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Abstract. Spectral-Domain Optical Coherence Tomography (SD-OCT)
is a non-invasive imaging modality, which provides retinal structures with
unprecedented detail in 3D. In this paper, we propose an automated
segmentation method to detect intra-retinal layers in SD-OCT images
around optic nerve head acquired from a high resolution RTVue-100 SD-
OCT (Optovue, Fremont, CA, USA). This method starts by removing all
the OCT imaging artifacts including the speckle noise and enhancing the
contrast between layers using the 3D nonlinear anisotropic. Afterwards,
we combine the level set method, k-means and MRF method to segment
three intra-retinal layers around optical nerve head. The segmentation
results show that our method can effectively delineate the surfaces of
the retinal tissues in the noisy 3D optic nerve head images. The signed
and unsigned significant differences between the segmentation results
and the ground truth over optic nerve head B-scans are 1.01± 1.13 and
1.93± 2.21.

1 Introduction

Optical Coherence Tomography (OCT) is a powerful biomedical tissue-imaging
modality, which can provide wealthy information, such as structure information,
blood flow, elastic parameters, change of polarization state and molecular content
[9]. Therefore, this imaging tool has been increasingly useful in diagnosing eye
diseases, such as glaucoma, diabetic retinopathy and age-related macular degen-
eration. These diseases are known to be the most common causes of blindness
in the developed countries according to the World Heath Organization (WHO)
survey [15]. In order to help ophthalmologists to perform more accurately and
efficiently the diagnosis of eye diseases, several medical image processing tech-
niques are applied to extract some useful information from OCT data, such as
retinal layers, retinal vessels, retinal lesions, optic nerve head, optic cup and
neuroretinal rim. In this work, we focus on the intra-retinal layer segmentation
of 3D retinal images obtained from around the macular and the optic disc head.
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There are two main reasons for intra-retinal layer segmentation [7]. First, the
morphology and thickness of each intra-retinal layer are important indicators
for assessing the presence of ocular disease. For example, the thickness of the
nerve fiber layer is an important indicator of glaucoma. Second, intra-retinal
layer segmentation improves the understanding of the pathophysiology of the
systemic diseases. For instance, the damage of the nerve fiber layer can provide
the indication of brain damages [7].

However, it is time consuming or even impossible for ophthalmologist to man-
ually label each layers, specifically for the macular images with the complicated
3D layer structures. Therefore, a reliable automated method for layer segmen-
tation is attractive in computer aided-diagnosis. 3D OCT layer segmentation
is a challenging problem, and there has been significant effort in this area over
the last decade. A number of different approaches are developed to do the seg-
mentation, however, no typical segmentation method can work equally well on
different 3D retinal images collected from different imaging modalities.

For most of the existing 3D segmentation approaches, a typical two-step
process is adopted. The first step is de-noising to remove the speckle noises
and enhance the contrast between layers (usually with 3D anisotropic diffusion
method, 3D median filter, 3D Gaussian filter or 3D wavelet transform). The
second step is to segment the layers according to the characteristics of the images,
such as shapes, textures or intensities.

Snake based methods [11] attempt to minimize the energy of a sum of inter-
nal and external energy of the current contour. These methods work well on
images with high contrast, high gradient and smooth boundary between the
layers. However, the performance is adversely affected by the blood vessel shad-
ows, other morphological features of the retinal, or irregular layer shapes. Zhu
et al. [20] proposed a Floatingcanvas method to segment 3D intra-retinal layers
from 3D optic nerve head images. This method can produce relatively smooth
layer surface, however, it is sensitive to the low gradient between layers. Yazdan-
panah et al. [18] proposed an active contour method, incorporating with circular
shape prior information, to segment intra-retinal layer from 3D OCT image.
This method can effectively overcome the affects of the blood vessel shadows
and other morphological features of the retinal, however it cannot work well on
images with irregular layer shapes.

