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Abstract—The segmentation of retinal layers is vital for track-
ing progress of medication and diagnosis of various eye diseases.
To date many methods for the analysis exist, however the speckle
noise and shadows of retinal blood vessel remains a challenge,
with negative influence on the performance of segmentation
algorithms. Previous attempts have been focused on image pre-
processing or developing sophisticated models for segmentation
to address this problem, but it still remains an area of active
research. In this paper we propose a simple yet efficient and
computationally inexpensive method by using fuzzy histogram
hyperbolization for enhancement technique, and continuous max-
flow for segmentation of four retinal layers (Inner Limiting
membrane, Retinal Nerve Fibre Layer, Outer segment and the
Retinal Pigment Epithelium). The results show improvement in
segmentation performance.

Index Terms—Retinal OCT, Fuzzy Histogram Hyperbolization,
Speckle Noise, Graph-Cut, Continuous Max-Flow.

I. INTRODUCTION

Image enhancement is a necessary step for many image
processing problems. The primary objective of enhancing an
image is to generate a new image more suitable for further
processing [1]. Because the visibility of image features is
directly affected by contrast, the intelligibility of images can
most often be enhanced using an appropriate transformation,
especially when images occupy small part of the dynamic
range [2]. It is well known that the pre-processing step affects
image analysis. Image noise reduces the visibility of region
of interest. In Optical Coherence Tomography (OCT) images,
two main kinds of noise exists i.e the speckle noise during
acquisition and the shadows of blood vessels. In handling these
issues, a number of techniques have been proposed to solve
these issues with varying success rates, however, the same way
no universal algorithm exists for segmentation, none exists
for pre-processing. Most image denoising processes are quite
sensitive to the choice and fine tuning of various parameters
[3].

Therefore, one of the objectives of the study is to propose an
image enhancement technique of the OCT images utilizing the
Fuzzy Histogram Hyperbolization (FHH) with the intention
of obtaining better segmentation of the retinal structures.

The segmentation of various layers of the retina is vital for
tracking progress of medication and diagnosing various ocular
diseases, in particular for Diabetic Retinopathy, Glaucoma and
Age Related Macula Degeneration (AMD). This is especially
intriguing as they are not noticed early enough by the patient,
and usually cause irreversible impairment. For example, the
shrinking of the Retinal Nerve Fibre Layer (RNFL) is used
used in the diagnosis of glaucoma. The overall thickness of
the retina (from Inner Limiting Membrane(ILM) to Retinal
Pigment Epithelium(RPE)) is also used in the diagnosis of
ocular diseases. Our aim is to propose a segmentation algo-
rithm to aid with the diagnosis. This paper is organized as
follows. In Section II, we provide a review of the speckle noise
and how to deal with it in retinal OCT images, together with
the FHH and the graph-cut method. Section III describes the
proposed method, which is subdivided into two: the first part
contains the enhancement technique and the later presents the
segmentation method. Section IV presents experimental results
on 95 OCT B-scan images and discussion. Finally conclusions
are drawn in Section V.

II. BACKGROUND

A. Noise and Noise Handling in Retinal OCT

Almost all OCT image analysis methods in the literature
deploy a pre-processing step prior to performing any main
processing steps [4]. Speckle noise in OCT images causes
difficulty in the precise identification of the boundaries of
layers or other structural features in the image either through
direct observation or use of segmentation algorithms [4]
[5]. The noise that corrupts OCT images is non-Gaussian,
multiplicative and neighbourhood correlated. Thus, it cannot
be easily suppressed by standard software denoising methods
[6]. We can therefore say it is tradition in image analysis
to enhance the image before running analysis on it. In most
cases, even though the segmentation algorithms are designed to
handle uncertainties and noise [7], [8], [5] , the pre-processing
is used as a first step to handling the noise, irrespective of
whether the analysis to be performed is in 2D [9]–[11] or
3D [8], [12]–[14], where the first step is de-noising. This is



used to remove the speckle noises and enhance the contrast
between layers (usually with 3D anisotropic diffusion method,
3D median filter, 3D Gaussian filter or 3D wavelet transform)
as reported in [8]. Previous attempts including spatial and
frequency compounding techniques have been used to address
the problem of speckle noise in OCT [15], [16] . However, the
tolerance or adaptability of these techniques are quite limited,
which then complicates the analysis stage.

