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Abstract. Spectral-Domain Optical Coherence Tomography (SD-OCT)
is a non-invasive imaging modality, which provides retinal structures with
unprecedented detail in 3D. In this paper, we propose an automated seg-
mentation method to detect intra-retinal layers in OCT images acquired
from a high resolution SD-OCT Spectralis HRA+OCT (Heidelberg En-
gineering, Germany). The algorithm starts by removing all the OCT
imaging artifects includes the speckle noise and enhancing the contrast
between layers using both 3D nonlinear anisotropic and ellipsoid av-
eraging filers. Eight boundaries of the retinal are detected by using a
hybrid method which combines hysteresis thresholding method, level set
method, multi-region continuous max-flow approaches. The segmenta-
tion results show that our method can effectively locate 8 surfaces for
varying quality 3D macular images.

1 Introduction

Coherence Tomography (OCT) is a powerful biomedical tissue-imaging modality,
which can provide wealthy information, such as structure, blood flow, elastic
parameters, change of polarization state and molecular content [9]. Therefore,
it has been increasingly useful in diagnosing eye diseases, such as glaucoma,
diabetic retinopathy and age-related macular degeneration, which are the most
common causes of blindness in the developed countries according to the World
Heath Organization (WHO) survey [14]. In order to help ophthalmologists to
diagnose the eye diseases more accurately and efficiently, some medical image
processing techniques are applied to extract some useful information from OCT
data, such as retinal layers, retinal vessels, retinal lesions, optic nerve head,
optic cup and neuro-retinal rim. In this work, we focus on the intra-retinal layer
segmentation of 3D macular images.

There are two main reasons for intra-retinal layer segmentation [7]. First, the
morphology and thickness of each intra-retinal layer are important indicators for
assessing the presence of ocular disease. For example, the thickness of nerve fiber
layer is an important indicator of glaucoma. Second, intra-retinal layer segmen-
tation improves the understanding of the pathophysiology of systemic diseases.
For instance, the damage of the nerve fiber layer can provide the indication of
brain damages.
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However, it is time consuming or even impossible for ophthalmologist to
manually label each layers, specifically for those macular images with the com-
plicated 3D layer structures. Therefore, a reliable automated method for layer
segmentation is attractive in computer aided-diagnosis. 3D OCT layer segmen-
tation is a challenging problem, and there has been significant effort in this area
over the last decade. A number of different approaches are developed to do the
segmentation, however, no typical segmentation method can work equally well
on different macular images collected from different imaging modalities.

For most of the existing 3D macular segmentation approaches, a typical two-
step process is adopted. The first step is de-noising, which is used to remove
the speckle noises and enhance the contrast between layers (usually with 3D
anisotropic diffusion method, 3D median filter, 3D Gaussian filter or 3D wavelet
transform). The second step is to segment the layers according to the charac-
teristics of the images, such as shapes, textures or intensities. For most of the
existing 3D OCT layer segmentation approaches, we can generally classify into
three distinct groups: snake based, pattern recognition based and graph based
retinal layer segmentation methods.

Snake based methods [11] attempt to minimize the energy of a sum of in-
ternal and external energy of the current contour. These methods work well on
those images with high contrast, high gradient and smooth boundary between
the layers, however, the performance is adversely affected by the blood vessel
shadows, other morphological features of the retinal, or irregular layer shapes.
Zhu et al [18] proposed a Floatingcanvas method to segment 3D intraretinal
layers. This method can produce relatively smooth layer surface, however, it is
sensitive to the low gradient between layers. Yazdanpanah et al [16] proposed
an active contour method, incorporating with circular shape prior information,
to segment intra-retinal layer from 3D OCT image. This method can effectively
overcome the affects of the blood vessel shadows and other morphological fea-
tures of the retinal, however it cannot work well on those images with irregular
layer shapes.