Pattern recognition based techniques perform the layer segmentation by using
boundary classifier, which is used to assign each voxel to layer boundary and non
boundary. The classifier is obtained through a learning process supervised by ref-
erence layer boundaries. Fuller et al. [5] designed a multi-resolution hierarchical
support vector machines (SVMs) to segment OCT retinal layer. Compared to
other methods, the segmentation accuracy is slightly lower with 6 pixels of line
difference and 8 % of the thickness difference. A column classification algorithm
was proposed by Michael et al. [1] to segment the intra-retinal layers from 3D
optic nerve head images. Lang et al. [12] trained a random forest classifier to
segment retinal layers from macular images. However, the performance of the
pattern recognition based techniques are highly relayed on training sets.
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Graph based methods are aimed to find the global minimum cut of the seg-
mentation graph, which is constructed with regional term and boundary term.
Garvin [6] proposed a 3D graph search method by constructing geometric graph
with edge and regional information and five intra-retinal layers were successfully
segmented. This method was extended in [4], which combined graph theory and
dynamic programming to segment the intra-retinal layers and eight retinal layer
boundaries were located. Although these methods provide good segmentation
accuracy, they can not segment all layer boundaries simultaneously and have
slow processing speed. Lee et al. [13] proposed a parallel graph search method to
overcome these limitations. Besides, a fast multi scale 3-D graph algorithm was
developed to segment the intra-retinal surfaces for 3D optic nerve head images
by Lee et al. [14]. Kafieh et al. [10] proposed the coarse grained diffusion maps
relying on regional image texture without requiring edge based image informa-
tion and ten layers were segmented accurately. However, this method has high
computational complexity and does not work well for abnormal images.

In this paper, we propose an automatic approaches to segmenting intra-
retinal layers from optic nerve head images. Markov Random Field (MRF) and
level set method are used to segment retinal layers for 3D optic nerve head
images. Firstly, the nonlinear anisotropic diffusion approach is applied to denoise
the optic nerve head images and enhance the contrast between intra-retinal lay-
ers. Then, level set method is used to segment the retinal layer area. After that,
the initial segmentation is obtained by using the k-means method. Because of the
inhomogeneity and blood vessel shadows, the k-means method cannot segment
all layers well. Therefore, MRF method is used to improve the initial segmenta-
tion through iteration until it converges or reaches the maximum iteration.

This paper is organised as follows. A detailed description of the proposed
method for 3D OCT optic nerve head images is presented in Sect. 2. The exper-
imental results are shown in Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 Optic Nerve Head Intra-retinal Layer Segmentation

Figure 1 shows the process of layer segmentation for 3D optic nerve head images.
The intra-retinal layers for optic nerve head images are segmented by two major
steps: preprocessing step and layer segmentation step. During the preprocessing
step, the nonlinear anisotropic diffusion approach is applied to 3D optic nerve
head images to remove speckle noise and enhance the contrast between retinal
layers and background. Intra-retinal layers are segmented by two major steps:
preprocessing step and layer segmentation step. At the second step, four intra-
retinal layers are segmented by using the combination methods, which include
level set method, K-means cluster and MRF.

2.1 Preprocessing

During the OCT imaging of the retinal, the speckle noise is generated simul-
taneously. The conventional anisotropic diffusion approach (Perona-Malik) [8]
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Fig. 1. Block diagram of retinal layers segmentation process for 3D optic nerve head
images.

is used to remove the speckle noise and sharpen the boundaries of the retinal
layers. The nonlinear anisotropic diffusion filter is defined as:

∂

∂I(x̄, t)
= div[c(x̄, t)∇I(x̄, t)] (1)

where the vector x̄ represents (x, y, z) and t is the process ordering parameter.
I(x̄, t) is macular voxel intensity. c(x̄, t) is the diffusion strength control function,
which is depended on the magnitude of the gradient of the voxel intensity. The
function of c(x̄, t) is:

c(x̄, t) = exp(−|∇I(x̄, t)|
κ

2

) (2)

where κ is a constant variable chosen according to the noise level and edge
strength. Finally, the voxel intensities are updated by the following formulate:

I(t + �t) = I(t) + �t
∂

∂t
I(t) (3)

2.2 Vitreous and Choroid Boundaries Segmentation

The level set method has been extensively applied to image segmentation area.
There are two major classes of the level set method: region-based models and
edge-based models. The edge-based models use local edge information to direct
active contour to the object boundaries, while the region-based models use a
certain descriptor to identify each region of interest to guide the active contour
to the desired boundary. In this study, the classical region based Chan-Vese
model [3] is used to locate the boundaries of vitreous and choroid layer from
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3D optic nerve head images because it works well when there is large gradient
between retinal tissues and background.

