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Abstract: This study addresses the robust set-membership finite-horizon filtering problem for a class of discrete time-varying
systems with missing measurement and polytopic uncertainties in the presence of unknown-but-bounded process and
measurement noises. A robust set-membership filter is developed and a recursive algorithm is derived for computing the state
estimate ellipsoid that is guaranteed to contain the true state. An optimal possible estimate set is computed recursively by
solving the semi-definite programming problem. Simulation results are provided to demonstrate the effectiveness of the

proposed method.

1 Introduction

Filtering plays an important role in signal processing [1]. It is
well-known that the Kalman filter requires the process and
measurement noises to be white Gaussian processes [2].
However, the Kalman filter may lead to poor performance
for non-Gaussian noises [3]. Recently, the H, filtering
method has been proposed, which provides an energy
bounded gain for the worst-case estimation error without
the need for knowledge of noise statistics [4]. In this
filtering, process and measurement noises are assumed to be
arbitrary rather than Gaussian processes. However, there is
no provision in Hy, filtering to ensure that the variance of
the state estimation error lies within acceptable bounds [5].
In this respect, it is natural to consider process and
measurement noises as unknown-but-bounded which belong
to given sets in appropriate vector spaces [6, 7]. All
possible state estimates can be characterised by the set of
state estimates consistent with both the measurements
received and the constraints on the unknown process and
measurement noises whose norms are less than the
prescribed scalars, and the true state is contained in this set
of state estimates. The actual estimate thus is a set in state
space rather than a single vector. This estimation problem
has been referred to as a set-membership (set-valued)
filtering problem [6, 8—12].

The set-membership filtering problem was first considered
by Witsenhausen [13]. The set of all possible values of
the states compatible with the measurement of outputs is
completely characterised by their support functions. An
ellipsoidal approximation algorithm was provided by
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Schweppe [7]. In this algorithm, the measurements are used
to calculate recursively a bounding ellipsoid to the set of
possible states, under the assumption that the sets
containing the initial condition and the process and
measurement noises are, or can be approximated, by
ellipsoids. The solution to a set-membership filtering
problem with the instantaneous constraints was determined
by using the results derived for an energy constraint in [8].
The resulting estimator is similar to that proposed by
Schweppe [7]; however it has an important advantage that
the gain matrix does not depend on the particular output
measurements and is therefore precomputable. Recently,
many researchers have attempted to deal with the set-
membership filtering problems for various uncertain
systems. For example, a convex optimisation approach has
been applied to the case of norm-bounded uncertainty in
the system matrices to provide a set of state estimates in
[14]. A combinational ellipsoidal constraint of the uncertain
system matrix and uncertain process noise was introduced
for set-membership filtering in [15]. A recursive scheme for
constructing an ellipsoidal state estimation set of all states
consistent with the measured output and the given noise
and unstructured uncertainty described by a sum quadratic
constraint was presented in [16—18]. In the existing
literature concerning set-membership filtering techniques, it
is implicitly assumed that the measurements always contain
consecutive useful signals; see for example [19-21]. In
many real-world applications, however, the measurements
are not consecutive but contain missing measurements. For
example, the missing measurements exist in signal shading
and Dblocking, intermittent sensor failure, network
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congestion, accidental data packet loss of network
communication and so on. This motivates us to investigate
the set-membership filtering problem with missing
measurement. It is important to note that, to our best
knowledge, no paper has been published on this specific
topic.

