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ABSTRACT

A novel approach to image mosaicking from MPEG video is
presented in this paper. The motion vectors in both P- and B-
frames are used for global motion estimation. The bi-directional
information in B-frames provides multiple routes to warp a frame
to its previous anchor frame. A Least Median of Squares based
algorithm is adopted for robust motion estimation. In the case of
a large proportion of outliers, we detect possible algorithm failure
and perform re-estimation along a different route. Based on the
motion parameters between consecutive frames, the static back-
ground panorama and dynamic foreground panorama are constructed
from warped images over a whole video sequence.

1. INTRODUCTION

Panoramic scene reconstruction [1, 2, 3] has been an interesting
research topic for several decades. By warping a sequence of im-
ages onto a single reference mosaic image, we not only obtain an
overview of the content across the whole sequence but also reduce
the spatio-temporal redundancy in the original sequence of im-
ages. Image registration, i.e. establishing the correspondence be-
tween images, is one of the most computationally intensive stages
for image panorama. Fortunately, MPEG video, which has been
widely available in many applications such as teleconferencing,
visual surveillance, video-on-demand and VCDs/DVDs, has pre-
encoded macroblock based motion vectors that are potentially use-
ful for image registration.

There has been considerable effort over the past few years
in constructing panorama from an MPEG video [4, 5, 6, 7, 8].
However, the motion information encoded in an MPEG video, es-
pecially the bi-directional information in B-frames, has not been
fully utilised in the previous studies. Another limitation is the
methods adopted are mostly based on least squares minimisation
which is not robust to “outlying” MPEG motion vectors. Although
some researchers have proposed some methods accordingly, e.g.
texture filtering [6] and M-estimation [8], the problem is still largely
unsolved.

In this paper, we present a novel approach to image panorama
from MPEG video. The motion vectors in both P- and B-frames of
an MPEG video are used for motion estimation. The bi-directional
information in B-frames provides multiple routes to warp a frame
to its previous anchor frame. As the MPEG motion vectors are
usually noisy and contain many outliers, a robust Least Median of
Squares (LMedS) algorithm is adopted. In case of large proportion
of outliers, we detect possible algorithm failure and perform re-
estimation along a different route. Finally, the static background
panorama and dynamic foreground panorama are constructed from
warped images over a whole video sequence.

The rest of the paper is arranged as follows: Section 2 dis-
cusses the basic methods of estimating global motion from MPEG
motion vectors and maintaining the continuity of motion estima-
tion. A robust LMedS based algorithm is presented in Section 3.
Section 4 discusses static background panorama and dynamic fore-
ground panorama construction. Section 5 concludes the paper.

2. GLOBAL MOTION ESTIMATION FROM MPEG
MOTION VECTORS

MPEG (MPEG1, MPEG2 and MPEG4) is a family of motion pre-
diction based compression standards. Three types of pictures, I-,
P- and B-pictures are defined by MPEG, where an I-picture is
coded entirely in intra mode, a P-picture is coded using motion
prediction from the previous I- or P-picture (forward prediction),
and a B-picture is coded using forward prediction or backward
prediction or both. I- and P-pictures are often referred to as anchor
frames as they may be reference frames of other B- and P-pictures.

Although these MPEG motion vectors are encoded for the pur-
pose of video compression and may not be the real motion vectors,
we would argue that, given a MPEG video with reasonable image
and compression quality, most MPEG motion vectors are likely to
reflect the underlying global motion (or camera motion) in a video.
Therefore it is possible to estimate the global motion from MPEG
motion vectors.