The energy function of the Chan-Vese method is defined as:

E(φ) = λ1

∫
outside(C)

(I(X) − c1)2dX+
λ2

∫
inside(C)

(I(X) − c2)2dX + ν
∫

Ω
|∇H(φ(X))|dX

(4)

where λ1, λ2 are constant parameters determined by the user, ν is set to zero.
In addition, outside(C) and inside(C) indicate the region outside and inside
the contour C, respectively, and c1 and c2 are the average image intensity of
outside(C) and inside(C). φ is defined as a signed distance function (SDF) that
is valued as positive inside C, negative outside C, and equal to zero on C. The
regularization term Heaviside function H and the average intensities c1 and c2
are formulated as:

H(φ(X)) =
1
2
(1 +

2
π

arctan(
X

ε
)) (5)

c1 =
∫

Ω
I(X)H(φ(X))dX∫
Ω

H(φ(X))dX
c2 =

∫
Ω

I(X)(1−H(φ(X)))dX∫
Ω
(1−H(φ(X)))dX

(6)

In calculus of variations [2], minimizing the energy functional of E(φ) with
respect to φ by using gradient decent method:

∂φ

∂t
= −∂E(φ)

∂φ
(7)

where ∂E(φ)
∂φ is the Gâteaux derivative [2] of the energy function E(φ). The

equation of (4) is derived by using Euler-Lagrange equation [16], which gives us
the gradient flow as follow:

∂φ
∂t = −{λ1(I(X) − c1)2 − λ2(I(X) − c2)2}H(φ(X)) (8)

2.3 RNFL and RPE Layers Segmentation

After locating the boundaries of the vitreous and choroid layers, we define a
region that includes all the layers. In order to reduce the computation load and
increase the speed of the segmentation, we cut the retinal area out alone the
top and bottom layer boundaries. The K-means cluster is used to initialize the
shrinked data Is into k classes S = {S1, S2, ..., Sk}:

X = arg min
S

k∑

i=1

∑

Is(p)∈Si

‖Is(p) − μi‖2 (9)

where μi is the mean intensity in Si.
However, the k-means cluster fails to accurately locate all the layers due

to the blood vessel shadows and intensity inhomogeneities. Therefore, MRF is
applied to update the initial input X through iteration until it converges or
reaches the maximum iteration. There are four main steps of this method: first we
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calculate the likelihood distribution according the initialization information; then
we estimate the labels using MAP method; after that, the posterior distribution
is calculated and the parameter set is updated.

The MRF has been first introduced to segment Brain MR images [19]. Given
a 3D image Y = (y1, ..., yi, ..., yN ), where N is the total number of voxels and
each yi is a grey level voxel intensity, and X = (x1, ..., xi, ...xN ) (xi ∈ L) is
corresponding initial label of each voxel of the image. For example L = {0, 1}, the
image is segmented into two regions. The RNFL and RPE layers are segmented
by using MRF method. Here, we set L = {0, 1, 2, 3}.

EM algorithm is used to estimate the parameter set Θ = {θl|l ∈ L}. It is
assumed that the voxel intensity yi follows the gaussian mixture model with g
components parameters θi given the label xi:

P (yi|xi) = Gmix(yi; θi) (10)

Based on the conditional independence assumption of y, the joint liked proba-
bility can be expressed as:

P (Y |X) =
N∏

i=0

P (yi|xi) =
N∏

i=0

Gmix(yi; θi) (11)

Start: The initial GMM with g components parameter set Θ0 is learned from
the labels X and image data Y . The parameters can be expressed as:

θl = (μl,1, σl,1, ωl,1), ..., (μl,g, σl,g, ωl,g) (12)

And the weighted probability of the GMM is:

Gmix(y; θl) =
g∑

c=1
ωl,cG(y;μl,c, σl,c)

=
g∑

c=1

1√
2πσ2

l,c

exp(− (y−μl,c)
2

2σ2
l,c

)
(13)

E-step: At the tth iteration, we can obtain the parameters Θt, and the con-
ditional expectation can be deduced as:

Q(Θ|Θt) = E [ln P (X,Y |Θ)|Y,Θt]
=

∑

X∈L

P (X|Y,Θt) ln P (X,Y |Θ) (14)

where L is the set of all possible labels, and P (X,Y |Θ) can be rewritten as:

P (X,Y |Θ) = P (X|Y )P (Y |Θ) (15)

M-step: Next parameter set Θt+1 is estimated through maximizing Q(Θ|Θt):

Θt+1 = arg max
Θ

Q(Θ|Θt) (16)

The next let Θt+1 → Θt, and repeat from E-step.
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It is assumed that the prior probability can be written as:

P (X) =
1
Z

exp(−U(X)) (17)

where U(X) is the prior energy function. We also assume that:

P (Y |X,Θ) =
∏

i

P (yi|xi, θxi
) =

∏

i

Gmix(yi; θxi
)

