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Abstract

A comprehensive novel multi-view dynamic face model
is presented in this paper to address two challenging prob-
lems in face recognition and facial analysis: modelling
faces with large pose variation and modelling faces dynam-
ically in video sequences. The model consists of a sparse
3D shape model learnt from 2D images, a shape-and-pose-
free texture model, and an affine geometrical model. Model
fitting is performed by optimising (1) a global fitting crite-
rion on the overall face appearance whilst it changes across
views and over time, (2) a local fitting criterion on a set
of landmarks, and (3) a temporal fitting criterion between
successive frames in a video sequence. By temporally es-
timating the model parameters over a sequence input, the
identity and geometrical information of a face is extracted
separately. The former is crucial to face recognition and fa-
cial analysis. The latter is used to aid tracking and aligning
faces. We demonstrate the results of successfully applying
this model on faces with large variation of pose and expres-
sion over time.

1. Introduction
The issue of face recognition and facial analysis (facial

expression, ageing, and caricature) has been extensively
addressed in recent years. Various approaches including
Eigenfaces [16], Elastic Graph model [11], Linear Object
Classes [18], Active Shape Models (ASMs) [3] and Active
Appearance Models (AAMs) [2] have shown to be promis-
ing under different assumptions.

1.1. Modelling Faces with Large Pose Variation
In particular, modelling faces across views is one of the

most challenging problems because of self-occlusion, self-
shading, and the consequent non-linearity in both shape and
texture. Both ASMs and AAMs are unfortunately restricted
to a narrow view due to the linear assumption of the 2D ap-
pearance. To address this problem, Romdhani et al [15] de-
veloped a multi-view appearance model using Kernel Prin-
cipal Component Analysis (KPCA). The non-linearity of
KPCA enables the model to deal with large pose varia-
tion, but has a price of intensive computation. Cootes et
al. [4] proposed the view-based Active Appearance Mod-
els which employ three models for profile, half-profile and

frontal views. On the other hand, Moghaddam and Pent-
land [13] presented a view-based and modular eigenspace
method. Li et al. [12] introduced a view-based piece-wise
SVM (Support Vector Machine) model of the face space.
But the division of the face space in these methods is rather
arbitrary and often coarse, therefore ad hoc.

An alternative approach to alleviate the multi-view prob-
lem is to use 3D models. DeCarlo and Metaxas [5] pre-
sented a 3D deformable face model in which optical flow
and edge information are combined. Their model success-
fully tracked faces in sequences with significant expression
change and pose change. Jebara and Pentland [10] proposed
an approach to recover the 3D face structure using Structure
from Motion. The estimation of the 3D structure is further
constrained for reliable feature tracking by a 3D range data
model of an average human face. Vetter and Blanz [17] in-
troduced a flexible 3D face model learnt from examples of
3D range face data. A novel 2D face image can be matched
to the 3D model in an analysis-by-synthesis manner. Then
images of the novel face in different views, illumination,
and expression can be synthesised by changing the parame-
ters of the matched model.

1.2. Modelling Faces Dynamically on Sequences
In parallel to modelling faces across views, the issue of

exploiting the face dynamics using spatial-temporal infor-
mation from video sequences has also received great inter-
est. From video sequences, not only can more information
about the visual objects be acquired, but also the temporal
continuity and subject constancy can provide a more robust
representation [8]. Gong et al. [9] introduced an approach
that uses Partially Recurrent Neural Networks to recognise
temporal signatures of faces. Edwards et al. [6] proposed an
integrated approach to decouple the identity variance from
the residual variance of pose, lighting and expression. By
learning the correlation between the two parts of variance
online, a class-specific refinement for the identity covari-
ance can be achieved. Yamaguchi et al. [19] presented a
method for face recognition from sequences by building a
subspace for the detected faces from a given sequence and
then matching the subspace with prototype subspaces.

