bishop, 1995;

Sirovich and Kirby, 1987) has been adopted to reduce
dimensionality and extract abstract features of faces.
We have reviewed the previous work of using PCA for
face recognition in Section 1.1. However, it is worth
noting that the features extracted by PCA are actually
“global” features for all face classes, thus they are not
necessarily representative for discriminating one face
class from others.

On the other hand, LDA, which seeks to find a linear
transformation by maximising the between-class vari-
ance and minimising the within-class variance (Fisher,
1938; Fukunaga, 1972), proved to be a more suitable
technique for class separation. Computationally, LDA
can be solved as an eigen-decomposition problem simi-
lar to PCA. Although LDA can provide a significant
discriminatory improvement to the task of face recogni-
tion, it is still a linear technique in nature. When severe
non-linearity is involved, this method is intrinsically
poor. Another shortcoming of LDA lies in the fact that
the number of basis vectors are limited by the number
of face classes, therefore it would be less representative
when small set of subjects are concerned.

To extract the non-linear principal components,
Kernel PCA (KPCA) was developed for pattern recog-
nition (Scholkopf et al., 1997; Scholkopf, 1997). How-
ever, as with PCA, KPCA captures the overall variance
of all patterns which are inadequate for discriminatory
purposes.

In this work, we adopt Kernel Discriminant Analysis
(KDA) (Roth and Steinhage, 1999; Mika et al., 1999;
Baudat and Anouar, 2000) to extract the nonlinear dis-
criminatory features for face recognition across multi-
ple views.

3.2. Kernel Discriminant Analysis

The principle of KDA is illustrated in Fig. 4. It is dif-
ficult to directly compute the discriminatory features
between the two classes of patterns because of the
severe non-linearity. By defining a non-linear map-
ping from the input space to a high-dimensional fea-
ture space, patterns are linearly separable in the fea-
ture space. Then LDA, the linear technique, can be
performed in the feature space to extract the most sig-
nificant discriminatory features. However, the compu-
tation may be problematic or even impossible in the
feature space owing to the high dimension. By intro-
ducing a kernel function which corresponds to the non-
linear mapping, all the computation can conveniently
be carried out in the input space.
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Figure 4. Kernel Discriminant Analysis. The non-linear discriminating problem can be solved as a linear problem by projecting the patterns
onto a high-dimensional feature space. Furthermore, all computation can be performed conveniently in the original space through a kernel
function.

The algorithm of training a KDA is briefly described
in the following. Please refer to Li et al. (2001) for
more details of the algorithm derivation. Alternative
algorithms can be found in Roth and Steinhage (1999),
Mika et al. (1999), and Baudat and Anouar (2000).1

Suppose we have a set of training patterns {xi , i =
1, 2, . . . , N } which are categorised into C classes. Let
Nc be the number of patterns in class c, and N the total
number of patterns, i.e. N = ∑C

c=1 Nc. We assume
that patterns in the training set have been ordered by
class number, i.e. the first N1 patters belong to class 1,
the following N2 class 2, and so on. φ is defined as a
non-linear mapping function from the input space to a
high-dimensional feature space, and its corresponding
kernel function is

k(x, y) = (φ(x) · φ(y)) (15)

which fulfils the Mercer’s condition (Vapnik, 1995).
Construct an N × N matrix

(K )i j := k(φi · φ j ) (16)

We then obtain the centred kernel matrix

K̃ = K − 1

N
1N K − K

1

N
1N + 1

N 2
1N K 1N (17)

where 1N is an N × N matrix with (1N c)i j := 1. Note
that the elements in K̃ follow the class order, i.e.

K̃ = [K 1, K 2, . . . , K C ] (18)

where the N × Nc matrix K c, c = 1, 2, . . . , C is a
sub-matrix of K̃ .

The problem can be finally formulated as an eigen-
decomposition problem

Aα = λα (19)

yielding an eigenmatrix

U = [α1,α2, . . . ,αM ] (20)

constructed from the first M significant eigenvectors of
A. The N × N matrix A is defined as

A =
(

C∑
c=1

1

Nc
K c K T

c

)−1 (
C∑

c=1

1

N 2
c

K c1N c K T
c

)
(21)

For a new pattern x, its projection onto the M-
dimensional KDA space is computed by

y = U Tkx (22)

where

kx = (k(x, x1), k(x, x2), . . . , k(x, xN ))T . (23)

The algorithm of training KDA is summarised as
follows:

1. Construct the non-centred kernel matrix K (16);
2. Compute the centred kernel matrix K̃ (17);
3. Obtain sub-matrices K c (18);
4. Compute matrix A (21);
5. Eigen-decompose A to obtain eigenmatrix U (20).