2.1. Motion Estimation from MPEG Motion Vectors

We assume the global motion can be modelled as a 6-parameter
affine transformation given by[
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where(x, y)T and (x′, y′)T are the 2D positions before and af-
ter transformation, anda1, a2, a3, a4, b1, b2 are parameters of the
affine transformation. When more than 3 motion vectors between
two frames are available, this transformation can be estimated us-
ing a least squares method. Denote the parameters of the affine
transformation as a column vector

a = (a1, a2, b1, a3, a4, b2)
T (2)
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Then the least squares solution to this problem is given by
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When the affine transformations between all pairs of consecutive
frames are available, the whole video sequence can be warped to a
reference frame, e.g. the first frame of the sequence. A 2D position
vector in the first frame,x0 = (x0, y0)

T is transformed to

xn = fn(xn−1) (6)

in then-th frame, wherefn is the affine transformation between
then-th and(n − 1)-th frames given by (1). Thus the pixel value
of x0 in the first frame is taken as that ofxn in then-th frame.

We have also experimented with a more complicated projec-
tive transformation with 8 parameters. However, the results were
not as good as those of the simple affine transformation (for ex-
ample, larger distortion, image features like lines not aligned well,
etc.), which indicate that complicated models may not be neces-
sary for the “noisy” MPEG motion vectors.

2.2. Continuity of Motion Estimation

To achieve an image panorama over a video sequence, we need a
continuous motion from the beginning to the end of the sequence.
It is not a problem for the conventional panorama methods based
on motion estimation from raw images. However, for the MPEG
motion vectors, we may have the following problems: (1) The mo-
tion would be no longer continuous at an I-frame if its immediate
preceding frame is not a B-frame; and (2) intrinsically the MPEG
motion vectors do not need to reflect the real motion as long as
a decoder is able to re-construct the image in an acceptable qual-
ity. Thus these motion vectors may appear too noisy for motion
estimation.

To address these problems, we adopt several strategies which
proved to be useful for panorama from MPEG video.

1. Exclude the motion vectors along the boundaries of an im-
age which tend to be errant.

2. Exclude the zero motion vectors which usually do not spec-
ify a static macroblock in MPEG.

3. Owing to the bi-directional motion vectors in B-pictures,
there may be multiple routes to warp a frame to its preced-
ing anchor frame (I- or P-frame) and ultimately to the ref-
erence frame. For example, given four consecutive frames
I1B2B3P4, there are three different routes from frameP4

to I1: P4−I1, P4−B3−I1 andP4−B2−I1. We can then
perform motion estimation along all the routes and select
the best as the final result.

4. If none of the possible routes for a given frame provides a
satisfactory estimation, then

(a) this frame is removed from mosaic construction if it
does not affect the continuity of motion estimation,
e.g. frameB2 in the previous example;

(b) the transformation between this frame to its preced-
ing frame is interpolated from the transformations of
its neighbouring frames.

5. Use robust algorithms to estimate the global motion, which
will be discussed in Section 3.

3. ROBUST MOTION ESTIMATION

Robust techniques have been widely used in computer vision prob-
lems. A robust method should provide reliability in the presence of
various types of noise and can tolerate a certain portion of outliers
[9, 10]. Interested readers may refer to [11] for a recent review on
robust methods in computer vision.

3.1. LMedS Algorithm

To demonstrate the necessity of using robust methods for global
motion estimation from MPEG video, let us begin with a set of
typical motion vectors from a P- and B-frame in a football video
as shown in Figure 1(a), (b) and (c). As this image is taken from
a long distance and contains a dominant static ground-plane, most
motion vectors reflect the global camera motion. However, a few
motion vectors look different from the majority owing to the fore-
ground object motion or MPEG encoding efficiency as discussed
previously. These extraordinary motion vectors should be treated
as outliers for global motion estimation. It is important to note that
the outlier vectors are more likely to have large magnitudes, there-
fore they may easily skew the solution from the desired one if they
are dealt with inappropriately.

We adopt the robust Least Median of Squares (LMedS) method
[12] for global motion estimation. The outline of the method is as
follows.