On the other hand, a number of digital filters have been used
for speckle suppression on OCT images, such as median filter-
ing, wavelet-based filtering that employs nonlinear thresholds,
anisotropic diffusion filtering [17] , and nonlinear anisotropic
filtering [18]. While most of these methods are effective in
reducing speckle noise, some of them tend to blur the struc-
tural boundaries in the OCT image. As a matter of fact, most
of these algorithms use a defined filter window to estimate
the local noise variance of a speckle image and perform the
individual unique filtering process. The result is generally a
reduced speckle level in areas that are homogeneous. But the
image is either blurred or over smoothed due to losses in detail
in non-homogeneous areas like edges or lines. Clearly, the
primary goal of noise reduction is to remove the noise without
losing much detail contained in an image [3]. We propose a a
method, that preserves the edge information, and improve the
visibility, which consequently improves performance of the
segmentation method, and makes our method applicable, for
diagnosis and tracking medication progress of ocular diseases

B. Fuzzy Histogram Hyperbolization(FHH)

According to the concept of fuzzy set theory [19], a
mathematical framework for image processing problems can
be established [20]. An image I can be represented with the
following equation [21]:

I =

M⋃
m

N⋃
n

µmn
gmn

(1)

Where gmn represents the intensity of the mnth pixel and µmn
its membership value, given m= 1,2,3. . .M and n = 1,2,3. . .N.
in line with this, using the linear index of fuzziness, the image
fuzziness can be calculated with [22] :

γ(I) =
2

MN

N∑
i=1

M∑
j=1

min[µI(gij), µ̄I(gij)] (2)

In which µI(gij) is the membership function of grey level
gij and µ̄I(gij) = 1 - µI(gij). Fuzzy image enhancement is
done by mapping image grey level intensities into a fuzzy
plane using membership functions, the membership functions
are modified for contrast enhancement, and the fuzzy plane
is mapped back to image grey level intensities. The aim is to
generate an image of higher contrast than the original image
by giving the larger weight to the grey levels that are closer to
the mean grey level of the image than to those that are farther
from the mean.

The concept of histogram and fuzzy histogram hyperboliza-
tion was described in [23], and in [24] a method of calculating
membership value for each grey level is presented as:

µ(gmn) =
gmn − gmin
gmax − gmin

(3)

where the maximum and minimum intensity values are rep-
resented by gmax and gmin respectively [19]. Then β as a
fuzzifier and the desired number of grey levels L, are used to
calculate the new grey values of image using the following
transformation [24] :

g
′

mn = (
L− 1

e−1 − 1
) ∗ [e−U(gmn)β − 1] (4)

Fuzzy histogram hyperbolization is simple and straight for-
ward, yet effective to a range of image and signal processing
applications [25].

C. Graph-Cut Segmentation

The segmentation of retinal layers has been an area of active
research and has drawn a large number of researches, since
the introduction of OCT [26]. Various methods have been
proposed, some with focus on number of layers, others on
the computational complexity, graph formulation and mostly
now optimization approaches. in this regard [27] developed a
multi-step approach. However the results obtained were highly
dependent on the quality of image and the alterations induced
by retinal pathologies. A 1-D edge detection algorithm using
the Markov Boundary Model [28], which was later extended
by [29] to obtain the optic nerve head and RNFL. Seven layers
were obtained by [11] using a peak search interactive boundary
detection algorithm based on local coherence information of
the retinal structure. The Level Set method was used by [10],
[12], [30], [31], which were computationally expensive com-
pared to other optimization methods. Graph based methods in
[9], [32]–[37] have reported successful segmentation results.
However, the methods could still be improved, in addition to
new information been discovered on the data

