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Abstract—In this paper, the problem of set-membership
filtering is considered for discrete-time systems with
nonlinear equality constraint between their state variables.
The nonlinear equality constraint is first linearised and
transformed into a state linear equality constraint with two
uncertain quantities related to linearising truncation error
and base point error. S-procedure method is then applied to
merge all inequalities into one inequality and the solution to
the unconstrained set-membership filtering problem is
provided. The set-membership filter with state constraint is
finally derived from projecting the unconstrained set-
membership filter onto the constrained surface by using
Finsler's Lemma. A time-varying linear matrix inequality
(LMI) optimisation based approach is proposed to design
the set-membership filter with nonlinear equality constraint.
A recursive algorithm is developed for computing the state
estimate ellipsoid that guarantees to contain the true state.
An illustrative example is provided to demonstrate the
effectiveness of the proposed set-membership filtering with
nonlinear equality constraint.
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. INTRODUCTION

Filtering technique has been playing an important role
in target tracking, image processing, signal processing
and control engineering [2]. Most filtering approaches
require the system noises including process noise and
measurement noise in a stochastic framework and then
provide a probabilistic state estimation [28,30-32]. The
probabilistic nature of the estimates leads to the use of
mean and variance to describe the state spreads
(distributions). These spreads cannot guarantee that the
state is included in some region, because they are not
hard bounds. However, in many real-world applications,
such as, target tracking and attack, system guidance and
navigation, they need 100% confidence to be estimated.
This has motivated to develop an ellipsoidal state
estimation [9]. The idea of the ellipsoidal state estimation
is to provide a set of state estimates in state space which
always contains the true state of the system by assuming
hard bounds instead of stochastic descriptions on the
system noises [3,20]. The actual estimate is a set in state
space rather than a single vector. These methods are
therefore known as set-membership or set-valued state
estimation (filtering) [3, 13, 20, 27]. We prefer to adopt
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the name set-membership filtering in this paper as it is
easy to distinguish between a set estimation and a point
estimate in the stochastic framework.

Set-membership filtering (ellipsoidal state estimation)
is more suited than probabilistic state estimation to be
applied in the following two cases. The first case is for
the systems in which the bounds on system inputs and
observation errors are known. This case exists in many
systems. For example, for a vehicle tracking system, we
always know its maximum acceleration although we do
not know exactly how much it is when the vehicle is
running. A bound can be applied to the acceleration as the
bound on system inputs. Moreover, observation errors
can be also viewed as belonging to some bound due to
quantization errors and measurement errors. The second
case is for the filtering performance requirement which is
used to check whether the future state, subject to
uncertainty, can definitely be brought into a specified
desirable region. There are numerous potential
applications for this. In order to avoid an obstacle, for
example, a robot must make sure of where it is by
estimating its position in presence of modelling and
observation errors. Another example is that a vehicle is
required 100% confidence not to enter into the collision
area. Due to its practical significance, the problem of set-
membership filtering has been extensively studied (see,
for instance, [5, 7, 9, 12, 16-19, 21] and the references
therein).

In addition to the filtering performance requirement,
some physical systems possess an additional equality
constraint between some state variables. For example, in
vehicle tracking, the equality constraint can arise from the
vehicle position when the vehicle is travelling on a
known road (straight line or curve). Such tracking
problem can be regarded as a filtering problem
incorporating a state constraint with the road network
information from digital maps [10, 22]. The filtering
problems with state constraints have been studied within
the Kalman filter framework. There have been several
approaches to address this problem, which can be
classified into augmented measurement and projection
approaches. The augmented measurement approach is to
treat the state constraints as additional fictitious or pseudo
measurements in perfect forms (i.e., no measurement
noise) [1, 4, 25]. This approach is simple and intuitive,
but the incorporation of state constraints as perfect
measurements brings the possibility of numerical



problems and increases the dimensionality of the prob-
lem [24]. The projection approach is first to obtain an
unconstrained Kalman filter solution and then project
the unconstrained state estimate onto the constrained
surface [8], [24]. [23], [29]. The approach overcomes
the numerical and dimensional problems. The key point
of this approach is to find an appropriate projection
method. To the best of our knowledge, the problem of
set-membership filtering incorporating state constraints
has not been addressed, which motivates this work.

In this paper, we are concerned with the filtering
problems with nonlinear equality constraint within the
set-membership filter framework. The nonlinear equality
constraint is first linearized and transformed into a linear
equality constraint with two uncertain quantities related
to linearizing truncation error and base point error. S-
procedure method is then applied to merge all inequalities
into one inequality and the solution to the unconstrained
set-membership filtering problem is obtained. The set-
membership filter with state constraint is finally derived
from projecting the unconstrained set-membership filter
onto the constrained surface by using Finsler’s Lemma.
The solution to the problem of set-membership filtering
with nonlinear equality constraint is obtained by solving
a time-varying LML A recursive algorithm is developed
for computing the state estimate ellipsoid that guarantees
to contain the true state.