Use the following procedure to compute the KDA
vector of a new pattern x:

1. Compute the kernel vector kx (23);
2. Compute the M-dimensional projection vector y

(22).

We use a toy problem to illustrate the characteris-
tics of KDA, as shown in Fig. 5. Two classes of pat-
terns denoted by circles and crosses respectively have
a significant non-linear distribution. To make the re-
sults comparable, we try to separate them with a one
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Figure 5. Solving a nonlinear classification problem with, from left to right, PCA, LDA, KPCA and KDA. The top row shows the patterns and
the discriminatory boundaries computed by the four methods. The bottom row illustrates the intensity of the one-dimensional features computed
using the four methods.

dimensional feature, i.e. the most significant mode of
PCA, LDA, KPCA or KDA. The first column shows the
patterns and the discriminatory boundaries computed
by the four different methods. The second column il-
lustrates the intensity of the one-dimensional features
given by PCA, LDA, KPCA and KDA on the region
covered by the training patterns. In this experiment, the
discriminatory boundary is determined by the value of
the discriminatory feature which minimises the mis-
classification from the given patterns (Bishop, 1995).

It can be seen clearly that PCA and LDA are in-
capable of providing correct classification because of
their linear nature. Neither does KPCA do so since it
is designed to extract the overall rather than the dis-
criminatory variation though it is nonlinear in princi-
ple. KDA gives the correct classification boundary, and
the feature intensity correctly reflects the actual pattern
distribution.

3.3. Extracting the KDA Features of Faces

For the task of face recognition, one needs to consider
two kinds of variation: variation from different face
identities and variation from other sources such as
pose, illumination and expression. An ideal represen-
tation for this problem should be able to maximise
the former and minimise the latter. However, from
the low-level image characteristics of multi-view face
images, the former is not necessarily more significant
than the latter.

Although the variation from pose change has been
suppressed by normalising multi-view face patterns
to shape-and-pose-free, the underlying discriminatory
features for different face identities have not been
represented explicitly. Also, other sources of variation
like illumination and expression still exist which can
not be simply ignored.

This problem can be illustrated as in Fig. 6(a) where
the facial texture patterns are plotted in the first two
dimensions of PCA, the arguably most widely adopted
technique in face recognition. In this experiment, 540
facial texture patterns from 12 subjects (45 of each
subject) were evaluated. These patterns were used to
construct the multi-view face model in Section 2. For
the sake of clarity, only the patterns of first four face
classes are shown here. It is noted that the variation
from different face classes is not efficiently separated
from that of other sources of variation, or more pre-
cisely, the former is even overshadowed by the latter.

We apply KDA, LDA and KPCA, as well as PCA,
to the same set of facial texture patterns. For KDA and
KPCA, the Gaussian kernel is adopted,

k(x, y) = exp

(
−‖x − y‖2

2σ 2

)
(24)

where 2σ 2 = 1.
The distribution of the patterns are shown in Fig. 6.

It is noted that

1. the pattern distributions using PCA and KPCA are
not satisfactorily separable since these two tech-
niques are not designed for discriminatory purpose;

2. LDA performs better than PCA and KPCA, but not
as well as KDA;

3. KDA provides the best separation performance
among the four methods.

For the KDA method, we have experimented with
different types of kernel functions such as polynomial,
sigmoid and Gaussian kernel functions. Similar re-
sults have been obtained for different choice of kernel.
Meanwhile, when the parameter of the Gaussian kernel
is chosen as 2σ 2 = 1, a satisfactory result is produced
in terms of recognition accuracy and reliability.
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Figure 6. Distribution of multi-view face patterns in PCA, LDA, KPCA and KDA spaces. 540 facial texture patterns from 12 subjects, 45 of
each, are used in this experiment. For clarity, only patterns from the first four subjects are plotted.