= 1
Z′ exp(−U(Y |X))

(18)

Under these assumptions, the MRF Algorithm [17] is given below:

1. Initialise the parameter set Θ0.
2. Calculate the likelihood distribution P t(yi|xi, θxi

).
3. Estimate the labels by MAP estimation using the current parameter Θt:

X(t) = arg max
X∈L

{P (Y |X,Θ(t))P (X)}
= arg min

X∈L
{U(Y |X,Θ(t)) + U(X)} (19)

Given X and Θ, the likelihood energy (also called unitary potential) is

U(Y |X,Θ) =
N∑

i=1

U(yi|xi, Θ) =
N∑

i=1

[
(yi − μxi

)2

2σ2
xi

+ ln σxi
] (20)

The prior energy function U(X) is defined as:

U(X) =
∑

c∈C

Vc(X) (21)

where Vc(X) is the clique potential and C is the set of all possible cliques.
For 3D image, we assume that one voxel has at most 32-neighborhood. The
clique potential is defined as:

Vc(xi, xj) = β(1 − Ixi,xj
) (22)

where β is a constant variable coefficient set to 1/6. The function Ixi,xj
is:

Ixi,xj
=

{
1, if xi = xj

0, if xi �= xj
(23)

Firstly, the initial estimation X0 is calculated from the previous loop of the
EM algorithm. Then, an iterative algorithm is developed to estimate the Xk+1

provided Xk until U(Y |X,Θ) + U(X) converges or reaches the maximum k.
4. Calculate the posterior distribution for all l ∈ L and voxels yi using Bayesian

rule:

P t(l|yi) =
Gmix(yi; θl)P (l|xt

Ni
)

P t(yi)
(24)
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Table 1. Signed and unsigned mean and SD difference between the ground truth and
the proposed segmentation results for the four surfaces, respectively.

Surface Signed difference (mean l± SD) Unsigned difference (mean± SD)

1 −0.42 ± 0.65 0.83 ± 0.79

2 1.01 ± 1.13 1.43 ± 1.98

3 0.51 ± 1.14 1.02 ± 1.62

4 −0.9 ± 1.53 1.93 ± 2.21

where the conditional probability P (l|xt
Ni

):

P (l|xt
Ni

) =
1
Z

exp(−
∑

j∈Ni

Vc(l, xt
j)) (25)

xt
Ni

is the neighborhood configuration of xt
i, and the intensity distribution

function is:
P t(yi) = P (yi|θt) =

∑

l∈L

Gmix(yi, θl)P (l|xt
Ni

) (26)

5. Update the parameters by using P (l|xt
Ni

)

μ
(t+1)
l =

∑
i P t(yi)yi∑

i P t(yi)

(σ(t+1)
l )2 =

∑
i P t(yi)(yi−μ

(t+1)
l )2∑

i P t(yi)

(27)

3 Experiments

We tested the proposed method on SD-OCT optic nerve head images obtained
with RTVue-100 SD-OCT (Optovue, Fremont, CA, USA) in Moorfileds Eye
Hospital. The age of the enrolled subjects ranged from 20 to 85 years. This
imaging modalities protocols have been widely used to diagnose the glaucoma
diseases, which provide 3D image with 16 bits per pixel and 101 B-scans, 513
A-scans, 768 pixels in depth. Our methods successfully segmented the 4 intra-
retinal surfaces of all the 3D optical nerve head images without any segmentation
failures. The signed and unsigned mean and standard deviation (SD) difference
between the ground truth and the proposed segmentation results of the four
surfaces are given in Table 1. In terms of the signed and unsigned differences,
the first surface gives the best performance (−0.42 ± 0.65) and (0.83 ± 0.79),
respectively.

Figure 2 shows two examples of three intra-retinal layers segmented results
from a 3D OCT optic nerve head image which the layer 1 is retinal nerve fiber
layer, layer 2 includes Ganglion Cell Layer, Inner Plexiform Layer, Inner Nuclear
Layer and Outer Nuclear Layer (GCL, IPL, INL and ONL), layer 3 is retinal
pigment epithelium layer. Figure 2(a) shows the 60th B-scan, which includes
the optic disc region. Three examples of 3D OCT optic nerve head image layer
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Fig. 2. Illustration of three intra-retinal layers segmented results of two cross-sectional
B-scans from a 3D OCT optic nerve head image. (a) the 60th B-scan, which includes
the optic disc region, (b) the 10th B-scan. Layer 1: retinal nerve fiber layer (RNFL),
Layer 2 includes Ganglion Cell Layer, Inner Plexiform Layer, Inner Nuclear Layer and
Outer Nuclear Layer (GCL, IPL, INL and ONL), Layer 3: retinal pigment epithelium
layer (RPE).

segmented results are demonstrated in Fig. 3. In Fig. 3, four segmented layer
surfaces are illustrated in 3D, and the shape of the surfaces are hypothesised
to be related with eye diseases. Figure 4 illustrates the segmented results of 10
example B-scans from a segmented 3D optic nerve head image. Looking at these
segmented segmentation results, our method can efficiently and accurately detect
each layer of the retina in the 3D retinal images around the optic nerve head.