Notation. The notation X > Y (respectively, X = 1)
where X and YV are symmetric matrices, means that
X — Y is positive semi-definite (respectively, positive
definite). The superscript T" stands for matrix transposi-
tion. The notation trace(F') denotes the trace of P.

I1. PROBLEM FORMULATION

Consider the following discrete time-varying system:

riy1 = Apxi + Frug + Brwy, (1)

ve = Crrp+ Dy, (2)

where x; € R™ is the system state; u;, £ R is the

known deterministic input; y; € ™ is the measurement

output; Ag, By, Ck. Dy and Fy are known time-varying

matrices with appropriate dimensions: w; € R™ is the

process noise and v € RP is the measurement noise,

which is assumed to be confined to specified ellipsoidal
sets:

Wy = {wy, : ng;lwk < 1}, (3)
Vi = {vp s v By hoy, < 1}, (4)
where Q; = QT = 0 and Ry = RY = 0 are known

matrices with compatible dimensions; the initial state g
belongs to a given ellipsoid:

(xo — &0)T By H{xo — d0) < 1, (5)

where rg is an estimate of xg which is assumed to be
given, and Py = P = 0 is a known matrix.

In addition to the dynamic system (1), there exist a
nonlinear state constraint in the form of

hl:.?:k] = dk- {6}

where h{-) is a nonlinear function and d; is a known
vector.

In this paper, a filter based on the current measure-
ment is considered for the system (1)-(2) subject to the
constraint (6), which is of the form:

Tig1 = Grear + Prur + Liykyt, (7)

where 75 = [B™ is the state estimate of xp. Gy and Ly
are the filter parameters to be determined.

Our aim is to determine an ellipsoid for the state
Tpo1. given the measurement information yi,, at the
time instant k + 1 for the process noise wy = Wi and
the measurement noise vy < V) subject to the state
constraints (6). In other words, we look for Py and
fx41 such that

(Tr1 — -i:k+1)TP;;_+l1(Ik+1 —Frp1) <1, (8)

subject to wy € W, vg € Vi and (6). The above filtering
problem is referred to as the set-membership filtering
problem with state constraints.

Due to an additional constrain on the states, the
solution to the set-membership filtering problem become
more complex. For the linear state constraint, we can use
the method of projecting the unconstrained state estimate
onto the constrained surface [24]. However, nonlinear
equality constraints are fundamentally different from
linear equality constraints. Linearizing nonlinear equality
constraints introduces two types of errors: truncation
error and base point error [6], [8]. Truncation error
arises because of truncating the Taylor series expansion
after the first-order term and neglecting the higher order
terms. Base point error occurs because of linearizing
around the estimated value of the state rather than the
true value. This second error may result in convergence
problems [6]. When the unconstrained state estimate is
projected onto the constrained hyperplane in state space
defined by the linearized constraint, the estimate may
never converge if the true value of the state is not on this
hyperplane. So it is important to consider both truncation
error and base point error. In this paper, we utilize several
novel methods to handle the truncation error and base
point error. The solution is provided in the next section.

III. SET-MEMBERSHIP FILTER DESIGN WITH
NONLINEAR EQUALITY CONSTRAINTS

According to the suggestion by [6], we linearize non-
linear equality constraints (6) about the current estimate



by considering truncation error and base point error. The
linearized equation can be written as

(Hi + Z1A0){xp — k) + h{Zg) + Z2do =di,  (9)

where the Jacobian matrix H; is computed by

Oh(z)

fr |$=3k '

Hy =

(10)

=1 is a known scaling matrix, and Ay is an unknown
matrix such that [|A4|| < 1. The term =y A, represents
the base point error which takes into account the error of
linearizing around the estimated value of the state rather
than the true value. =3 is also a known scaling matrix,
and As is an unknown matrix such that [|Aq| < L
The term =;A, is interpreted as the truncation error
due to neglected higher order terms in the Taylor series
expansion of the nonlinear equation (6).

Remark {: Since the base point error and the trun-
cation error are never exactly known, we introduce two
uncertain matrices Ay and Ag incorporating the scaling
matrices =; and Zs to describe the base point error
and the truncation error. By appropriately choosing the
scaling matrices = and =,, the true state = is guaranteed
to reside in the hyperplane in state space defined by the
linearized constraint (10). This avoids the convergence
problems.

Since the equation (10) involves two uncertain matri-
ces Ay and As, we need to develop some techniques to
handle the state equality constraints with the uncertain-
ties. If (z;, — #4) Py (r — #3) < 1, then there exists
a z with [|z]| < 1 such that

Tp = &k + Erz. (1)

where Fj. is a factorisation of P, = EkE,]; .