For a quantitative analysis, we plotted the his-
togram distribution of within-class pattern distance and
between-class pattern distance in Fig. 7. The former is
distance between face patterns of a same subject, while
the latter is the distance between face patterns belong-
ing to different subjects. Obviously, for a good repre-
sentation, the within-class distance distribution should
be dense, close to origin, having a high peak value, and
well-separated from the between-class distance dis-
tribution. The average within-class distance d̄w and
between-class distance d̄b are shown in Table 3. To
make the results from different methods compara-
ble, we compute the normalised difference of the two

distances for each method as

dif = d̄b − d̄w

d̄w

(25)

which can be regarded as a measurement of how
largely the within-class patterns are separated from the
between-class patterns.

4. Recognising Faces Using Identity Surfaces

As reviewed in Section 1, recognising faces with
large pose variation and recognising faces dynamically
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Figure 7. Histogram distribution of with-class pattern distances (solid lines) and between-class pattern distances (dotted lines). These distances
are computed using 540 facial texture patterns from 12 subjects, 45 of each subject.

from video input are two of the most challenging
problem in face recognition. Aiming to address these
problems, we present in this section an approach to
multi-view dynamic face recognition using identity
surfaces.

An identity surface is constructed from the discrim-
inatory features of a face class based on pose infor-
mation. Therefore it is appropriate to deal with the
variation from pose change. Moreover, it enables face
recognition to be performed dynamically over time.
By tracking a moving face from a video input and ex-
tracting the discriminatory features for this face, one
obtains an object trajectory in a discriminatory feature

space. Meanwhile, a set of model trajectories can be
constructed on the identity surfaces, one of each face
class, using the same pose information and temporal
order. Face recognition can then be performed dyna-
mically by matching these two kinds of trajectories.

4.1. Identity Surfaces

One of the most commonly used techniques for recog-
nition is to compute the probabilities of a set of known
patterns or the similarities among templates of differ-
ent classes before selecting the optimal value using a
simple metric. For example, the Euclidean distance or
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Table 3. The average within-class and between-class distances and
their normalised difference values. It is noted that KDA achieves the
best separating performance, i.e. the highest dif value.

d̄w d̄b dif

PCA 2582.497391 4010.782401 0.553063

KPCA 2.216066 3.392148 0.530707

LDA 0.386242 0.874981 1.265372

KDA 0.078392 0.198229 1.528670

the Mahalanobis distance can be adopted if the pat-
tern distribution of each class is compact enough and
separable from others. However, usually this simplis-
tic method cannot provide satisfactory solutions to the
problem of multi-view face recognition. The reasons
are twofold: First, the representation adopted, e.g. the
KDA, may not generate a perfectly compact distribu-
tion of each face class while separating one from an-
other. Second, the distributions of each class cannot be
guaranteed to be homogeneous.

When the distribution is irregular, the traditional sta-
tistical method for dealing with this problem is to esti-
mate a multi-modal density function for each class. But
a very large number of training examples are needed
either for parametric or non-parametric modelling. In
this work, we do not constrain ourselves to such a strict
condition. Instead, we present a novel approach to con-
struct an identity surface for each face class from a
sparse sample of multi-view face patterns.

As stated previously, one of the key problems of
multi-view face recognition is how to separate two
kinds of variations: variation from different subjects
and variation from pose. Fortunately, we can estimate
the pose of a face when fitting the multi-view face
model on a face image (Section 2.5.2).

If we use the pose information explicitly rather than
indifferently computing all face patterns of different
views, a significant improvement to face identity mod-
elling can be expected. Based on this idea, we devel-
oped a method of multi-view face recognition using
identity surfaces. The basic idea of the identity sur-
faces is similar to the parametric eigenspace method
presented by Murase and Nayar (1994, 1995).

If we assume that only the appearance variation
caused by rotation in depth is concerned, i.e. the
variation from expression, illumination and facial
make-up is excluded, each face class can be represented
by a unique hyper surface based on pose information.
In other words, the two basis coordinates stand for the
head pose: tilt and yaw, and the other coordinates are

used to represent the discriminatory features of faces,
e.g. the KDA vectors. For each pair of tilt and yaw val-
ues, there is one unique “point” for a face class. The
distribution of all the “points” of the same face class
with regard to pose change form a hyper surface in the
space spanned by the discriminatory features and pose.
We call this surface an identity surface.