There have been two ways to model the missing
measurement phenomena, that is, using stochastic binary
switching sequence and wusing deterministic binary
switching sequence. The deterministic binary switching
sequence is a switching sequence, which is known a priori,
whereas the stochastic binary switching sequence is a
sequence that cannot be predicted. The stochastic binary
switching sequence is specified by a conditional probability
distribution and enters into system measurement [22]. It can
be viewed as a Bernoulli distributed white sequence. The
model was employed in [23, 24] to study the robust filter
design problem with error variance constraints. Another
way is to model the missing measurement as a deterministic
binary switching sequence. An incompleteness matrix has
been introduced to quantify the missing data in [25, 26].
The robust filtering problem with missing data has been
investigated in terms of a recursive state estimator. In this
paper, we model the missing measurement by a
deterministic binary switching sequence taking on the
values of 0 and 1. The systems under consideration have
polytopic uncertainty and unknown-but-bounded process
and measurement noises. Our aim is to design a robust set-
membership filter for polytopic uncertain systems with
missing measurement in the presence of unknown-but-
bounded process and measurement noises. We adopt the
S-procedure technique [27] to determine a state estimation
ellipsoid that is a set of states compatible with the
incomplete (missing) measurement, the constraints on
unknown-but-bounded process and measurement noises and
polytopic uncertainty. A recursive algorithm is developed
for computing the ellipsoid that is guaranteed to contain the
true state. In each step, the ellipsoid is minimised in some
sense by solving a semi-definite programming problem.
This ellipsoid is an optimal possible estimate set, which can
be calculated recursively in real time.

The remainder of this paper is organised as follows. The
robust set-membership filter design problem is formulated
in Section 2 for discrete time-varying polytopic uncertain
systems with missing measurement. A novel set-
membership filtering algorithm for computing the state
estimation ellipsoid is developed in Section 3. Section 4
provides an illustrative example to demonstrate the
effectiveness of our algorithm. Conclusions and future
directions are described in Section 5.

Notation: The notation X > ¥ (respectively, X > ¥) where X
and ¥ are symmetric matrices, means that X — Y is positive
semi-definite  (respectively, positive  definite).  The
superscript T stands for matrix transposition. The notation
trace (P) denotes the trace of P.

2 Problem formulation

Consider the following discrete time-varying polytopic
uncertain system [28]

X = A(a)x;, + Fi(ou, + B (a)w;, (1)

where x, € R" is the system state, u, € R’ is the known
deterministic input, and w, € R" is the process noise.
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The matrices Ax(a), Bi(a) and Fj(«) are unknown time-
varying matrices with appropriate dimensions, where « is
an uncertain parameter. We assume that (4i(«), Bi(w),
Fi(a)) € Oy, where (); is a convex polyhedral set
described by N vertices

0, = {(Ak(a), B (a), Fi(a))
N - - - N
= Z al- Ag{l), B;:)’ Fg)), Z al. = 1, ai z O} (2)
i=1 i=1

where (A;j), Bg), Fg)) are known foralli=1,2, ..., N.
The measurements, which may appear as missing data
occasionally, are described by

Vi = Y(C(a)x; + Dy (a)vy) 3)

where y, € R" is the measurement output; v, € R’ is the
measurement noise. y;, € R takes the values of 0 and 1,
that is, the measurement data y;, is available if 7y, = 1 and y;
is missing if 7y, = 0; The matrices Ci(«) and Dy(«) are
unknown  time-varying matrices with  appropriate
dimensions. We assume that (Ci(a), Di(a)) € ,, where
(), is a convex polyhedral set described by N vertices

N N
Q,= {(ck(oo, D)= a(CP. D).y ay=1,0,20
i=1 i=1
)

where (C(i),Dg)) are known foralli=1,2, ..., N.

Remark 1: As compared with the norm-bounded uncertainty
in [3, 5, 14], the polytopic uncertainty considered in this paper
is more flexible. Polytopic uncertainty is probably the most
general way of capturing the structured uncertainty that may
affect the system parameters. It includes the well-known
interval parametric uncertainty [28].

Remark 2: This is the first to consider the missing
measurement problem in set-membership filtering. The
missing measurement is described as a binary switching
sequence which is viewed as a Bernoulli distributed white
sequence taking on the values of 0 and 1. Although this
representation for missing measurement is simple, it is
useful for many practical systems, especially for network
communication systems. For example, if a receiver can
receive the measurement data from a transmitter, then -y, is
chosen to be 1, otherwise -y is 0.

It is assumed that the process and measurement noises are
confined to specified ellipsoidal sets

Wy = {wewi Oy wy < 13 (&)

Vi = (iR v < 1 (6)

where @, = O] >0 and R, = R; > 0 are known matrices

with compatible dimensions. The initial state x, belongs to
a given ellipsoid

(o — %) Py (e — %) < 1 @)

where %, is an estimate of xo which is assumed to be given,
and P, = Pg > 0 is a known matrix.
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In this paper, a filter is considered for the uncertain system
(1)—(4) which is of the form [29]

X1 = Gy + Hyuy + Ly 3

where %, € R" is the state estimate of x; and Gy, H; and L;
are the filter parameters to be determined.

