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Abstract—We present a real-time approximate simulation
of some camera errors and the effects these errors have
on some common computer vision algorithms for robots.
The simulation uses a software framework for real-time post
processing of image data. We analyse the performance of some
basic algorithms for robotic vision when adding modifications
to images due to camera errors. The result of each algorithm /
error combination is presented. This simulation is useful to tune
robotic algorithms to make them more robust to imperfections
of real cameras.
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I. INTRODUCTION

Modern robots, especially service robots, do no longer
operate in well defined environments like factories or high-
rack warehouses. They rather work under every day condi-
tions, where they need to build maps, navigate and, e.g.,
identify objects. For these tasks optical cameras play an
important role. They deliver video data streams, which are
pre-processed in real-time, before certain regions of interest
are stored in bitmaps in memory in order to enable the
functions of the robot. Traditionally, these algorithms con-
tain typical standard computer vision algorithm blocks, like
edge detection, Hough transform, disparity maps, feature
detection etc.

Under different technical and environmental influences
to the video images, they achieve different results. This
means that the ultimate task of the robot might not be
carried out correctly. We present an examination of technical
influences, i.e., camera errors, to the outcome of basic
robotic algorithms building blocks. Camera errors we ex-
amined are vignetting, chromatic aberration and thermal ccd
noise. These errors are realized as real-time post-processing
filters of color and depth information, approximating the
physical phenomena. This has the advantage of being able to
interactively simulate the influence of an imperfect camera
system in real or synthetic environments.

Every robotic system that needs to be simulated (because
it will be used in a difficult to reach environment, like
space or underwater, e.g .) can profit from a more realistic
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simulation of all parts, including the optical camera system.
Obviously, this is only a subset of the most important phe-
nomena which can have an influence on vision algorithms.
The feature of an interactive simulation makes it possible to
run through different simulations quickly and see how the
robotic systems reacts to changes of the environment or the
camera parameters. We hope that our examination can be
useful to make vision based robot algorithms more robust
and to prepare robotic missions better.

Note that although our simulation as presented in this
paper is limited to camera errors, it could also be extended
to cover further phenomena, especially including environ-
mental changes. To achieve this, it would be possible to
incorporate our own global illumination renderer to generate
images on-line [1].

II. RELATED WORK

Related work has been done in the field of robot video
camera simulation. Typical optical camera effects and imper-
fections, like distortion, chromatic aberration, depth of field,
sensor saturation and noise were simulated in real-time in
[2] in order to validate the simulation of a virtual space
robotics test bed. No evaluation was given on the influence
of single effects on basic vision algorithms.

In another paper Rossmann et al. [3] discuss their optical
sensor simulation framework for robot applications. They
especially focus on the simulation of depth in field sensors,
like stereo cameras or 3D laser range finders.

In [4], Asanuma et al. present a simulator for autonomous
mobile robots that considers camera characteristics. Images
are generated using an OpenGL renderer and after that the
images are modified according to camera characteristics.
The authors show that high-level tasks of the simulated
robot, like estimating a ball’s distance or self-localisation,
are simulated more realistically than without considering
camera effects. Also, no attribution of the result to the basic
vision algorithms is given.

An image based lens model is described by Heidrich et
al. [5]. They use a similar approach to the one presented
here. The very time consuming exact realization of the lens



(and limitations, like vignetting) is approximated in image
space. The paper does not evaluate the simulated lens in the
area of robotics and vision. Similar work is done by Kucis

[6].
III. SIMULATION OF CAMERA ERRORS

To achieve a real-time approximation of optical errors,
we employ our own graph-based post-processing framework
called GrIP. We concentrate on three common errors in
images generated by optical systems: Thermal (amplifier)
noise, chromatic aberration and vignetting. Each of these
effects is implemented as a plugin for GrIP, allowing for an
easy composition of the effects in a simple filter chain. In
the following subsections, we will give an overview of GrIP
(for detailed information, please see [7]) and some details on
the implementation of each of the plugins for the simulated
optical errors. All mentioned effects have been implemented
using NVIDIA’s CUDA technology. It is also possible to use
other platforms for plugin implementation, but for now only
CUDA and host-based nodes are directly supported by GrIP.

A. Real-Time Post-Processing

GrIP is an extensible post-processing framework, which
can be used for experiments with algorithms based on a
screen-space approach, i.e., the processing of information
available on a per-pixel basis. It provides a basic plugin
system, allowing for easy implementation of new effects.
This system is based on shared objects loaded at run-time
and connected via a directed, acyclic post-processing graph
(PPG). The plugins are represented by nodes in this graph
and can be arbitrarily connected to each other to define
their dependencies, thus yielding a specific execution order.
Defining the PPG is done using an XML description, making
it easily editable. More information on the graph description
format can be found in [7].