Even for the human vision system, the performance
of face recognition is not very reliable on static images.
However, the situation can be considerably improved
when video input is available where faces move contin-
uously. Recall the discussions in Section 1, psychologi-
cal and physiological research suggests that modelling
and recognising moving faces dynamically have the
potential of achieving a superior performance over that
on static images.

Once the identity surfaces are constructed, face
recognition can be performed dynamically from a video
sequence. As shown in Fig. 8, when a face is detected
and tracked in an input video sequence, one obtains
the object trajectory of the face in the feature space.
Also, its projection onto each of the identity surfaces
with the same poses and temporal order forms a model
trajectory of the specific face class. It can be regarded
as the ideal trajectory of this face class encoded by
the same spatio-temporal information (pose informa-
tion and temporal order from the video sequence) as the
tracked face. Then face recognition can be carried out
by matching the object trajectory with a set of model
trajectories. Compared to face recognition on static im-
ages, this approach can be more reliable and accurate.
For example, it is difficult to decide whether the pattern
X in Fig. 8 belongs to subject A or B for a single pattern.
However, if we know that X is tracked along the object
trajectory, it is more likely to be subject A than B.

Based on the discussion above, we propose the fol-
lowing process of video-based face recognition:

Registration. Construct the identity surface for each
face class from one or more training sequences;

Tracking. Fit the multi-view dynamic model (Sec-
tion 2) on an input video sequence containing faces
to be recognised, and extract the discriminatory fea-
tures;

Recognition. Compute the object and model trajecto-
ries and match these trajectories.

The issues of model fitting and feature extraction have
been presented in Sections 2 and 3. We will discuss the
issues of registration and recognition in the rest of this
section.
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Figure 8. An identity surface is a unique hyper surface for a face class in a pose-parameterised discriminatory feature space. By matching the
object trajectory and model trajectories on identity surfaces, face recognition can be performed dynamically from a video input.

4.2. Construction Algorithm

If sufficient patterns of a face class in different views are
available, the identity surface of this face class can be
constructed precisely. However, we do not require such
a strict condition. In this work, we develop a method
to synthesise the identity surface of a face class from a
small sample of face patterns which sparsely cover the
view sphere.

The basic idea is to approximate the identity surface
using a set of Np planes separated by a number of Nv

predefined views. The problem can be formally defined
as follows:

Suppose x, y are tilt and yaw respectively, z is the
discriminatory feature vector of a face pattern. A list
(x01, y01), (x02, y02), . . . , (x0Nv

, y0Nv
) gives predefined

views which divide the view sphere into Np grids. On
each grid, the identity surface of a face class is approx-
imated by a plane

z = ax + by + c (26)

Suppose the Mi sample patterns covered by the i th
plane are (xi1, yi1, zi1), (xi2, yi2, zi2), . . . , (xi Mi , yi Mi ,

zi Mi ), then one minimises

Q =
Np∑
i

Mi∑
m

‖ai xim + bi yim + ci − zim‖2 (27)

subject to: ai x0k + bi y0k + ci = a j x0k + b j y0k + c j

k = 0, 1, . . . , Nv,

planes i, j intersect at (x0k, y0k). (28)

This is a Quadratic Programming problem which can
be solved using the interior point method (Vanderbei,
1994).

Figure 9 shows the identity surface of a face class
constructed from all 45 example views (−20◦ ∼ +20◦

in tilt and −40◦ ∼ +40◦ in yaw with an interval of
10◦) and the approximated identity surface using only
15 example views, i.e. the same pose ranges but with
an interval of 20◦. A 10-dimensional KDA feature vec-
tor was adopted to represent the multi-view faces. The
identity surfaces are shown in the first three KDA di-
mensions only. Comparing the two identity surfaces
in this figure, it is indicated that identity surfaces can
be constructed from a small set of face patterns which
sparsely cover the view sphere.

In practice, the identity surface of a subject can be
constructed from one or more example sequences con-
taining the face of the subject. For example, we can
record a small video clip of the subject while he/she
rotates the head in front of a camera. After applying the
multi-view dynamic face model described in Section 2
on the video sequence, we obtain a set of face patterns
of this subject. The discriminatory features, e.g. KDA
features, can then be extracted from these patterns to
construct the identity surface.