1.3. Overview of this Work
To comprehensively address the two problems stated

above, we present an integrated multi-view dynamic face
model. It consists of three parts: a sparse 3D shape model



trained from 2D images labelled with pose and landmarks, a
shape-and-pose-free texture model, and an affine geometri-
cal model. Section 2 gives the details of model components
and model construction. A model fitting algorithm is pre-
sented in Section 3 formulated by optimising the global fit-
ting criterion of the overall face appearance, the local fitting
criterion on a set of 2D landmarks, and the temporal fitting
criterion between the information on successive frames of a
sequence. Section 4 describes the issue of temporal model
fitting, i.e. obtaining a robust estimation of model param-
eters dynamically from sequences where faces are under-
going large pose and expression changes. Conclusions are
drawn in Section 5.

2. Multi-View Dynamic Model
Our multi-view dynamic face model consists of a sparse

3D Point Distribution Model (PDM) [3] learnt from 2D
images in different views, a shape-and-pose-free texture
model, and an affine geometrical model which controls the
rotation, scale and translation of faces. The first two parts of
the model aim to represent the identities of faces to be anal-
ysed, while the latter is used for alignment and tracking.

2.1. Constructing 3D Shape from 2D Images
As the 2D appearance of different people from the same

view can be more similar than that of one person at differ-
ent views, the problem of modelling the appearance of faces
with large pose variation is non-trivial for 2D models. But
if 3D geometrical information is available, this situation can
be alleviated to some extent. A straight forward way to col-
lect 3D information about faces is using sensors such as a
3D laser scanner. However, the huge amount of 3D range
data may bring a heavy burden to the computation. Another
difficulty comes from establishing the correspondence be-
tween the dense 3D data. In this work, we learn a 3D face
shape model containing only a sparse set of feature points
from 2D face images in different views.

2.1.1. Database of 2D Multi-view Faces

The database used in this work includes 2D face images
from 31 subjects, 133 poses of each subject (see [8] for
more details of the data acquisition process). The pose of a
face is defined by two parameters: tilt and yaw ��������� , the
rotation angles about horizontal and vertical axes respec-
tively. The rotation in image plane is not taken into account
on the basis that human heads are assumed mostly upright.

A sparse set of 44 landmarks locating the mouth, nose,
eyes, and face contour were semi-automatically labelled on
each face image.

2.1.2. Estimating the 3D Shape

Given a set of 2D face images with known positions of the
landmarks and pose, the 3D positions of the landmarks can
be estimated using linear regression. The rotation centre
used to measure the pose angles is assumed to be the centre
point of the eye centres and the mouth centre. We set this
point as the origin of the object coordinate system.

Orthographic projection is adopted for simplicity. Sup-
pose the 3D coordinates of a landmark in the object coor-
dinate system is �
	����
����� , the position of this landmark in
the 2D image with pose ���
����� is given by:�
���������������
	����
������� (1)

where � is the rotation matrix for pose ��������� obtained by
rotating about the horizontal axis first by � and then about
the vertical axis by � .��� ���! #" ����� $ "&%(' �����"&%�' ���)� "&%�' �
�*� �+ #" ���)�-, "&%(' ���*� �+ #" �
���/. (2)

Note that the results are only slightly different if rotating in
the reverse order, i.e. first � , then � .

If 01��0 2435� face images in different poses are avail-
able, one can estimate the 3D coordinates �
	����
����� of a
landmark using linear regression by minimising67 8:9�;�< �
�=,>� 8 �@?BAC����,>� 8 ��?&D (3)

where �
� 8 ��� 8 � is the known 2D position of the landmark.
Then the 3D shape vector E is obtained as:E>�F�
	 ; �G� ; ��� ; ��	 ? �G� ? ��� ? �!HIHIH:��	KJ)L����MJ*L����NJ*L�� � (4)

where OQP is the number of landmarks,
Ideally, the larger the range of poses covered by the

training images, the more accurate the 3D position. How-
ever, when a face rotates to nearly profile view, some of
the landmarks are invisible in the image. Therefore, for
each subject, 45 of the 133 face images with poses betweenR ,S3T$5UV�G3#$WUYX in tilt and

R ,[Z5$WUS��ZW$5U)X in yaw are selected for
training. Also, the training set 0 should be big enough. In
our experiments, a random selection of 20 out of 45 face
images from each subject is used to learn the 3D shape vec-
tor of all landmarks. For each subject, 50 shape vectors are
estimated in this manner to learn the statistical 3D PDM of
faces.