Through GrlP, it is easy to create the desired composition
of effects and filters and parameterize them arbitrarily. The
XML description allows for the definition of predefined,
fixed parameters as well as dynamic parameters which can
be changed by the user at runtime. The main design goal
during the development of GrIP was to provide an easily
usable framework for post-processing, where the user can
arbitrarily arrange the building blocks of the algorithms,
allowing for a great amount of reusability.

Input and output data for specific nodes are not directly
dependent on the defined edges, but are defined separately
by assigning simple names which are then used for storing
the information in an instance of a universal container class.
This class is responsible for storing all data which has to be
provided for and exchanged between the different nodes in
the graph. Via the graph runner class, a subset of methods
for setting objects in and getting objects from the container
is also exposed to the user. In general, this class is the central
entity for all interactions of an application with GrIP.
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Figure 1. An example for the automatically generated user interface with
the vignetting node currently being selected. The tabs represent the nodes
in the graph, the sliders in each tab are used for parameterizing this specific
node, so that the effects of changing parameters are directly visible. The
“App”-Tab provides node-independent parameters which can be used for
the application employing GrIP.

Loading a graph is done here, as well as specifying
whether a graph visualization and a parameterization inter-
face should be created. The latter is a central component of
GrIP: Through the parameterization GUI, all node parame-
ters which have been marked with the mutability attribute
as dynamic are presented via sliders or similar elements,
depending on the underlying object type. These elements
are grouped by their respective nodes and an extra group
for application parameters is also present, which means
that GrIP can also be used for quickly providing a simple
graphical user interface to your application.

Additionaly, some nodes can be toggled on and off via a
simple button, so a direct comparison between before and
after processing can be done. This can be useful especially
for otherwise somewhat subtle effects like a slight amount of
noise or vignetting. Whether the toggling is possible depends
on the implementation of the plugin, as the conversion of
input to output data still has to be handled somehow for an
inactive node. The default state for a node can be set with
the defaultstate attribute. An example for the GUI is
shown in figure 1.

In addition to the central container for all exchanged data,
GrIP also provides a “repository” for temporary buffers. This
means that a node which requires several temporary buffers
does not have to allocate the necessary memory each time
the PPG is executed, but can rather allocate this memory
once and then pass control over the allocated memory to the
TempBuf ferRepository. The repository will return the
closest matching buffer upon request of a specific resolution.
Also it is possible to create several “sub-repositories” by just
passing a name. This can make sense, e.g., if some buffers
should only be used for one specific node A and the results
must not be overwritten by other nodes before the next call
of A.

B. Camera Errors

1) (Thermal) Noise: Even when an optical sensor is
not exposed to light, dark current causes noise to appear
in the image. With higher ISO values and depending on
environmental conditions (e.g., temperature) this noise tends



to increase. This is a problem especially in sensors with a
small area per pixel. As the main influencing factors for
sensor noise are the area/resolution ratio and temperature,
we implemented a plugin for GrIP which takes the sensor
size and a temperature as its parameters (an additional ISO
value could be easily added). Based on this, gaussian noise
is computed for each pixel and color channel which is then
added to the input image. An example for an artificial image
processed with the noise node is given in figure 2 (the noise-
free version is also shown for comparison).

In the evaluation section, we look at four different noise
levels (low, medium, high and extreme), corresponding
to higher temperatures and ISO values in real cameras.
Although these noise levels are not necessarily phyiscally
correct for a specific sensor, they closely match what you
will see in images captured with a real-world camera and
thus provide a good hint on how noise will influence your
algorithms.

2) Vignetting: Vignetting is an effect apparent in all
images created with optical systems and denotes the falloff
of perceived image brightness in peripheral image regions.
Vignetting is based upon the cos?-law (equation 1), which
means that the falloff depends directly on the fourth power
of the cosine of the incident light’s angle o

E, = Eycosta, @)

with Ej being the brightness in the image center. Note that,
e.g., with low aperture values there can also be mechanical
vignetting, i.e., light being blocked by the objective itself,
while our implementation only accounts for the natural
vignetting effect.