4.3. Video-Based Face Recognition

For an unknown face image, one first fits the multi-
view dynamical face model onto the image and ex-
tracts the discriminatory features of the face to yield
a pose augmented feature vector (x, y, z0) where z0 is
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Figure 9. The identity surface constructed from all 45 views (first row) and that approximated from 15 prototype patterns (second row). A
10-dimensional KDA feature vector was adopted to represent the multi-view faces. Only the first three KDA components are shown here.

the discriminatory vector and x, y are the pose in tilt
and yaw. Then the pattern distance to one of the identity
surfaces can be computed as the Euclidean distance be-
tween z0 and the corresponding point z on the identity
surface

d = ‖z0 − z‖ (29)

where z is given by (26).
It is important to note that Euclidean distance is more

appropriate for KDA and LDA while Mahalanobis dis-
tance is more efficient for PCA and KPCA since the
discriminatory features are extracted in the former case
and the general variation is concerned in the latter.

Recognising faces from a video sequence using (29)
gives the frame-by-frame recognition results. However,
more reliable and accurate recognition can be achieved
by trajectory matching.

When a face is tracked in an input video sequence,
an object trajectory can be obtained by projecting the
face patterns into the pose-parameterised feature space.
Furthermore, a model trajectory can be built on the
identity surface of each subject using the same pose
information and temporal order of the object trajec-
tory. Those two kinds of trajectories, given any se-
quence of specific poses in a temporal order, encode

the spatio-temporal information of the tracked face.
Finally, recognition is performed dynamically by
matching the object trajectory to a set of identity model
trajectories.

A preliminary realisation of this approach is imple-
mented by computing a trajectory distance

dm =
t∑

i=1

wi dmi (30)

where dmi is the pattern distance to the identity surface
of the mth face class in the i th frame computed using
(29), and wi is the weight of this distance. Recognition
is performed by selecting the subject with minimum
trajectory distance.

4.4. Experiments

We applied this approach to a small scale multi-
view face recognition problem. Twelve sequences, each
taken from a set of 12 subjects, were used as training se-
quences to construct the identity surfaces. The number
of frames contained in each sequence varies from 40
to 140. KDA was adopted to extract the discriminatory
features.
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Figure 10. Video-based multi-view face recognition. (c) shows the object trajectory (solid line with dots) and model trajectories in the first
KDA dimension where the model trajectory from the ground-truth subject is highlighted with solid line. It is noted from (d) and (e) that the
pattern distances can give an accurate recognition result; however, the trajectory distances provide a more reliable performance, especially its
accumulated effects (i.e. discriminatory ability) over time.
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Figure 11. Face recognition on a face sequence with significant expression change. The pattern distance is less reliable for a few frames,
however, the trajectory distance still provides a reliable and accurate recognition.
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We randomly selected 180 images (15 images of each
subject which approximately cover the view sphere) to
train the KDA.2 The first ten KDA basis vectors were
used to construct the identity surfaces. Then recog-
nition was performed on new test sequences of these
subjects.

Figure 10 shows the results on one of the test seq-
uences. It is noted that a more reliable performance
is achieved when recognition is carried out using the
trajectory distances which include the accumulated evi-
dence over time, although the pattern distances in each
individual frame already provides good recognition ac-
curacy on a frame by frame basis.

Figure 11 shows the results on another sequence
where the face is undergoing significant expression
change. Since all the training face images are taken
in neutral expression, the results of model fitting is not
as good as those in Fig. 10. Also, the pattern distance
from individual frames only achieved a recognition ac-
curacy rate of 61.7% (29 out of 47 frames). However, it
is important to point out that the trajectory distance still
provided a reliable and accurate recognition (100% in
this sequence).

In these experiments, we adopted the shape-and-
pose-free texture patterns from the multi-view face
model (Section 2) and the KDA vectors of these texture
patterns (Section 3) to construct the identity surfaces
and object/model trajectories. However, it is important
to note that other kinds of representations can also be
incorporated in the framework of identity surface based
dynamic face recognition.