2.2. A Sparse 3D PDM of Faces
Although only a sparse set of 44 landmarks are chosen to

represent the 3D shape of faces, the dimensionality is still
too high to fit the shape model. However, human faces can
be represented in an abstract low dimensional shape space
since they are actually share a similar structure. The PDM
is adopted to construct this low dimensional shape space.

Performing Principal Component Analysis (PCA) on O
given 3D face shape vectors \&E 8 � % �^]T��3_�!HIHIH:�GOa` which are
estimated using the method described in Section 2.1.2, one
obtains the mean shape bE and the eigen matrix c which is
comprised of the first Oed significant eigen vectorscf� R g ; g ? HIH:H g J)hGX (5)

Then a shape pattern E can be represented by a vector in the
PDM space i �Cc � ��E�, bEY� (6)



whose dimension is Oed . The reconstructed 3D shape fromi
is obtained from E��S�Cc i A bE (7)

We trained the PDM on a set of 600 3D shape patterns
from 12 different subjects (50 of each subject) with pose
changes between

R ,S3#$WUV�G3T$5UNX in tilt and
R ,[Z5$WUV��Z5$WUYX in

yaw. Each 3D shape pattern was estimated from a random
selection of 20 of 45 face images of the same subject as
stated in Section 2.1.2.

It is important to point out that the reason for using the
small range of pose in the training stage is to make sure
all landmarks are visible in the image. Otherwise, if some
landmarks are invisible, it would be difficult to label the
positions of those landmarks. However, this constraint is
not imposed when fitting the model onto a novel image or
sequence. It will be shown later that the model can be fitted
successfully even when part of a face is invisible in a 2D
image.

Figure 1 shows the projection, on
R ,[ZW$ UV��Z5$5UNX in yaw

(from left to right), of the first shape mode changing from
the mean shape by \W, � �G$�� � ` of standard deviation (from
top to bottom). The first 10 eigenshapes take ���_H���� of all
variance.

Figure 1. The first mode of the 3D PDM.

2.3. A Shape-and-Pose-Free Texture Model
There is no doubt that texture carries as important repre-

sentative information as shape. However, accurately mod-
elling face texture is nontrivial since it is quite sensitive to
change of illumination, pose, and expression. In this work,
we mainly focus on the problem of modelling facial tex-
ture variation arising from pose change. Explicitly mod-
elling surface reflection and shading properties provides a
solution to this problem. As an alternative, we present here
a statistical approach to model face textures by extracting
shape-and-pose-free texture information.

To decouple the covariance between shape and texture, a
face image fitted by the shape model (Section 2.2) is warped
to the mean shape at frontal view with $ U in both tilt and
yaw. This is implemented by forming a triangulation from
the landmarks and employing a piece-wise affine transfor-
mation between each triangle pair (see left in Figure 2). By
warping to the mean shape, one obtains the shape-free tex-
ture of the given face image. Furthermore, by warping to the
frontal view, a pose-free texture representation is achieved.
Figure 2 illustrates the triangulation mesh of the mean shape

in frontal view, a face image, the face fitted by the shape
model, and the warped texture pattern to the mean shape in
frontal view.

Figure 2. Extract the shape-and-pose-free tex-
ture of a face image.

We applied PCA to a set of 540 shape-and-pose-free
face textures from 12 subjects with pose changes betweenR ,S3T$5UV�G3#$WUYX in tilt and

R ,[Z5$WUV��Z5$WUYX in yaw (45 from each
subject). The first 12 eigen modes take �
	 H Z�� of all vari-
ance.