Fig. 3. Three examples of 3D OCT optic nerve head image layers segmentation results.
Four segmented layer surfaces of 3 different 3D images are visualised in 3D. The shape
of the surfaces are hypothesised to be related with eye diseases.

The RNFL thickness map is useful in discriminating for glaucomatous eyes
from normal eyes. Therefore, the RNFL layer thickness map is generated after
the segmentation of different retinal layers. With the thickness map of RNFL,
we can distinguish the glaucomatous patient from the normal subjects. Figure 5
shows two examples of the thickness map of RNFL of a healthy subject and
a glaucomatous patient. In Fig. 5(a), we can observe a thick retinal nerve fiber
layer, while Fig. 5(b) displays a thin retinal nerve fiber layer.

The proposed approaches are implemented on MATLAB R2011b, and the aver-
age computation time of our algorithm is 208.45 s for a 3D optic never head image
on Intel (R) Core(TM) i5-2500 CPU, clock of 3.3 GHz, and 8G RAM memory.
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Fig. 4. Ten B-scan segmentation results from an example 3D segmented optic nerve
head image, (a)-(k) are 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, 100th
B-scans, respectively. According to the segmentation results on B-scans from the 3D
retinal images around the optic nerve head, the efficiency and accuracy of our method
are shown.

Fig. 5. The thickness maps of retinal nerve fiber layer (RNFL) from two 3D optic
nerve head image examples. The RNFL thickness map is useful in discriminating for
glaucomatous eyes from normal eyes. (a) a healthy subject (b) a glaucomatous patient.

4 Conclusions and Discussions

In this paper, an automated hybrid retinal layer segmentation method is pre-
sented for 3D optic nerve head images. This method was implemented with a
typical two-staged process: de-noising step and segmentation step. The nonlinear
anisotropic diffusion approach is used to filter the speckle noise and enhance the
contrast between the layers as a preprocessing step.

A novel hybrid intra-retinal layer segmentation method for 3D optic nerve
head images has been presented. This method combines the CV model based level
set, k-means cluster and the Gaussian mixture model based Markov Random
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Field. The segmentation results show that our approach can detect four surfaces
accurately for 3D optic nerve head images.

It seems that the segmentation process is too complicated to involve three
different methods, namely the level set method, k-means cluster and MRF. How-
ever, it is difficult or even impossible to segment all the layers simultaneously by
using a single method because it requires larger computation memory and longer
computation time for a high volume of 3D images. Although methods such as
sub-sampling are applied to reduce the volume size, some important information
may lose. Conversely, a better segmentation with less computation is obtained by
using our method. More specifically, the CV model based level set method first
segments the volume of retinal area, the k-means cluster method initialises the
volume data into k regions, and the MRF method updates the initialization to
overcome the artifacts such the blood vessel shadow and variation of the image
intensity.

Acknowledgments. The authors would like to thank Quan Wang for providing the
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1. Abràmoff, M.D., Lee, K., Niemeijer, M., Alward, W.L., Greenlee, E.C., Garvin,
M.K., Sonka, M., Kwon, Y.H.: Automated segmentation of the cup and rim from
spectral domain oct of the optic nerve head. Invest. Ophthalmol. Vis. Sci. 50(12),
5778–5784 (2009)

2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial
Differential Equations and the Calculus of Variations, vol. 147. Springer, Heidelberg
(2006)

3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process.
10(2), 266–277 (2001)

4. Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic
segmentation of seven retinal layers in sdoct images congruent with expert manual
segmentation. Opt. Express 18(18), 19413–19428 (2010)

5. Fuller, A.R., Zawadzki, R.J., Choi, S., Wiley, D.F., Werner, J.S., Hamann, B.:
Segmentation of three-dimensional retinal image data. IEEE Trans. Vis. Comput.
Graph. 13(6), 1719–1726 (2007)
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