It is also noted in these experiments that, although
the face patterns are represented in the shape-and-pose-
free format, there are still some kinds of residual vari-
ation which are related to pose. Among them, the most
noticeable ones are from illumination change and self-
shading. We have discussed in Section 2.3 why only
geometrical information is considered when comput-
ing the shape-and-pose-free texture patterns. However,
these experimental results suggest that illumination es-
timation and correction may significantly improve the
performance of face modelling and multi-view face
recognition. We will investigate these issues in our fu-
ture work.

5. Conclusions

In this paper, we have presented a comprehensive
approach to modelling faces across multiple views,
extracting the non-linear discriminatory features and

dynamically recognising faces across views and over
time. The key issues of this work can be summarised
as follows:

1. Recognising faces across views is more challeng-
ing than that from a fixed view because of the se-
vere non-linearity caused by rotation in depth, self-
occlusion, self-shading, and illumination change.
To model faces with large pose variation, we dev-
eloped a dynamic face model, which includes a
3D PDM, a shape-and-pose-free texture model, and
an affine geometrical model. By representing faces
with the shape-and-pose-free texture patterns, the
variance from pose change is suppressed.

2. PCA, LDA and KPCA have been widely used in face
recognition. But PCA and LDA are limited to the lin-
ear applications while KPCA intends to capture the
overall rather than the discriminatory variance of all
patterns though it is non-linear. To efficiently extract
the discriminatory features of multi-class patterns
with severe non-linearity, the KDA is developed in
this work. We applied this method to multi-view
face recognition, and significant improvement has
been achieved both in reliability and accuracy.

3. Psychological and physiological research suggests
that modelling and recognising moving faces dy-
namically has the potential for achieving a superior
performance over that on static images. Inspired by
this idea, we present an approach to dynamic face
recognition using identity surfaces. The identity sur-
faces can be constructed from a sparse sample of
multi-view face images. Dynamic face recognition
can then be performed by computing and match-
ing the object and model trajectories. A more reli-
able recognition is achieved since these trajectories
encode the spatio-temporal information of a mov-
ing face and provide the accumulated evidence of
identity.

One of the main drawbacks of this approach is that
only geometrical information is considered when nor-
malising facial texture to shape-and-pose-free patterns.
However, as noted in the previous sections, there are
still some kinds of residual variation in the normalised
patterns which are related to pose. Among them, the
most noticeable ones are from illumination change and
self-shading. Extended work on illumination estima-
tion and correction is needed to improve the represen-
tative ability of the model.

Another limitation of the work is the intensive
computation involved in KDA. To obtain the KDA
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projection of an unknown pattern, one has to compute
the kernel functions of this pattern with all training ex-
amples. Actually this is a common limitation of all ker-
nel techniques such as KPCA and SVMs. Though some
methods such as the reduced set technique (Burges,
1996; Burges and Scholkopf, 1997) can be adopted for
computation reduction, an additional non-linear opti-
misation problem is usually introduced which is not
guaranteed to provide a global optimal solution.

In addition, some of the implementation such as tra-
jectory matching is still simplistic in its present form.
The trajectory distance is computed as a weighted sum-
mation, therefore it does not make any difference to the
results of recognition if the information of each frame
comes either in a random order or in the temporal order,
as is the case here, though the temporal order is still very
useful in the tracking process. We believe it is an inter-
esting issue for both psychological and artificial vision
research to exploit the underlying mechanism of this
spatio-temporal dynamics, and extensive further work
needs to be conducted.

Acknowledgments

The authors thank Jamie Sherrah, Eng-Jon Ong, Ting-
Hsun Chang, Jeffrey Ng, Paul Verity and Dennis
Parkinson for discussions on this research.

Notes

1. In particular, the algorithm presented in this paper is equivalent to
that in Baudat and Anouar (2000). In our algorithm, one inverse
matrix computation and one eigen-decomposition are conducted,
while two steps of eigen-decomposition are performed in the
latter.

2. To simplify the computation, normally we do not use all the pat-
terns of each subject to train the KDA since the sizes of the kernel
matrix K and K c are directly related to the number of training ex-
amples. A pragmatic approach to selecting the KDA training pat-
terns is to factor-sample the patterns from the training sequences
so that the resulting patterns uniformly cover the view sphere.
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