Our purpose is to determine an ellipsoid for the state x;,
given the missing measurement information y; at the time
instant k£ for all uncertain matrices (Ax(@), Bi(@), Fi(a),
Ci(o), Di(@)) € Q1+ (,, the process noise w, € W, and
the measurement noise v, € V,. In other words, we look
for P, and %; such that

(o — %) P (g — %) < 1 ©)

subject to (4(a), Bia), F(@), Cia), D)) € Qi+ Qs
w, €W, and v, € V,.

The above filtering problem is referred to as the robust set-
membership filtering problem with missing measurement.

3 Robust set-membership filter design with
missing measurement

In this section, a robust set-membership filter is designed for
discrete time-varying polytopic uncertain systems (1) and (3)
subject to process and measurement noises belonging to the
specifying ellipsoidal noise bounds in (5) and (6).

The following theorem provides a method to compute the
state estimation ellipsoid for the polytopic uncertain systems
where the true state resides and the convex combination
approach proposed by [30—32] is applied to compute the
state estimation ellipsoid.

Theorem 1: For the polytopic uncertain system (1) and (3)
whose parameters reside in polytoPes Q) and Q, with given
vertices Ag), Bg), F,({’), C,({’) and Dk’) i=1,2,...,N), Nis
the number of the vertices. Given that the state x; belongs
to its state estimation ellipsoid (x, — &) P; ' (x; — %) < 1,
where X, and P, > 0 are known, then the one-step ahead
state x;,; resides in its state estimation ellipsoid
(X1 = S ) Pyt @ — ) < 1, if there exist
Pk+1 > O, Gk, Hk, Lk, ™ > 0, T, > 0, T3 > (0 such that the
following linear matrix inequality (see (10))

holds, where (see (11))
and Ag) , B,(f), F,Ei) , C,(f) and Dg) are the matrices in (2) and (4)

at the ith vertex of the polytope. Moreover, %, | is determined
by

Xep1 = Gy + Hwy + Ly (12)

www.ietdl.org

Proof: The one-step ahead estimation error x; | — X, from
(1) and (8) is written as

Xiyp1 — X1 = Ap(a)x; + Fr(ou, + Bi(a)w
— Gixy — Huuy — Ly
= A(a)x; + F()u + Bi(a)w, — Gi.&y
— Hay — L[y (Cr(a)x; + Di(a)vy)]
= (Ay(a) — %L Cr(a)x; + Fi(auy
+ Bi(ayw;, — G &y — Hy — v Ly Dy (a)vy
(13)

Since (xk—fck)TP,:l(xk —X;) <1, there exists a z with
llzIl <1 such that

X, = 5y + Eyz (14)

where E is a factorisation of P, = E,E} .
Substituting (14) into (13) yields

Xpp1 — Xpq
= (Ay(a@) = %L Ci(@)xy — Gi&y + Fr(auy, — Hyuy
+ (Ay(@) = L C(@)Eyz + Bi(a)wy — v Ly Dy(a)vy

5)
Denoting
1
z
= (16)
Vi
and (see (17))
we can rewrite (15) as follows
Xpp1 — X = HE)n (18)

Thus, (x;,; — )AckH)TP,;il (X441 — X34 1) < 1 can be written as
7' (&) Pl T()n — ' diag(1,0.0,0m <0 (19)

Now |z|| <1, wZQ;lwk <1, and sz,jlvk <1 are also
written as

n' diag(—1,7,0,0)n <0 (20)
n"diag(—1, 0, 0y, 0)n < 0 1)
n'diag(—1, 0,0, R, <0 (22)

According to S-Procedure [27, 33], the sufficient condition

—P H(i)(ffka u,)
MGy, w)"  diag(—1+ 7 + 7+ 75, =1L, —1,0; ",

<0, i=12...,N 10
—Tst‘l)}_ o

N9G,, uy) = [(AY — 3L, C% — Gy + Fluy — Howy,  (AY — 4, L,COE, BY  —y,Di=1,2, ...,N (1)