Pattern recognition based techniques perform the layer segmentation by us-
ing boundary classifier, which is used to assign each voxel to layer boundary and
non boundary. The classifier is obtained through a learning process supervised
by reference layer boundaries. Fuller et al[5] designed a multi-resolution hierar-
chical support vector machines (SVMs) to segment OCT retinal layer. However,
the performance of this algorithm is not good enough, it has 6 pixels of line
difference and 8% of the thickness difference. Lang et al [12] trained a random
forest classifier to segment retinal layers from macular images. However, the
performance of the pattern recognition based techniques are highly relayed on
training sets.

Graph based methods are aimed to find the global minimum cut of the seg-
mentation graph, which is constructed with regional term and boundary term.
Garvin [6] proposed a 3D graph search method by constructing geometric graph
with edge and regional information and five intra-retinal layers were successfully
segmented. This method was extended in [4], which combined graph theory and
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dynamic programming to segment the intra-retinal layers and eight retinal layer
boundaries were located. Although these methods provide good segmentation
accuracy, they can not segment all layer boundaries simultaneously and with
slow processing speed. Lee et al [13] proposed a parallel graph search method to
overcome these limitations. Kafieh et al [10] proposed the coarse grained diffu-
sion maps relying on regional image texture without requiring edge based image
information and ten layers were segmented accurately. However, this method has
high computational complexity and cannot work well for these abnormal images.

In this paper, we proposed an automatic approach for segmenting macular
layers by using the graph cut and level set methods. A de-noising step including
the nonlinear anisotropic diffusion approach and ellipsoidal averaging filter is
applied to remove speckle noise and enhance the contrast between layers. The
segmentation of the layers boundaries is performed by using the combination
of classical region based level set method, multi-region continuous max-flow ap-
proaches, all the segmentation techniques use the layers characteristics, such as
voxel intensities and positions of layers.

This paper is organised as follows. A detailed description of the proposed
method is presented in Section 2. This is followed by the experimental results in
Section 3. Finally, conclusions are drawn in Section 4.

2 Methods

Intra-retinal layers are segmented by two major steps: preprocessing step and
layer segmentation step. Figure 1 shows the process of layer segmentation. Dur-
ing the preprocessing step, the nonlinear anisotropic diffusion approach [8] and
ellipsoidal averaging filter are applied to 3D macular images to remove speckle
noise, enhance the contrast between object and background and remove stair-
case noise. At the second step, seven intra-retinal boundaries are segmented by
using different methods, which include the level set method, hysteresis method,
multi-region continuous max-flow algorithm, according to the characteristics of
each layers.

2.1 Preprocessing

During the OCT imaging of the retinal, the speckle noise is introduced simul-
taneously. Fig.2 (a) shows the original 3D macular image, which contains a sig-
nificant level of speckle noise. The conventional anisotropic diffusion approach
(Perona-Malik) [8] is used to remove the speckle noise and sharpen the object
boundary. The the nonlinear anisotropic diffusion filter is defined as:

0

ST = W@ VI 1) 1)

where the vector Z represents (x,y,z) and t is the process ordering parameter.
I(z,t) is macular voxel intensity. ¢(Z, t) is the diffusion strength control function,
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Fig. 1. Block diagram of retinal layers segmentation process. (NFL: Nerve
Fiber Layer, GCL: Ganglion Cell Layer, IPL: Inner Plexiform Layer, INL:
Inner Nuclear Layer, OPL: Outer Plexiform Layer, ONL: Outer Nuclear
Layer, IS: Inner Segment, OS: Outer Segment, RPE: Retinal Pigment Ep-
ithelium)

(b)

(©)

Fig. 2. a) Original 3D macular image. b) The filtered image by nonlinear
anisotropic diffusion. ¢) The filtered image by ellipsoidal averaging.
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which is depended on the magnitude of the gradient of the voxel intensity. The

function of ¢(z,t) is:

VI(z,1)|*

EE— 2
&0 )

where x is a constant variable chosen according to the noise level and edge

strength. Finally, the voxel intensities are updated by the following formulate:

I(t+ At) = I(t) + At%[(t) (3)

e(Z,t) = exp(—

The filtered image is shown in Fig.2 (b). Due to the staircasing (a byproduct
of the anisotropic method), the ellipsoidal averaging filter is applied to remove
the noise. Firstly, the filter function is defined as

2 2 2
Wy, 2) =4 b (& + &+ @) > 1 (4)
0, otherwise

where X, Y, Z are the mask size of x, y, z direction, respectively. This is followed
by convoluting with 2 x 2 x 2 ones array, and we can get the result f. Finally,
the filter mask is: f = f/sum(f). The result of this filtering is shown in Fig.2

(c).

2.2 Vitreous and choroid boundaries segmentation

The level set method has been extensively applied to image segmentation area.
There are two major classes of the level set method: region-based models and
edge-based models. The edge-based models use local edge information to direct
active contour to the object boundaries, while the region-based models use a
certain descriptor to identify each region of interest to guide the active contour
to the desired boundary. In this study, the classical region based Chan-Vese
model [3] is used to locate the boundaries of victorious and choroid layer from
3D macular images.

Due to different characteristics of each layers, different methods are applied
to segment different layers. Through the de-noising process, most of the speckle
noise is removed and the contrast between background and object is enhanced.
The level set method is used to segment the vitreous and the choroid boundaries
because it works well when there is large gradient between retinal tissue and
background.

The energy function of the Chan-Vese method is defined as:

ORI ) — e
Mo / (I(X) — c2)2dX + (5)
inside

(©)
v / VH($(X))|dX
0
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where A1, Ao are fixed parameters determined by the user, v is set to zero.
In addition, outside(C) and inside(C) indicate the region outside and inside
the contour C| respectively, and c¢; and co are the average image intensity of
outside(C) and inside(C). ¢ is defined as a signed distance function (SDF) that
is valued as positive inside C, negative outside C', and equal to zero on C. The
regularization term Heaviside function H and the average intensities ¢; and ¢y
are formulated as:

H(G(X) = 51+ 2 arctan("2)) (6)
and
Lo I0OH(X)ax
' [ H(6(X))dX

_ JIX)(1 - H(¢(X)))dX
Jo(1 = H(¢(X)))dX

In calculus of variations [1], minimizing the energy functional of E(¢) with
respect to ¢ by using gradient decent method:

9¢ _ OE(9)
o 0 ()
where 8%((;5) is the Gateaux derivative [1] of the energy function E(¢). The

equation of (4) is derived by using Euler-Lagrange equation [15], which gives us
the gradient flow as follow:

o == Dal(X) = e)? = a(I(X) = ) H($(X) )

2.3 NFL, GCL-IPL, INL, OPL, ONL-IS, OS, RPE boundaries
segmentation

After locating the boundaries of the vitreous and choroid layers, we define a
region that includes all the layers see Fig.3 (b). Because of the low intensities
of the OS-RPE layers, the 3D hysteresis method is used to locate the boundary
of IS layer, where two threshold values and a loop are used to produce a more
connected segmentation results. Furthermore, this method takes advantage of the
3D connectivities by filling image regions and holes to produce smooth boundary.

In order to reduce the computation load and increase the speed of the seg-
mentation, we further split the region into two parts (upper part (Fig.3. (d)
) and lower part (Fig.3. (¢)). From Fig 3. (¢) and Fig 3. (d), looking at the
intensity variation between different layers, it is obvious to distinguish layers
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Fig. 3. a) The de-noised 3D macular image. b) The segmented object image.
c) The lower part of the segmented image across the IS boundary. d) The
upper part of the segmented image across the IS boundary.

from each other. The multi-region continuous max-flow (Potts model) is applied
to segment both the upper part and lower part, the detail of this method will
be presented in the section 2.3. For the upper part, the NFL, GCL-IPL, INL,
OPL and ONL-IS boundaries are segmented. On the other hand, OS and RPE
boundaries are located for the lower part.