1. Randomly selectN sets of data from all available training
examples to fit the model, resulting inN candidate solu-
tions;

2. Rather than using as much of the data as possible, each ran-
domly selected data set only containss data points, the min-
imum number to sufficiently solve the problem;

3. The optimal solution is chosen as the one with least median
of squared error.

Given an expected proportion of outliers in the data (ε, say) then
we need to chooseN sufficiently large to give a good probability
(p, say) of having at least one set which does not contain an outlier.
By simple probability it is easy to show thatN can be calculated
from the formula:

N = log(1 − p)/log(1 − (1 − ε)s) (7)

wherep is the probability of at least one ofN random samples is
free from outliers,ε if the expected proportion of outliers in the
training data, i.e. the probability of a data point being an outlier,
ands is the sample size. For our problem of affine motion esti-
mation, the minimum sample sizes = 3. Even if we make a very
conservative decision by choosingp = 0.99 andε = 50%, then
N = 34 which is still feasible for a good real-time performance.

3.2. Algorithm Failure Control

The LMedS method is very simple and does not need any prior
knowledge of the problem. However, its main shortcoming is that
when more than half of the training data are outliers, i.e.ε > 50%,
the data point with the median value may be an outlier, therefore
the algorithm will fail in this case. However, given a frame with its
motion vectors, we do not know if the conditionε < 50% holds.

For our specific problem, we can use the following methods to
solve the above problem:

1. Estimate motion along multiple routes and select the one
with smallest error. This would considerably reduce the
possibility of algorithm failure.

2. Use a thresholdT to determine a possible failure of the
LMedS algorithm, i.e. if the median of squares is larger
thanT , an estimation failure is raised. The strategies de-
scribed in Section 2.2 (3 and 4) are then adopted to com-
pute an alternative solution, i.e. computing along a different
route, dropping the frame, or interpolating from neighbour-
ing frames.
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Fig. 1. Motion estimation along multiple routes. The concerned frames are 144-147 (IBBP). The forward motion vectors of frame 147
to its previous anchor frame 144 (a) are too noisy for a reasonable estimation (d). However, using both the forward (b) and backward (c)
motion vectors in frame 146, a satisfactory motion estimation between frame 147 and 144 can still be established (e).

It is important to note that determining the value ofT is by no
means a tricky practice, at least for the data we used in this work.
The unreliable estimations can be easily distinguished from the
good ones. For example, a thresholdT = 18, which is not a
magic number but has an analytical meaning that less than 3 pixel
displacement in both horizontal and vertical direction is acceptable
(32 + 32), proved to work fairly well.

3.3. Algorithm Description

Combining the idea of LMedS and the strategies of determining
possible failures of the LMedS algorithm (Section 3.1) and main-
taining the continuity of motion estimation (Section 2.2), we give,
as in Table 1, the formal description of our algorithm for robust
global motion estimation from MPEG video.

1. Decode the motion vectors from the input MPEG video;
2. Remove the zero motion vectors and those on the bound-

aries of an image;
3. Randomly selectN sets of motion vectors from the remain-

ing data with sample size 3, whereN is computed with (7);
4. Compute the affine transformation for each of theN sample

sets (5);
5. Compute the median of squared error for each of theN

transformation, and select the one with the smallest value
Med;

6. If Med < T , return its corresponding parameters as the
optimal solution;

7. Otherwise, repeat the above steps along a different route as
described in Section 2.2, and return the optimal solution if
no failure raised;

8. If algorithm fails along all possible routes, drop the frame or
interpolate from the affine transformations of neighbouring
frames.

Table 1. The algorithm of robust global motion estimation from
MPEG video.

Note that, although it may be better to perform motion estima-
tion along all possible routes and select the best result, it is com-
putationally more efficient if we simply select the first satisfactory
result withMed < T as in Step 6. Also note the order of routes to
compute: For an I-frame, we first select its immediate preceding
B-frame, and decode the backward motion vectors of this B-frame
to estimate the global motion. If a failure raised, we then select the
second immediate preceding B-frame, and so on. For a P-frame,
the order is its preceding anchor frame, first immediate preced-
ing B-frame, second immediate preceding B-frame and so on. A
B-frame is usually directly warped to its preceding anchor frame.
Here are a few examples:

I-frame in· · ·B3B2B1I · · · , orderB1B2B3

P-frame in· · · IB2B1P · · · , orderIB1B2

3.4. Results

We have applied the above algorithm to different MPEG videos.
Figure 2(a) shows the panoramic image constructed from a foot-
ball video clip using our robust algorithm. To compare its perfor-
mance to other non-robust methods, a panorama using the standard
least squares method is also shown in (b). It is noted that there are
apparent distortions in the image constructed using least squares
method, while that using robust method looks much better.