Now we consider the linearized state equality con-
straint (9). Substituting (11) into (9) vields

HiEz + 518 Fiz + 208 =di — hixg).  (12)
Denoting
Ay = A Epz, (13)
we can rewrite (12) as
HiEpr + 2185 + E00g = dy, — hizg). (14)

On the other hand, one-step ahead estimation error
Thal — Lhy1 1S Written as:

. _ .
Tt — Tppt = (I — LpCrpq)Agrir — Griy

— LpCrt Frug + (I — LiChryt) Brwyr — Ly D qvgaq.

(15)

By using (11), we have

Tpptr — Eppr = (1 — LaChgq ) Apdnr — Griiy — LpCrgpr Fug

+ (I — chk+1_JIA;¢EkZ’ + (I — L;L-(-J'k+1:lBjc1L'k — ch.ch+1_?.-‘jc+]_.

(1)

From (14) and (16), we can see that the common
unknown variables are =z, wy. v 1. Ay and Ag. So we
define

T
n=[1 T wl 1{4_1 AT AT . (17)

We can write {16) in a compact form:

Tt — Tt = (g, ug )y, (18)
where
I{zg, uk) =
[ AA (I — LeChry1)Ar s (I — LipCry1)Be — L D41 ]
(19)

with 44 = ICIT— Lka_‘_]_);‘lkik — Gkik — Lka+1Fkiik.
Hence, (rp11 —:i:;;+1}TPk‘+11(xk+1 — Tpy1) < 1 can be
written as

' [ (g, we ) Py T (g uge) — diag(1,0,0,0,0,0)]n < 0.

(20)
Now we can also write (14) in n as
Iy (x4 )n =0, (21)
where
M) = [ h(ex) —dp HpEp 0 0 Z Zy ],
(22)

and n is defined in (17).
By noticing that ||A| < 1, we can infer from (13)
that

ATAy —2TETE; > <. (23)

Thus the unknown variables =z, wy, vy, Ag and Aj
satisty the following conditions:

]| < 1,
ng;lwk < 1,
15E+1R;ilt’k+1 <1, (24)
[[Aoff < 1,
ﬂ’gﬁg - .".’TE?;E;;-".’ < 0.
We write (24) in % as:

nldiag(—1,1,0,0,0,0)5 < 0,
nTdiag(—1,0, Qrt.0,0,0), 7 < 0,
¥ diag(—1,0,0, R !,.0.0) < 0, (25)
it diag(—1,0,0,0.1,0)5 < 0,
nldiag(0, —EL B, 0,0,0,1 )5 < 0.
Now we apply S-procedure to (20) and (25). The
sufficient condition such that the inequalities {25) imply



(20) to hold is that there exist positive scalars 7. T2, Ta,
74 and 7 such that

I (g g ) P T (i, ) — diag(1,0,0,0,0,0)

— mydiag(—1,1.0,0,0.0) — rodiag(—1,0, Q3 *,0,0.0)
— madiag(—1,0,0, B!}, 0,0) — mydiag(—1.0,0,0.1,0)
— rediag(0, —Ef E,,0,0,0,1) < 0. (26)

By denoting

O(7y, 70,73, Ty T5) = diag(l — 7 — 7 — 5 — 7y,
‘?'1}— — TsEgEk.TQQEI.TQRE_}_.I.T‘;I.TE,I), (2T

(26) is written as

HT(.'E';;, uk)Pk__&lﬂl[:i:k.‘uk] — (7,72, 73,74, 75) < 0.
(28)

We apply Finsler’s lemma to (21) and (28). Then there
exists a 75 such that the following inequality holds:

nr (Tk. ukjpk__:lﬂ(:ﬁk. wi) —O(7T1, 72,73, T4, T5)
— 7el1{ (it ) TTy (i) < 0. (29)

By using Schur complements, {29) is equivalent to:

— Pt T &g s o)
07 (Gn, un)  —O(m1, 7273, 7a.m0) — 7601} (Ge)T1(de)

} <0,

(30)
Thus, if there exist the filter parameters Gy and Ly,
i = 0,79 = 0,79 =0, 74 = 0,75 > 0, 75 such that
(30) holds, then one-step ahead state rjy, resides in its
state estimation ellipsoid (zpyy — Tpyq )TP,:JI(;E,;H —
Tri1) < L.

According to the above results, we can summarized
as the following theorem.