Graph cut is an interactive image segmentation method, which was first
introduced by Boykov et al [2]. This method is through minimizing the segmen-
tation function, which consists the regional term and boundary term, to find the
globally optimal cut of images. The regional term is defined by computing the
likelihoods of foreground (object) and background, while the boundary term is
to smooth the boundary by calculating voxel intensities, textures, colors or etc.
Here, the multi-region continuous max-flow (Potts model) is used to segment
both the upper and lower part to obtain the NFL, GCL-IPL, INL, OPL and
ONL-IS boundaries and OS and RPE boundaries, respectively.

Graph construction and Min-cut Each 3D macular image represents as a
graph G(v, ) consisting of a set of vertex v and a set of edges £ C v x v. The
graph contains two terminal vertices: the source s (foreground) and the sink t
(background). There are two types of edges: spatial edges and terminal edges.
The spatial edges (n-links) link two neighbour vertices except terminal vertices
(s or t), and the terminal edges link the terminals s or t to each voxels in the
image, respectively. In other words, for each voxel p C v\{s,t} is connected to
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terminal s called s-link, while linked to terminal t called t-link. Each edge e € £
is assigned a weight w, > 0.

A cut is a subset of edges C' € £, that separates the macular image into two
or more disjoint regions. It is through assigning each vertex to the source s or
the sink t to cut the graph into two disjoint regions, also called s-t cut. The
mathematical expressions are:

V:I/SUI/t, l/sﬂut:(b (10)

The optimal cut is to find the minimum of the sum of edge weights. The
corresponding cut-energy is defined as:

C| = mi 11
C] glggeezcwe (11)

Let A= (A4,..., Ay, ..., Ap) be a binary vector, and A, labels p voxel in the
graph to be object or background. The energy function can be rewritten as:
|C|=E(A) =X -R(A)+ B(A) (12)

where R(A) is regional term, B(A) is the boundary term. X is a nonnegative
coefficient, which represents the importance of the R(A). According to the the
voxel intensities of the selected seeds, the intensity distributions are: Pr(I|O)
and Pr(I|B). The regional penalty R,(-) assigns the likelihood of voxel p to
object and foreground as:

R,(obj) = —InPr(I,|0), R,(bkg) = —InPr(l,|B) (13)

The regional term can be expressed as:

R(A) =Y Ry(Ay, =— Y InPr(I,|0) = Y InPr(I,|B) (14)

pEP peO pEB

The boundary term B(A) is formulated as:

B(A)= Y B -0(4y Ay (15)

{p,q}eN

where 6(Ap, A,) =1 if A, = A,, and otherwise is equal to 0. The boundary
penalty By, ;y is defined as:

(Ip — Iq)2 1
202 dist(p,q)

Byp.qy o exp(— (16)

The By q) is large when the intensities of voxel p and q are similar and the
By, gy is close to 0 when two are different.
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Multi-region Potts model The continuous max-flow convex related potts
model was proposed by Yuan et al [17] to segment the image into n disjoint
regions {£2;}7 ;. This model modified the boundary term of the original model
by calculating the perimeter of each region, and the segmentation functional can
be modified as:

E(A) = R(A) + aB(A) = Z/ Ci(z)dz + oy |00 (17)
i=1 "% i=1
s.t. U;Qi =2 0,(2=0 p#q (18)

where |0(2;| calculates the perimeter of each disjoint region (2;, i=1 ... n, and «
is a positive weight for |0£2;| to give the trade-off between the two terms; the
function C;(z) computes the cost of region {2;. By using the piecewise constant
Mumford-Shah function, the functional can be rewritten as:

E(A) = Z /Q w;(z)Ci(z)dx + az /Q |Vu,|dx (19)

n
st Y u(x)=1, Vee (20)
i=1
where u;(x), i=1 ... n, indicate each voxel x to the specific disjoint region (2;,
1 T e .
ui(x) =<’ ,i=1...n 21
(@) {o, v g 2

The convex relaxation is introduced to solve the Potts model based image seg-
mentation as:

min E(A) (22)
where S is the convex constrained set of {u(x) = (u1(x),..., un(x) ) € Ay, Vo €

2}, and A is simplex set. This multi-terminal ’cut’ problem as above functional
is solved by using a continuous multiple labels max-flow algorithms [17].