To achieve the desired effect, our implementation of
natural vignetting is parameterized with sensor size as well
as focal length. From these values, the maximum incident
light angle (apparent in the image’s corners) can be easily
calculated. Based upon this, the correct vignetting values
can be computed for each pixel with respect to the cos?-
law. Examples of several settings for the vignetting node
are shown in figure 2.

3) Chromatic Aberration: Chromatic aberration results
from the different refraction of the light’s various wave
lengths when passing through the lens system. This leads
to the varying focal planes, shifted along the optical axis
with respect to the specific wavelength. The intensity of
this effect can be described by the Abbe Number v, [8]. v,
can be calculated from the main refractive indices for wave
lengths 486.1nm (ng), 587.6nm (n.) and 656.3nm (nc) as
follows:
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Due to the shift along the optical axis, focal planes for
different wave lengths do not line up and thus a blurry
image results with the intensity of the blur being dependent
on the according wave length. To model this effect via our

Figure 2.
processing (top left), with chromatic aberration (top right), noise (bottom
left) and vignetting (bottom right)

An image from the Tsukuba sample dataset, without post-

plugin, we define a focal difference in percent of the focal
distance. Based on this and the also definable sensor size,
the appropriate size of the computed gaussian blur can be
determined. Note that this approach is not physically correct,
but yields convincing results in our tests when compared to
real chromatic aberration. Thus, we also used this effect for
our evaluation. An example of an image without and with
our chromatic aberration filter applied is shown in figure 2.

IV. BAsIC COMPUTER VISION ALGORITHMS FOR
ROBOTICS

In our evaluation we determine how much the integration
of optical errors influenced the outcome of various image
processing algorithms. We integrate some standard computer
vision algorithms into our system for evaluation purposes.
For this we employ the open source computer vision library
OpenCV, which can also be used for the Robot Operating
System (ROS). We choose some vision topics that are
frequently used in robotic applications and select specific
algorithms that are common for the corresponding topic. We
take into account the following topics and algorithms:

A. Stereo Vision

Sometimes there is the need to obtain depth information
for the environment. The depth can be used for example
for obstacle avoidance [9] or to segment specific areas [10].
One way to obtain the depth is using stereo correspondences
and creating a disparity map from it. With a triangulation
step the depth can be calculated from the disparity map.
We create disparity maps from stereo images using block
matching. An example for disparity maps generated for the
original and processed images is shown in figure 12.



B. Feature Matching

Tasks such as object detection or categorization often
require feature matching. In [11] and [10] such an approach
is used to enable a service robot to detect trained objects.
For the detection and description of blob-like features we use
the Speeded Up Robust Features (SURF) [12] method. As a
matching strategy we apply a simple brute force algorithm,
but filter the matching results using RANSAC [13] during
homography computation in order to receive a reliable set
of inliers.

An example for feature matching performed on the orig-
inal and processed images is shown in figure 13.

C. Edge detection

Sometimes robotic navigation applications require knowl-
edge about lines in the image. These could be either artificial
lines such as lane markings [14] or edges that result from
the structure of an object like a door [15]. For simple edge
detection we use the Canny algorithm [16].

First we filter the image noise with a 5x5 Gaussian kernel
and then apply a Canny edge detector. The 5x5 kernel is
used for all images, as our aim is to analyse the influence
of optical errors on fixed effects. Thus, we tried to find
the best parameterization for edge detection for the worst
image quality, which was present with high noise. After the
pre-filtering we use the probabilistic Hough line transform
for the recognition of straight line segments in the resulting
Canny image.

An example for Hough line transform performed on the
original and processed images is shown in figure 14.

As a complex 3D model scene, we use the new Tsukuba
CG stereo image dataset [17], [18] as our testing environ-
ment. This image sequence has the advantage that it is com-
pletely synthetic just as rendered images from a simulation
environment. It also provides stereo images. Furthermore,
the synthetic images guarantee that there are absolutely no
optical errors involved that would be otherwise produced by
a sensor and might add up to the errors we simulate.

V. EVALUATION AND RESULTS

For the evaluation we applied the implemented camera
errors (thermal noise, vignetting, chromatic aberration) to the
given dataset. These manipulated images were tested with
every integrated vision algorithm (see section IV). To gener-
ate ground truth data we also applied the vision algorithms
to the pure dataset images. We collected for every image
the number of valid pixels in the disparity images (stereo
vision), the number of matched inliers (feature matching)
and the number of found Hough lines (edge detection).

Videos of the outcome of applying different basic vision
algorithms to images with different camera imperfections
can be found on the project website for GrIP, accessible
through http://www.ivc.h-brs.de.