During the fitting process, a shape-and-pose-free texture
pattern � of a face image, which is already warped to the
mean shape in the frontal view, can be represented by


 ��� � ��� , b��� (8)

where b� is the mean texture, and � is constructed by the
first O�� significant eigen vectors of the texture PCA

� � R � ; � ? H:HIH � J*hGX (9)

The reconstruction of the texture pattern is

���S��� 
 A b� (10)

2.4. Representing Face Patterns
Based on the analysis above, a face pattern can be repre-

sented in the following way. First, a 3D shape model is fitted
to the given image or video sequence containing faces. The
shape parameters of the fitted face is given by Equation (6).
The face texture is warped onto the mean shape of the 3D
PDM model in the frontal view. Then the texture parame-
ters of the face can be obtained using Equation (8). Finally,
by adding parameters controlling pose, shift and scale, the
complete parameter set of the dynamic model for a given
face pattern is

� �^� i � 
 ���
�������5� ���5� ���#� � (11)

where ��������� is pose in tilt and yaw, ���T�����5�_� is the transla-
tion of the centroid of the face, and � is its scale.

The parameter set consists of two parts: the iden-
tity information � i � 
 � which is crucial to face recogni-
tion and facial analysis, and the geometrical information���
���N���T�����5� ���#� which is important for face alignment and
tracking.

3. Model Fitting Algorithm
Model fitting in this context is to search for the optimal

parameters of the model for an unknown face image to be
interpreted. The parameters are given by:

��� ����� ��! %�' ��"�� � ��� (12)



where "S� � � is a loss function which evaluates how well the
model fits onto the image.

We formulate the loss function as

"�� � � � � � � � � �N, ���NA
� J L7 8I9�;�� 8 � ���� 8 � � � � � 8 	 � A

 J*L7 8:9*; � 8 � ���� 8 � � �+���� 8 � �
� ; ��� (13)

The first term on the right-hand side evaluates the differ-
ence between the image appearance and the model synthe-
sised appearance, where � �T� � � is the reconstructed texture
given by (10), and � is the original texture warped onto the
mean shape in frontal view. This is based on the principle of
analysis-by-synthesis [7, 2, 17]. The better the model fits,
the smaller the difference.

The second term, which is measured in Mahalanobis dis-
tance, describes the local texture similarity of each land-
mark to the template of this specific landmark estimated
from training images, where ��

8 � � � is the response of Gabor
wavelet filters [11] or derivatives of Gaussian, on the current
position of the

%
th landmark. The same filters have been ap-

plied to the training face images. A set of templates, one for
each landmark, is obtained using PCA.

�
8
	 denotes the tem-

plate centroid. The Mahalanobis distance
� � �� 8 � � � � � 8 	 �

is calculated using distance-in-feature-space (DIFS) [14].
Each

� ���� 8 � � � � � 8 	 � is weighted by
� 8

, which measures
the visibility of the

%
th landmark. The value of

� 8
is com-

puted from the normal of the landmark on the 3D shape.�
is a normalisation coefficient, and O P is the number of

landmarks. It was noted in our experiments that the Ga-
bor wavelet filter does not outperform simpler derivatives
of Gaussian.

The last term, which is only enabled when the input is a
video sequence, compares the difference between the fil-
tered local texture around each landmark ��

8 � � � and that
in the previous frame ��

8 � � � ; � . The Mahalanobis distance� � �� 8 � � �+� �� 8 � �
� ; ��� is also calculated using DIFS. 
 is a
normalisation coefficient.

The loss function defined in (13) can be interpreted as
follows: it is a weighted summation of the fitting criterion
of the global appearance to the model synthesised appear-
ance, the local fitting criterion around each landmark, and
the temporal fitting criterion to the previous pattern.