Graph cut is an optimal method used in solving many image
processing and computer vision problems, as first observed by
[38], where the problem is considered as a graph. A graph G
is a pair (ν, ε) consisting of a vertex set ν (referred to as
nodes in 2D or Vertex 3D nested grid) and an edge set ε ⊂ ν
x ν. There are two main terminal vertices, the source s and
the sink t.The edge set comprises of two type of edges: the
spatial edges en = (r, q), where r, q ∈ ν\{s \ t}, stick to the
given grid and link two neighbour grid nodes r and q except
s and t; the terminal edges or data edges, i.e. es = (s, r) or
et = (r, t), where r ∈ ν\{s \ t}, link the specified terminal
s or t to each grid node p respectively. Each edge is assigned
a cost C(e), assuming all are non-negative i.e. C(e) ≥ 0. a
cut partitions the image into two disjount sets of s and t, also
termed the s-t cut. it divides the spatial grid nodes of Ω into
disjoint groups, whereby one belongs to source and the other
belongs to the sink, such that

ν = νs
⋃
νt, νs

⋂
νt = ∅



We then introduce the concept of Max-flow/min-cut [39],
where for each cut, an energy is defined as the sum of the costs
C(e) of each edge e ∈ εst ⊂ ε, where its two end points belong
to two different partitions. Hence the problem of min-cut is
to find two partitions of vertices such that the corresponding
cut-energy is minimal:

min
εst⊂ε

∑
e∈εst

C(e) (5)

while on the other hand the max-flow is used to calculate the
maximal flow allowed to pass from the source s to the sink t,
and is formulated by:

max
ps

∑
v∈ν\{s,t}

ps(v) (6)

In the spatially continuous setting, let Ω be a closed spatial
2-D or 3-D domain and s, t be the source and sink terminals.
At each point x ∈ Ω the flow passing x is denoted by p(x); the
directed source flow from s to x by ps(x); and the directed
sink flow from x to t by pt(x).
To calculate the max flow we take; For each x ∈ Ω let ps(x)
∈ R denote the flow from the source s to x and pt(x) ∈ R
denote the flow from x to the sink t. Define further the vector
field p : Ω 7−→ Rn as the spatial flow within Ω, where n is
the dimension of the image domain Ω. The flows p(x), ps(x),
pt(x) are constrained by the capacities C(x),Cs(x) and Ct(x)
as follows:

|p(x)| ≤ c(x), ∀x ∈ Ω

ps(x) ≤ cs(x), ∀x ∈ Ω

pt(x) ≤ ct(x), ∀x ∈ Ω

divp(x)− ps(x) + pt(x) = 0, a.ex ∈ Ω

Here div p evaluates the total incoming spatial flow locally
around x. subject to the above constraints, the continous
max-flow is formulated as :

sup
ps,pt,p

{P (ps, pt, p) =

∫
Ω

ps(x)dx} (7)

III. THE PROPOSED METHOD

We first enhance the images using the FHH to promote
homogeneity and suppress the noise, then segment the retinal
layers using the continuous max-flow algorithm.

A. Enhancement

There are a number of operations that could be performed
with membership modification, determined by the value of
β termed the fuzzifier, for example dilation or concentration
if β = 0.5 or 2 respectively. By selection of a specific
membership function the fuzzy hyperbolization can be used
for segmentation and edge detection [23], as the value of
β approaches 0, the results are similar to that of histogram
equalization, whereas if β approaches values 5 and above, it
tends to provide result similar to segmentation. Samples are

Fig. 1. Examples of transformation using A-unprocessed image; B- β= 0.3;
and C- β = 5

shown in Fig. 1, where the global FHH is used, with values
β= 0.3 and 5.

We therefore take two main things into consideration: i)
Most image denoising processes are quite sensitive to the
choice and fine tuning of various parameters [3]. ii) The
fuzzifier β modifies the membership values additionally, and
so, the gray level dynamics of the resulting image can be
changed [23]. In this regard, we propose a window (threshold),
whereby the value of β is within that threshold. From 4:

g
′

mn = (
L− 1

e−1 − 1
) ∗ [e−U(gmn)β − 1]

we can now limit β with the following constraint:

Tmin ≤ β ≤ Tmax (8)

Where Tmin and Tmax are the minimum acceptable values of
β. To achieve the above, we introduce constant C, which can
be called the stabilizer, used in keeping the value of β within
the set threshold, this in turn means the below condition is
applied to determine and set the value of β :

β = β + C

β = Tmin if β + C < Tmin

β = Tmax if β + C > Tmax

(9)

Of course the threshold values can always be adjusted
easily, for the method to adapt to a wider range of images
and applications of fuzzy sets, however, we limit our study
to the enhancement of retinal OCT images to suppress and
handle speckle noise and blood vessel interference. after the
transformation, the image is enhanced and this has positive
effect in calculating the flow.