A. Chromatic Aberration

1) Disparity Images: The generation of disparity images
did not suffer from any quality loss when processing the
input data with the chromatic aberration filter (cf. figure 3).
Contrariwise, the number of pixels for which a disparity
value could be determined even increased with a greater
focus difference and thus a stronger aberration effect. While
this might seem surprising at first, it seems logical when
taking a closer look. The first explanation we came up with
was that slightly blurring the input data removes a fraction
of high frequencies from the image, so that some of the
originally higher-frequency areas could be matched better by
the block matching algorithm. This theory is also supported
by the fact that in frames with lower frequency content the
difference is less significant (e.g., around frame 1550), while
frames with higher frequencies (such as the window blinds,
e.g., between frame 600 and 800) show a stronger effect
of the blurring. We also verified this by applying just a
simple Gaussian blur on all color channels, which yielded
even better results.

Disparity/Chromatic Aberration: Matched Pixels
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Figure 3. Impact of Chromatic Aberration on Disparity Images

2) Feature Matching: Feature matching did also not
suffer from any significant quality losses (cf. figure 4).
However, in contrast to disparity image generation, the
number of matched features decreased by approximately
12 percent in higher-frequency frames, while it never in-
creased. As chromatic aberration is in fact a slight color-
dependent blur, less features can be detected and in turn also
be matched. Accordingly, the number of matched features
(inliers) decreased consistently with a stronger aberration
effect. This is mostly evident in sub-sequences with higher
frequency such as between frame 600 and 800.

3) Hough Lines: The explanation for the effect of chro-
matic aberration on Hough line transform (cf. figure 5)
is similar to the one for its effect on feature matching.
Edges in an image are slightly blurred by the chromatic
aberration and thus their detection by the Canny edge
detector becomes more difficult. Consequently, the Hough
line transform degrades more for sub-sequences with greater



Feature Matching/Chromatic Aberration: Inliers
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Figure 4. Impact of Chromatic Aberration on Feature Matching

areas of high-frequency content, like those at the beginning
of the image sequence and, again, between frame 600 and
800. However, this effect is far less significant from frame
1400 onwards, where the same scene elements (especially
the window blinds) are visible again, but closer and thus not
causing as high frequencies as before.

Hough Lines/Chromatic Aberration: Number of Hough Lines
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Figure 5. Impact of Chromatic Aberration on Hough Lines

B. Noise

1) Disparity Images: The diagram in figure 6 shows
clearly that higher levels of noise have a serious impact
on the computation of disparity images. While the curve
shape stays basically the same, the number of valid disparity
values drops significantly with each increased noise level.
Already at the lowest noise level the number of valid
disparity pixels decreases by about 50 percent. At the highest
level (extreme) only few pixels could still be assigned with
a valid disparity value (about 2 percent compared to the
results on the noise-free image). This is due to the fact
that the stereo algorithm we integrated, uses SAD-based
(sum of absolute differences) block matching. This method
is quite sensitive to intensity changes which are for example
caused by noise. Of course, applying a blurring operation

Disparity/Noise: Matched Pixels
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Figure 6. Impact of Noise on Disparity Images

on the noisy image beforehand, would improve the results.
Certainly, block matching remains very sensitive to noise.

2) Feature Matching: Figure 7 shows the impacts of
noise on feature matching. While lower noise levels still re-
sult in comparable numbers of inliers, the count of matched
correspondences decreases with increased noise. In the low
noise images the algorithm still found about 95 percent of
the number of matches found in the original image, while
medium noise results in about 85 percent and high noise in
about 70 percent. However, in comparison with the block
matching even the addition of extreme noise still results in
a notable number of inliers (about 40 percent), especially on
the images that have a lot of textured elements and therefore
yield better matching results.

Feature Matching/Noise: Inliers
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Figure 7. Impact of Noise on Feature Matching

3) Hough Lines: In figure 8 the influence of noise on
Hough line transform is shown. With a low noise level the
number of detected Hough lines is not significantly different
from the original one. Even extreme noise still results in a
useful number of lines (about 70 percent are found compared
to the original noise-free results). This is probably due to the
Gaussian blurring which is performed before the Canny edge
detection.



Hough Lines/Noise: Number of Hough Lines
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Figure 8. Impact of Noise on Hough Lines

C. Vignetting

In this section we describe the impact of the camera errors
on vignetting for a fixed sensor diagonal of 28.29mm and
varying focal lengths.