Based on stochastic search, the fitting algorithm of the
multi-view face model is implemented as in Table 1. The
evaluation of the loss function used in step 4 is carried out
as in Table 2. A Support Vector Machine based method was
used for real-time pose estimation [12] in Step 1. Figure 3
illustrates the process of applying the above algorithm to a
face image.

4. Fitting the Model to Sequences
By fitting the multi-view face model to face images, one

extracts and separates the identity parameters and geomet-

1 assume initial parameter � 	 �F� i ���
���N��� ���5� ���5���
2 randomly sample

'
parameter points around initial � 	

3 randomly sample ! parameter points around each of
the

'
points

4 evaluate the values of the loss function "S� � � for each
of the !�� ' parameters

5 sort the loss function values in ascending order
6 if no improvement from the top value, stop
7 otherwise, save the first

'
parameters, then go to 3

Table 1. Fitting algorithm

1 perform pose estimation using � i ��� ���T�����5���
2 restore 2D shape using � i ���
���N��� ���5� ���5���� reconstruct 3D shape E � from

i
using (7)� project E � to ���
������ scale to � and translate to ���T�����5�_�

3 evaluate the global appearance fitting criterion given
as the first term in (13)� warp the texture enclosed by the 2D shape to the

mean shape in frontal view to obtain the shape-
and-pose-free texture �� compute the texture parameter



by projecting �

using (8)� reconstruct � � using (10)� calculate the similarity
4 sample and filter the local texture around each land-

mark
5 evaluate the local fitting criterion of landmarks given

by the second term in (13)
6 evaluate the temporal fitting criterion of landmarks, if

necessary, given by the third term in (13)
7 compute the overall loss in (13)

Table 2. Evaluation of "S� � �
rical parameters from the raw images. A solution to this
problem can be greatly improved when a continuous video
input is available. From video sequences, not only can dif-
ferent views and various textures be used for model fitting,
but also the temporal continuity provides the possibility to
exploit the facial dynamics encoded in the input stream.

4.1. Temporal Estimation of Model Parameters

We assume an input sequence contains only one sub-
ject whose identity is unchanged throughout the sequence.
Fitting the model onto a sequence frame by frame inde-
pendently may receive a fluctuant estimation of the model
parameters since there is no identity constancy constraint
imposed on the fitting process. Instead, in each frame, it
only tries to minimise the loss function given in (13). Other
reasons for the fluctuation include local optima and image
noise. When face recognition or facial analysis is performed
under continuous video stream input, the model fitting prob-
lem should be regarded as dynamic parameter estimation
of an underlying stochastical process where the identity pa-
rameters � i � 
 � are kept constant and the geometrical param-



Figure 3. Fit the multi-view face model to a face image. The first two images shows the original face
image and the fitted pattern warped on the original image. The others are the fitting results in 8
iterations.

eters change freely. In this paper, we only discuss the issue
of temporal estimation of the identity parameters because of
its importance to face recognition and facial analysis.

A straightforward method to estimate the identity pa-
rameters temporally is performing Gaussian estimation [1]
which is based on the least squares principle. However,
this method computes all the information accumulated in
a batch way which is not appropriate for tracking. Alterna-
tively, Kalman filters [1] provide a recursive solution to this
problem.

The problem of estimating the identity parameters of the
model using a Kalman filter can be formulated as follows.
For a shape vector, the state transition equation isi ��� �N� i ����, ] � (14)

The observation is taken from the 2D projection of the 3D
shape since this is the only visible part of the 3D shape.��� �����N����� �����!��c i ������A bEY� A	������� (15)

where ������� denotes a zero-mean, white observation noise,
and � � ����� is the rotation and projection matrix extended by� in (2),

���#�����N� 
�
� � $ H:HIH $$ � H:HIH $H:HIH$ $ H:HIH �


��
� (16)

Defining � �����
� � � ��� �@c (17)� �����N� ��� �����Y,>��� ����� bE (18)

the observation equation is then given by� �����N� � ����� i ����� A�������� (19)

Therefore, temporal estimation of the model identity param-
eters can be performed by a Kalman filter:

�
i �����N� �

i ����, ] � A�� ����� R � �����*, � ��� � �i ���e, ] ��X (20)� �����
� � ���Q, ] �Y,�� ����� � ����� � ���e, ] � (21)� �����N� � ����, ] � � � ����� R � ��� � � ���e, ] � � � ������A��KX � ; (22)

where � is Kalman gain,
�

is the error covariance matrix,
and � is the covariance matrix of ����� � which can be esti-
mated from the training data,.