B. Segmentation

We adopt the unsupervised image segmentation [40]. For
image segmentation without user inputs, a piecewise constant
function is used as the image model: where two gray values
f1 and f2 are chosen priori for clues to build data terms:

Cs(x) = D(f(x)f1(x)), Ct(x) = D(f(x)f2(x)) (10)

where D(·) is some penalty function. By utilizing the aug-
mented Lagrangian method [41] the max-flow function can be
represented as follows:

Lc(Ps, Pt, P, λ) =

∫
Ω

psdx+

∫
Ω

λ(divp− ps + pt)dx

− c

2
‖divp− ps + pt‖2

(11)



Where λ is the Lagrangian multiplier introduced to optimize
the flow and c is the steps in augmented Lagrangian. A
condition is imposed whereby only saturated flows contribute
to the total spatial flows and cuts, therefore for p∗(x):

CαTV = {p|‖p‖∞ ≤ α, pn|∂Ω = 0} (12)

where α is the penalty parameter to the total variation term
∂Ω and is constant through out. In other words, at potential
cut locations x ∈ Ω where ∇λ∗(x) 6= 0 the spatial flow p∗(x)
is saturated, while at locations x ∈ Ω where |p(x)| < α is
unsaturated we must have ∇λ∗(x) = 0 and therefore the
cut does not sever the spatial domain at x. This allows the
optimization and the labeling to be carried out simultaneously.
Then an iterative process is employed to optimize the flows
and the multiplier until convergence, where in each iteration
K+1 the convergence criterion is calculated by

errk = ‖λk+1λk‖/‖λk+1‖ (13)

where err∗ is the error rate. Set the starting values p1
s, p

1
t , p

1

and λ1, let k = 1 and start kth iteration. Optimizing p by fixing
other variables

pk+1 = arg max
‖p‖∞≤α

Lc(pks , p
k
t , p, λ

k).

= arg max
‖p‖∞≤α

− c
2
‖divp(x)− F k‖2

(14)

where
∏
α is the convex projection onto the convex set Cα =

q |‖ q ‖≤ α and F k is a fixed variable. The above problem
(14) is then computed by:

pk+1 =
∏
α

pk + cO(divpk − F k) (15)

Optimizing ps by fixing other variables

pk+1
s = arg max

ps(x)≤Cs(x)
Lc(ps, p

k
t , p

k+1, λk)

= arg max
ps(x)≤Cs(x)

∫
Ω

psdx−
c

2
‖ps −Gk‖2

(16)

where Gk is a fixed variable and optimizing ps we compute at
each x ∈ Ω pointwise. Optimize pt by fixing other variables:

pk+1
t = arg max

pt(x)≤Ct(x)
Lc(pk+1

s , pt, p
k+1, λk)

= arg max
pt(x)≤Ct(x)

− c
2
‖pt −Hk‖2

(17)

where Hk is a fixed variable and optimizing pt can be simply
solved by

pt(x) = min(Hk(x), Ct(x)) (18)

Finally update λ by:

λk+1 = λk − c(divpk+1pk+1
s + pk+1

t ) (19)

Further details with respect to the augmented Lagrangian, total
variation and Lipschitz principles used in the method can be
obtained from [42] [43] [44] [41].

Fig. 2. Visual comparison of methods. A: unprocessed image. B: enhancement
using Fuzzy Type-2 [20]. C: our method.

Fig. 3. Segmentation results of four retinal layers. A: the ground truth image.
B: result without any enhancement. C: Fuzzy Type-2 [20]. D: the proposed
method.