Theorem I: For the system (1)-(2) subject to the
constraint (6), if the state x; belongs fo its state esti-
mation ellipsoid (x; — .i:k)TPk_I(.rk — ) < 1, where
wp and Pr = 0 are known, then one-step ahead state
T4y resides in its state estimation ellipsoid (xg .y —
trr1) TPt (wrg1 — Fg1) < 1, if there exist Pryy,
Giy Ly, 10 = 0,719 = 0,1 > 0,1y > 0,75 > 0,75
such that

—Pk i H(.’sk,ut) {‘ D

07 (&e, ux) —O(r, 72,73, 7,78) — 7ell] (Ex)1(2) ’
(31)
Moreover the center of the state estimate ellipsoid is

determined by
Tpp1 = Gpy + Frug + Liyig, (32)

where II{or,ur), (k) and ©O(ry, 70, 73, 74,75) are
defined in (19), (22) and (27).respectively.

Remark 2: Theorem 1 provides a clear physical inter-
pretation: the set-membership filler with state constraints

is obtained from the unconstrained set-membership fil-
ter projecting onto the constrained surface, since the
constrained solution is obtained from the unconstrained
solution by left-multiplying the transpose of the or-
thogonal complement of the constrained equation and
right-multiplying the orthogonal complement of the con-
strained equation.

Theorem 1 outlines the principle of determining the
current state estimation ellipsoid containing x;_ . How-
ever, it does not provide an optimal {minimal) state esti-
mation ellipsoid. Next, we apply the convex optimisation
approach [15]. [26] to determine an optimal ellipsoid.
Ps11 is obtained by solving the following optimisation
problem:

min trace( Py )

Prp1 20, G, Lie, Nk 11 20,7220, 73 20, 7420, 75 =0, 78

(33)
subject 1o (31)
IV. AN ILLUSTRATIVE EXAMPLE

This section presents a simple example to illustrate the
theory of this paper. Consider a discrete-time dynamic
system

T+ ug + wi, (34)

LT+l =

We =

oo @ = oo
oo = O oo

| ——|
R ===
=== =

2
rE + [ 1 ]1-';;. (35)

where

T
Iy = [ Tp) Tpa Ty Tha ] .
U = [ Ul ME2 O UERD Uk4 ] N

T
Wy = [ W1 Wr2  Wk3 tﬂk4:| ;
T

Ye = Yk1 Y2 ]
There are an extra nonlinear state constraint on the above

system described as follows:
(r—x)? + afp = 12 (36)

This nonlinear constraint is quadratic and is assumed to
only take into account the first two states for simplicity
as the trajectory of two states can be plotted in the plane
whereas four states are in the hyperplane.

From (36) and according to (9) and (10), we have the
Jacobian matrix Hj as

Hp=[ —2(r—xp) 24 0 0], (37)
and hixy) as

Blig) = (r—ip1)” + d%, (38)



In this example, = is chosen as 30, =, =
[5 3 2 1 ], and Z3 = 100. wy and v;, are assumed
as 0.3sin(2k) and 0.2sin(30k), respectively. The initial
state is set as g = [0 0 0 0]F, which belongs to
the ellipsoid &(Py,ig) = {xg : (@g — #0) TPy g —
i) < 1, where &g = [0 0 0 0T ,and By =
0w o 0 0
0 1w o0 0
0 0 10 0
0 o 0 10
The simulation results are obtained by solving the
semi-definite programming problem (33) under Matlab
6.5 with YALMIP 3.0 and SeDuMi 1.1 [11]. Fgs. 1
shows the trajectory of xpy vs xpe and the trajectory
of the estimate of xpq vs the estimate of xp2. It can
be seen that the state variables xyy vs xpo satisfy the
nonlinear equality constraint (36), which is a half-circle.
Figs. 2 and 3 display the true values of the state, its
estimates, its upper bounds and lower bounds by using
the constrained set-membership filter. The results confirm
that the true signals rg and rpe always reside between
their upper bounds and lower bounds. Therefore, our
method provides an ellipsoidal state estimate, which is a
set of state estimates that contains the true state regardless
of the process noise wy € ¥V and the measurement noise
vk Vj‘;.

CForallk, Oy = 1and Hy = 1.

V. CONCLUSIONS

This paper has considered the problem of set-
membership filtering for discrete-time systems with non-
linear equality constraint between their state variables.
The set-membership filtering with nonlinear equality con-
straint has been regarded as a set-membership filtering
with linear equality constraint with two uncertain quanti-
ties by linearizing. The solution to the unconstrained set-
membership filtering problem has first been derived by
S-procedure method. The set-membership filter with state
constraint has then been developed from projecting the
unconstrained set-membership filter onto the constrained
surface by using Finsler's Lemma. A recursive time-
varying LMI optimisation algorithm has been developed
for computing the state estimate ellipsoid that guaran-
tees to contain the true state. An illustrative example
has demonstrated the feasibility of the proposed set-
membership filtering with nonlinear equality constraint.
Our future research topics will focus on the steady-state
analysis of the set-membership filtering with nonlinear
equality constraint, the convergence of the algorithms and
the conservatism of the possible estimation sets.
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