3 Experiments

Images used in this study were obtained with Heidelberg SD-OCT Spectralis
HRA imaging system (Heidelberg Engineering, Heidelberg, Germany) in Ton-
gren Hospital. Non-invasive OCT imaging was performed on 13 subjects, and the
age of the enrolled subjects ranged from 20 to 85 years. This imaging modalities
protocol has been widely used to diagnose both retinal diseases and glaucoma
diseases, which provides 3D image with 256 B-scans, 512 A-scans, 992 pixels in
depth and 16 bits per pixel. It is time-consuming to do the manual grading for
all the B-scans of the 13 subjects as it is a large quantitative number. Therefore,
in order to evaluate the proposed method, the ground truth was done by human
experts by manually labelling a number of positions on a fixed grid and the rest
were interpolated.
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3.1 Results

To provide a quantitative evaluation of our method, four performance measure-
ments are selected by comparing with the ground truth, (1) Signed mean error
(Hunsign), (2) Signed standard deviation (ounsign), (3) Unsigned mean error
(fsign), and (4) Unsigned standard deviation (os;gr).These metrics are defined

as:
Hunsign = M E E ,J ,]

M N
Ounsign = N Z Z(G’L,j - Si,j - /fb'u,nsign)2

j=11i=1

LN (23)
Ihsign = M*N , Z(Gi,j —Sij)
j=11:=1
1 M N
. — P ) 2

Osign = M+ N = ;(Gl,] S’L,j Mszgn)

where G ;, S;; are the ground truth and the proposed segmentations of each
surface; M and N are 25 and 512.

Our method successfully located eight intra-retinal surfaces of all the 30 3D
macular images without any segmentation failures. The segmentation results are
consistent with visual observations and are confirmed by the experts from the
hospital as accurate.

The signed and unsigned mean and standard deviation (SD) difference be-
tween the ground truth and the proposed segmentation results of the eight sur-
faces are given in Table 1. In terms of the signed difference, the surface 4 gives
the best performance (-0.67+1.53); while in terms of the unsigned difference, the
surface 3 performs the best, it achieves around 1.224+1.93.

Table 2 shows the average thickness and overall thickness of the seven lay-
ers of the 30 volume images, besides that the absolute thickness and relative
thickness difference between the ground truth and the proposed segmentations
of the seven layers of the 30 images are calculated and showed. In terms of the
average thickness of the Table 2, the overall is around 119.07; the GCL+IPL
and ONL+4IS layers are 25.88 and 26.19, respectively, as they include two layers,
the thinest layer is OPL (8.48). The absolute thickness difference and relative
thickness difference of the overall are 1.984+1.69 and-0.93+1.79, respectively.

Fig. 4 shows an example of eight intra-retinal layers segmented result on
an example B-scan. Three examples of 3D segmented results are demonstrated
in Fig. 5. Fig. 6 illustrates the segmented results of 12 example B-scans from
a segmented 3D macular, and Fig.6 (a)-(m) are from 30th to 230th B-scans,
respectively.

The retinal thickness maps of all the layers are important indicators for
diagnosis and understanding of retinal pathologies. Therefore, after an accurate
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Fig. 4. lllustration of eight intra-retinal layers segmented result on an example B-scan
from top to bottom: 1. Vitreous, 2. NFL, 3. GCL-IPL, 4. INL, 5. OPL, 6.ONL-IS, 7.
0OS, 8. RPE, 9. Choroid.