IV. RESULTS AND DISCUSSIONS

The algorithm was tested on a dataset of 95 OCT mac-
ular scans of size 341x695. For visual comparison purpose,
we show the enhanced images using the fuzzy type-2 [20]
and the proposed method in Fig. 2, and the results of the
segmentation of for retinal layers in Fig.3, because it is not
ideal to rely on visual comparison only, and usually images
are enhanced or pre-processed to allow better analysis. Our
method produces better results using the enhancement method
proposed in this paper. We then carry out further validation on
the segmentation result using four criteria for the evaluation
purpose i.e. accuracy, sensitivity, specificity and precision, and
compare the results using: Raw image (unenhanced), Type-2
Fuzzy [20] and the proposed method. Details of results are
shown in Table I, where AC, SE, SP, and PR refer to Accuracy,
sensitivity, specificity and Precision respectively.

These measurements are computed with the following equa-

TABLE I
EVALUATION TABLE

Method AC SE SP PR
Raw image 0.8992 0.8750 0.8028 0.7121
Type-2 Fuzzy [20] 0.9286 0.9228 0.8636 0.8846
Our Method 0.9651 0.9547 0.9183 0.9163



tions:

Accuracy =
TP + TN

(TP + FP + FN + TN)

Sensitivity =
TP

(TP + FN)

Specificity =
TN

(TN + FP )

Precision =
TP

(TP + FP )

where TP , TN , FP and FN refer to true positive, true
negative, false positive and false negative respectively. TP
represents the number of pixels which are part of the region
that are labeled correctly by both the method and the ground
truth. TN represents the number of pixels which are part of the
background region and labeled correctly by both the method
and the ground truth. FP represents the number of pixels
labeled as a part of the region by the method but labeled
as a part of the background by the ground truth. Finally,
FN represents the number of pixels labeled as a part of the
background by the system but labeled as a part of the region
in ground truth, additional information can be obtained from
[45] .

Both methods are tested on a dataset of 95 B-scan OCT
images. For all experiment with the proposed method C = 1.5,
Tmin=1.8 and Tmax = 2.3, α = 0.4, c = 0.3, err∗ = 1e−4 and
maximum iteration is set to 200 though the method converges
before 80 iterations for most images. We consider the value
of β to be obtained from calculation and then stabilized (in
place of constant), as that is an indicator as to what end of
the threshold is more applicable to the particular image.

There are a number of methods used in calculating β,
however for our data they provide low fuzziness result, ranging
from ∼0.34−0.75, and that is the importance of the stabilizer.
The value of β is directly proportional to the value of C in this
case, where the range of the threshold is easily obtainable, to
keep the transformation within the desired operation context
and obtain better results. Our method also outperforms the
method proposed in [20], in addition to the ability to incorpo-
rate information user observes or holds on a dataset.

We introduce the stabilizer C, to allow the input of prior
knowledge, and in turn this gives more usability and simplicity.
This can be interpreted or related to the interactive graph-cut
[42] concept, where a user is given the option of selecting
seeds based on his image and allow the algorithm to perform
the computation. Now if the results are unsatisfactory, the user
can easily change the seeds to obtain better results. However,
in our case as mentioned in section III, all parameters i.e. β, C
and threshold window are adjustable, and this can be obtained
easily by a single test experiment, to determine what value
range is suitable for a particular dataset. The value of this is
to provide the ability to incorporate more prior information in
order to guide the method during computation.

V. CONCLUSIONS

We have developed a method to segment multiple reti-
nal layers from OCT images using the Fuzzy Histogram
Hyperbolization and continuous max-flow, thus enabling the
separate computation of individual layer properties, such as
thickness. Unlike other pre-processing techniques such as
Gaussian, median filter and average filters etc., the proposed
enhancement method has an advantage that it conserves the
edges.Therefore it can be used solely, or as an enhancement
step, before filtering or smoothing. A drawback is the use of
constant for the stabilizer, for which it might be improved
to adapt to an even wider dataset without the need for much
initialization. High segmentation accuracy has been achieved
in the experiments and the overall process is applicable in
real time as it converges within 4-8seconds, as both steps are
computationally inexpensive. The proposed method adapts to
inconsistency in retinal structures and can therefore be used
in diagnosis of visual impairments and tracking progress of
medication.
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