1) Disparity Images: Figure 9 shows the influence vi-
gnetting has on disparity matching. The number of pixels
with a disparity value dependent on the frame number is
given for the original stereo images and different levels of
vignetting. As expected, the more vignetting, the less pixels
have disparity values determined. There is a noticeable drop
of about 15-40 percent of the number of disparity pixels
when comparing strong vignetting (orange curve) with the
no vignetting (blue curve). The overall characteristic of the
curve of disparity of the original images is still maintained
for vignetted image sequences.

Disparity/Vignetting: Matched Pixels
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Figure 9. Impact of Vignetting on Disparity Images

2) Feature Matching: Figure 10 shows the number of
inliers after feature matching for each frame, dependent
on the strength of vignetting. It can be noticed that -
while maintaining the curve’s characteristics - the number of
matched features decreases with the strength of vignetting.
The number varies between about 20 percent and up to 100
percent for strong vignetting (orange curve, compared to

Feature Matching/Vignetting: Inliers
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Figure 10. Impact of Vignetting on Feature Matching

blue curve). Depending on where the matched features are
(towards the border or the middle of the images) the quality
of feature matching for vignetted images varies significantly.

3) Hough Lines: Even more differences can be noticed
when comparing the number of Hough lines found for the
images of the sequence to the strength of vignetting. Strong
vignetting makes a big difference and is very influential
across the complete series of images. The number of Hough
lines found compared to unvignetted images ranges from
zero to mostly 10-20 percent up to about 55 percent. When
line structures (like the window blinds in the images around
number 950) are visible, many Hough lines are detected.
When they move towards the image border, vignetting
prevents them from being detected, so the difference of
detection increases. Compared to disparity matching and
feature detection, Hough line detection is affected most by
strong vignetting in our experiments.
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Figure 11. Impact of Vignetting on Hough Lines

VI. CONCLUSION AND FUTURE WORK

Our tests have shown that the examined vision algorithms’
outcomes vary when tested under influence of the presented
camera errors and their different parameterizations.



Chromatic aberration did not influence the outcome of the
algorithms significantly in most cases and even improved the
quality of stereo block matching.

The greatest impact by far could be observed when trying
to apply stereo block matching to an extremely noisy image.
The amount of pixels with a valid disparity value already
decreased by almost 50 percent with low noise. The resulting
disparity images were practically useless from medium noise
onwards, where only a maximum of 7 percent of all pixels
could be assigned a valid disparity value, compared to more
than 80 percent in the corresponding noise free image.

The effects observed for vignetting correspond with the
lower visibility of scene elements in the peripheral image
regions and completely match the expectations.

None of the vision algorithms has been rendered com-
pletely useless by the simulated camera errors. When the
errors are applied with moderate parameters resulting only in
a small impact on the image, most of the tested scenarios had
only a small loss of information. When the simulated errors
got stronger the vision algorithms returned poorer results.
Noise and vignetting were affected most by the reduced
image quality of our simulated errors. These results show
that a simulation of a robotic system should take camera
errors into account, when they are expected to some extent
in the real system.

While our observations already give some hints on how
some of the basic building blocks of robotic vision are
influenced by camera errors, this research could be continued
in several ways. First, all of the presented algorithms take
a set of parameters. e.g., the Canny edge detector uses a
threshold and the input image is blurred before Canny is
applied. The subsequently executed Hough line transform
also takes several parameters, such as the minimum line gap
and minimum line length.

For our experiments, we used a set of standard parameters
which work well for mostly error-free images and observed
how the algorithms behave when applied to erroneous im-
ages, but with the same parameterization. Future work could
especially include an in-depth look into which parameters
have to be adjusted in which way to work against the
impact of specific camera errors and, going even further,
combinations of these.

Furthermore, other robotic vision algorithms could be
analysed with the same methods. Also, it would be possible
to integrate our image filters into a testing framework for
vision algorithms, which could in turn also be used for
more automated testing and direct comparison of various
algorithm parameterizations.

While we applied our developed filters to a pre-defined
image sequence in this paper, our global illumination ren-
derer Spark, which has already been applied successfully in
the project IVAB [1], could be utilized to test the algorithms
under changing environmental conditions in the future.
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Figure 13. Feature matching performed on original images (first row), the
images with chromatic aberration (second row), strong noise (third row)
and vignetting (fourth row)

Figure 12. Disparity image generated from original images (top left), with
chromatic aberration (top right), strong noise (bottom left) and vignetting
(bottom right)

Figure 14. Hough Line transform performed on original image (top left),
the images with chromatic aberration (top right), strong noise (bottom left)
and vignetting (bottom right)