Ny, uy) = [(A(@) — v L Cl(@)3y — Gy + Fi(a)u—Huy,
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such that the inequalities (20)—(22) imply (19) to hold is that
there exist positive scalars 7~ and 7, such that

TG, P TIGE,) — diag(1, 0, 0, 0) — 7, diag(—1, 7, 0, 0)
— n,diag(—1, 0, 0; ', 0) — mydiag(—1,0, 0, R;") < 0

(23)
Equation (23) is written in the following compact form
diag(—1+ 7+ + 7, —7l, =10, —1R;)
+ &) P M)
<0 (24)

By using Schur complements in [27], (24) is equivalent to
(see (25))

Now, we prove the equivalence between (25) and (10) for
all ie {1, 2, ..., N}. The proof from (25) to (10) is
straightforward since if (25) is satisfied for all the polytope
it must be the case at all the vertices. The proof from (10)
to (25) is deduced from (2), (4) and (10) (see (26)).

by noting that «; > 0 and Zf\;l a=1. O

Theorem 1 outlines the principle of determining the current
state estimation ellipsoid given the previous state estimation
ellipsoid. However, it does not provide an optimal state
estimation ellipsoid. Next, we apply the convex
optimisation approach to determine an optimal ellipsoid.
P, is obtained by solving the following optimisation
problem

min trace(P;_ )
Py >0,y Hy Ly m 0,750,730

27)
subject to (10)

Equation (27) provides the computation of the state estimation
ellipsoid of minimal size in the sense of trace.

Remark 3: We can see from Theorem 1 that the inequality
(10) is linear with respect to the variables P, G and Ly,
71, T and 73. Hence, the optimisation problem (27) subject
to (10) can be solved by the existing semi-definite
programming (SDP) via an interior-point approach [34, 35].

Remark 4: The trace of Py, ; is optimised at each time step in
an effort to find the smallest ellipsoid for the state estimate.
Other measures of the ellipsoid can also be introduced, for
example, determinant [14, 36].

Now we summarise a recursive algorithm for the set-
membership filtering as follows:

The robust set-membership filtering recursive algorithm

Step 1: Start with the initial values (X, and Py). Set the
recursive times K and k = 0;
Step 2: Find the shape of the state estimation ellipsoid Py
and filter parameters Gy, H; and L; by solving the
optimisation problem (27);
Step 3: Compute the state estimate X, | by using (12);
Step 4: 1f k = K, then Stop, otherwise, k = k+ 1 and go to
Step 2.

4 Simulation results

Consider a radar tracking system

094+a T 1 7%/)2
xk+1 = [ 0 0.9i|xk+ [Os]uk+ |: T/ i|wk (28)

where T is the sampling time. The state is x; = [s(k) S0,
where s(k) and $(k) are the position and velocity of the target
at time k7, respectively. Owing to modelling errors, « is the
unknown but it belongs to the known interval [@min, ®max]-

The measurement model with missing measurement is
described as

i =%([05 1]x +w) (29)

We consider this system over a finite-time interval of K = 100
samples. Furthermore, we assume that the measured signal
(k) is unavailable at the following time instants

k=5,6,7,51,52,53, 81, 82, 83

that is, at the above time instants, y; = 0, otherwise y, = 1.

In the simulation, the sample period T is chosen as 0.03 s,
u,= 0.1, w, and v; are non-Gaussian noise with Cauchy
distribution. In both pdfs the initial state is set as

xo=1[8—10]", which belongs to the ellipsoid

(¥ — %) Py (xg — %) < 1, where X, =[7-9]" and
20 0

P0:|:O 10],Qk:13Hde:1

We first consider the known system, that is, & = 0 in (28).
The simulation results are obtained by solving the convex
optimisation problem in (27) subject to (10) under Matlab
6.5 with YALMIP 3.0 and SeDuMi 1.1 [37]. YALMIP is a
modelling language for advanced modelling and solution
of convex and non-convex optimisation problems, and
SeDuMi is an interface for the self-dual-minimisation
package developed by Jos F. Sturm [38]. Both are user-
friendly free Matlab packages. Fig. 1 shows the phase-plane
estimation using the proposed set-membership filter. It can

|: _Pk+1

LRy, uy)
NG, u)" diag(—1+ 7 +7+ 7, —7l, —1,0;', —5R)