(a) Robust algorithm

(b) Standard least squares method

Fig. 2. Panorama constructed from a football video clip. Distor-
tions can be observed from the panorama using the standard least
squares method (b), while the robust method achieves a more ac-
curate result (a).

Figure 1 demonstrates the situation of motion estimation along
multiple routes which we have been discussed previously. The
concerned frames are 144-147 (IBBP). Owing to fast motion, the
forward motion vectors of frame 147 (P-frame) to the previous an-
chor frame (frame 144, I-frame) contain too many outliers for a
reasonable estimation as shown in Figure 1(a). More precisely, the
least median of squared errorMed = 791.8, resulting in a failure



raised with the algorithm set up as above. This means we cannot
warp the current frame to its previous anchor frame directly. Fortu-
nately both the backward and forward motion vectors in frame 146,
its immediate preceding B-frame as shown in Figure 1(b) and (c),
are sufficiently clean. Therefore we can warp the current frame to
its previous anchor frame through two consecutive affine transfor-
mations estimated from the forward and backward motion vectors
of that B-frame respectively (withMed = 3.4 andMed = 1.4 re-
spectively). The panoramic images by warping the 4 neighbouring
frames to frame 144 using the direct route and indirect route are
compared in Figure 1(d) and (e). Pixels in the panoramic images
are computed as average values. It is clear that using algorithm
failure control and estimating the global motion along an alterna-
tive route give a more accurate result.

4. BACKGROUND AND FOREGROUND PANORAMAS

The content contained in a video sequence includes the static (back-
ground) and dynamic (foreground) information. The conventional
method of computing foreground and background panoramas is
to take the mismatched pixels as foreground and matched pixels
background. Here we use a simpler and more efficient method: the
background panorama is constructed from the medians of accumu-
lated pixels from all frames of a video sequence, while the fore-
ground panorama is comprised of the most different pixels from
the mean.

Suppose there areM accumulated values for a pixel position
in the panoramic image. The mean RGB values are expressed as

r̄ =
1

M

M∑
i=1

ri, ḡ =
1

M

M∑
i=1

gi, b̄ =
1

M

M∑
i=1

bi (8)

Compute the L1 distance, which is usually more robust than the
L2 distance [9], between each accumulated pixel value(ri, gi, bi)
and the mean value(r̄, ḡ, b̄)

di = |ri − r̄| + |gi − ḡ| + |bi − b̄| (9)
Then the pixel value with the median of{di, i = 1, ..., M} is se-
lected for the background panorama, while the one with the largest
di, i.e. the most different pixel, is selected for the foreground
panorama. An example foreground panorama constructed from
a football video clip is shown in Figure 3 while its background
panorama has been shown in Figure 2(a). Note that the trajecto-
ries of both the players and the ball are clearly displayed in the
foreground panorama. It is not difficult to understand the whole
process of the goal from the single panoramic image.

5. CONCLUSIONS

We have presented an approach to the problem of robust panorama
construction from MPEG video. The novel contributions of this
work include:

1. Making full use of both the forward and backward motion
vectors from P-pictures and B-pictures. As there are bi-
directional motion vectors coded in B-frames, motion esti-
mation can be performed along multiple routes for an opti-
mal result.

2. Realising that there likely many outliers existing in the MPEG
motion vectors, we adopt a robust LMedS algorithm that
theoretically has a high breakdown point of 50%. Algo-
rithm failure control by using multiple routes and thresh-
olding is designed to deal with the case of more than 50%
motion vectors being outliers.

3. A simplified method to construct panoramic background
and foreground is presented: the median of the accumu-
lated pixels is selected as background pixel and the most
different pixel from the mean as foreground.

Fig. 3. Foreground panorama constructed from a football video
clip. Its background panorama is shown in Figure 2(a).
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