A Kalman filter can also be designed for the texture vec-
tor in a similar way. However, unlike the one for the shape
vector, where the observation vector is formulated from the
2D projection of the 3D shape, the state vector, i.e. the tex-
ture parameter



, is fully observable, thus the observation

vector and the state vector can be identical.

4.2. Tracking Out-of-Range Poses
As stated in Section 2.2, the 3D PDM shape model is

trained from 2D images with limited pose range where all
landmarks are visible. To verify if the model generalises
well on out-of-range poses, we applied the model on se-
quences where faces are undergoing large pose change. The
pose range in those sequences are normally profile to pro-
file.

Figure 4. Tracking faces undergoing large
pose change. The first row is original im-
ages from sample frames, and the second row
shows the reconstructed face patterns over-
lapped on the original images.

The results depict that the model is capable of coping
with large variation of pose even though it is trained on a
limited range of views. This can be explained for two rea-
sons. First, the shape information is represented in 3D, so
the model can be rotated and projected to 2D for any given
pose. Second, in the loss function (13), the local and tempo-
ral criteria are defined in a pose-specific way since they are
weighted by a visibility measure which depends on pose.
In all the experiments, the model has demonstrated a reli-
able performance between

R ,��#$ U ���#$ U X in yaw. However,
when the pose is nearly � �T$ U , tracking may fail since little
information is available in this view.

4.3. Tracking Faces with Expression Changes
To verify the robustness of the model, we also fitted it on

sequences containing faces undergoing significant expres-
sion changes. The results from one of those sequences is
shown in Figure 5. It is noted that the fitting is less well
in some frames due to significant expression change. The
main reason is that all the face images used for training are
taken in neutral expression. However, due to the averaging
and smoothing effect of Kalman filter, the fitting process
still converged to a stable estimation of the subject identity
and shown to be very robust over time despite errors in in-
dividual frames.

It is important to point out that the aim of this exper-
iment is to estimate the identity parameters and is not to
recognise the expressions of the subject. In other words, a



state-invariant model defined by (14) is used on the basis of
subject constancy.

Figure 5. Tracking faces with significant ex-
pression change.

5. Conclusions
In this work, we focus on two important issues of face

recognition and facial analysis, modelling face appearance
with large pose variation and modelling faces dynamically
over time. To address the problems, we present an inte-
grated multi-view dynamic face model which includes a
sparse 3D PDM shape model, a shape-and-pose-free texture
model and an affine geometrical model. The contributions
of this work are summarised as follows:

1. A 3D PDM shape model is learned from 2D images
labelled with poses and landmarks. Instead of using
dense 3D range data, this model consists of a sparse
set of landmarks only.

2. A shape-and-pose-free texture model is built to decou-
ple the covariance between shape and texture.

3. Although only face images from limited pose range are
used in the training stage to ensure all landmarks are
visible in the images, this limitation of pose range is
never imposed when applying the model for tracking.
Experimental results indicate that it is able to cope with
pose variation from profile to profile.

4. By applying the model, two sets of information, the
identity parameters and geometrical parameters, are
obtained. The former is crucial to face recognition and
facial analysis, and the latter is important for alignment
and tracking.

5. Fitting criteria are formulated from the global fitting
criterion of the entire face, the local fitting criterion
of the landmarks and the temporal fitting criterion to
previous patterns.

6. Temporal estimation of model parameters is employed
to provide a more robust and stable fit over time.
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