Surface| Signed difference | Unsigned difference
(mean+SD) (mean+SD)
1 -0.75+1.67 1.65+2.12
2 0.69£1.73 1.43+£2.17
3 0.73+1.34 1.22+1.93
4 -0.67+1.53 1.73+2.01
5 -0.93£1.18 1.81£2.32
6 1.53+1.45 2.23+1.93
7 1.2941.81 1.23+2.13
8 0.79£1.01 1.124+1.37

Table 1. Signed and unsigned mean and SD difference between the ground truth and
the proposed segmentation results for the eight surfaces, respectively.
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(a)

Fig. 5. Three examples of 3D visualization of eight surfaces.

Layers Average thickness Absolute thickness Relative thickness

difference difference
(mean £ SD) (mean £ SD)

NFL 15.99 1.75+1.77 -1.0542.12
GCL+IPL 25.88 2.11+1.83 1.17£1.83
INL 14.59 1.7941.93 -0.97+1.72
OPL 8.48 1.734+2.13 0.67+£1.54
ONL+IS 26.19 1.834+2.21 1.194+1.75
0S 10.72 1.954+2.68 1.37+1.86
RPE 17.24 1.694+1.73 -1.0942.11
Overall 119.07 1.98+1.69 -0.93+1.79

Table 2. Average thickness of the 7 layers and overall of all the 30 volume images,
absolute thickness and relative thickness difference between the ground truth and the

proposed segmentation results of the 7 layers and overall from all the data.
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segmentation of the eight retinal boundaries, we generate the thickness maps of
seven retinal layers. Fig. 7 shows the thickness maps of all the retinal layers,
which includes thickness maps of layer 1 to layer 7, layers above OS and total
retinal layers.

The proposed approach was implemented on MATLAB R2011b on Intel(R)
Core(TM) 15-2500 CPU, clock of 3.3GHz, and 8G RAM memory.

Fig. 6. Twelve B-scan segmentation results from an example 3D segmented
macular, (a)-(m) arelOth, 30th, 50th, 70th, 90th, 110th, 130th, 150th,170th,
190th, 210th, 230th B-scans, respectively.

4 Conclusions and Discussions

In this paper, we have presented a novel hybrid intra-retinal layer segmentation
method, which includes hysteresis thresholding method, the CV model based
level set method, and the Potts model based multi-region continuous max-flow
method. According to the characteristics of different layers, different methods
are applied to segment different layers accurately and efficiently. This was im-
plemented with a typical two-staged process: de-noising step and segmentation
step. The nonlinear anisotropic diffusion approach and ellipsoidal averaging filter
is used to filter the speckle noise and enhance the contrast between the layers
as a preprocessing. The segmentation results show that our approach can detect
seven layers accurately for 3D macular images with no failure.

The overall segmentation process may look over complicated as it involves
three different methods at different stages, namely the level set method, the hys-
teresis thresholding method and the multi-region continuous max-flow method.
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Fig. 7. Examples of thickness maps of 7 retinal layers, layers exclude choroid layer and
total layers. The seven layers are 1. NFL, 2. GCL-IPL, 3. INL, 4.0PL, 5.ONL-IS, 6.
OS, 7. RPE

It may sound much more concise if a single method is used to simultaneously
segment all layers. However, our experiments show that such an approach would
demand much higher memory and much longer computation time for the algo-
rithms to run, simply because of the high volume of 3D images. If methods such
as sub-sampling are used to reduce the data size and computation time, the ac-
curacy of segmentation would be degraded. In contrast, our approach is able to
deliver a better performance with less computation. In particular, the level set
method first segments the volume region containing all the 6 middle layers, the
simple, fast hysteresis thresholding method partitions this region further into
two parts along the easiest boundary between the ONL-LS and OS layers, and
finally the multi-region max-flow method is used to segment the individual layers
in the upper and lower parts.

Acknowledgments. The authors would like to thanks Yuan Jing for providing
the source of the continuous max-flow algorithm.
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