} <0 25)

|: _Pk+1

Lk, uy) :|

(&, w)" diag(—1+ 7+ 7+ 75, —7l, —7,0; ', —m3R;)

_Pk+1

N
= 2% s T -1 -1
=1 TG, wy))  diag(—=1+4+ 7 + 7 + 75, —7l, =10, —T3R )
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H(i)()?jk, uk) ] <0 (26)
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Phase-plane estimation

2 T T T T T

Velocity x,

Position X,

Fig. 1 Phase-plane estimation using the proposed set-membership
filter for the known system
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+ The state estimation
— The true state
10 1

Position ®
)
+
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] 10 20 30 40 50 60 70 80 90 100
Mo. of samples, k

Fig. 2 True state value, state estimation and its bounds with the
known system for target position

PP YT T

« The upper bound 1

#  The lower bound

+ The state estimation
— The true state

Velocity %

-10 E 4

-2+ 4

-14 L L L L L L
0 10 20 30 40 50 &0 70 &0 a0 100

Mo. of samples, k

Fig. 3 True state value, state estimation and its bounds with the
known system for target velocity
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Phase-plane estimation

Velocity x,

2 0 2 4 6 8 10 12
Position x4

Fig. 4 Phase-plane estimation using the proposed set-membership
filter for the polytopic uncertain system

*  The upper bound
= The lower bound
. + The state estimation
10+ The true state

Position %

0 10 20 30 40 50 60 70 80 90 100
No. of samples, k

Fig.5 True state value, state estimation and its bounds with the
polytopic uncertain system for target position

be seen that the estimated ellipsoids always contain the true
states. Figs. 2 and 3 further confirm that the true position
and true velocity reside between the upper bound and lower
bound.

Next, we consider the polytopic uncertain system, that is,
a € [—0.04, 0.04] in (28). The simulation results are
obtained by solving the convex optimisation problem in
(27) subject to (10) under Matlab 6.5 with YALMIP 3.0
and SeDuMi 1.1 [37]. Fig. 4 shows phase-plane estimation
using the proposed set-membership filter. Owing to the
uncertain parameters «, the true states distribute in the
phase-plane with respect to different «. However, they are
always contained in the estimated ellipsoid. It is also shown
from Figs. 5 and 6 that the true position and true velocity
reside between the upper bound and lower bound for all
uncertain parameters «. At any time step, we always know
that the target belongs to the estimated region. The target
can be fully tracked. Therefore our proposed filtering
algorithm is useful for target tracking and attacking the
target, even though the target systems are not exactly
modelled.
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Fig. 6 True state value, state estimation and its bounds with the
polytopic uncertain system for target velocity

From the simulations, we can see that the bounds without
parameter uncertainty are narrower than the bounds with
parameter uncertainty. Thus, the uncertainty makes us
identify the target in the greater range. Moreover, Figs. 1-6
show that the estimated ellipsoid will become smaller.
Hence, the proposed algorithm shows the ability of
convergence.

5 Conclusions

This paper has provided a new approach that is able to deal
with missing measurement, polytopic uncertainties and non-
Gaussian unknown-but-bounded process and measurement
noises in filtering problem for discrete time-varying
systems. A robust set-membership filter has been developed
and a recursive algorithm has been derived to estimate a
state ellipsoid which always contains the state. An optimal
possible estimate set is computed recursively by solving the
semi-definite  programming problems. An illustrative
example has demonstrated the feasibility of the proposed
filtering methods. The algorithm is computationally
attractive for on-line systems with missing measurement
and polytopic uncertainties in the presence of unknown-but-
bounded process and measurement noises. In the polytopic
system, how to measure the uncertain parameter « and
reduce the estimated region is our future research topic. Our
method can also be extended to other kinds of systems, for
example, continuous-time systems and time-delay systems.
They will be one of our future research topics. The much
more challenging research topics should be the study of the
convergence of the algorithms and how to reduce the
conservatism of the possible estimation sets. Another
challenging work is to consider the missing measurement
with stochastic binary switching sequence.
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