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Abstract. We present a system which allows for guiding the image qual-
ity in global illumination (GI) methods by user-specified regions of in-
terest (ROIs). This is done with either a tracked interaction device or a
mouse-based method, making it possible to create a visualization with
varying convergence rates throughout one image towards a GI solution.
To achieve this, we introduce a scheduling approach based on Sparse
Matrix Compression (SMC) for efficient generation and distribution of
rendering tasks on the GPU that allows for altering the sampling density
over the image plane. Moreover, we present a prototypical approach for
filtering the newly, possibly sparse samples to a final image. Finally, we
show how large-scale display systems can benefit from rendering with
ROIs.

1 Introduction

Photorealistic image synthesis largely depends on the complex, physically-based
process of GI. The underlying rendering equation [1] is often solved by employ-
ing Monte Carlo methods, which in turn depend on random variables. Basically,
these variables are used to create rays, which are traced through the scene and re-
flected at their intersection points with the scene geometry according to material
and illumination properties. Computing GI with MC methods poses two strongly
related problems due to its random nature: Noise and convergence behaviour. At
first, MC approaches converge quickly, but with an O(1/

√
n) asymptotic error,

this convergence slows down quickly.
As a consequence, cutting the noise for n samples in half requires the compu-

tation of 4n samples. This is a serious issue when physically-based GI is used in
performance-critical applications in which quality is crucial for judging certain
properties of the rendered image, which is the case in areas like design review
or architectural visualization. Also, this statement can certainly be extended
to games. However, determining the number of samples required to achieve a
specific quality without performing the actual rendering process is generally
not possible. Modern large display setups like 4k projections allow for detailed
visualizations, while modern PCs allow for the parallel implementation of the
aforementioned rendering algorithms on GPUs. While a single GPU can han-
dle a 4k setup memory-wise, even when a large number of buffers is required
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(e.g., for post-processing), its performance is still not high enough to perform
real-time MC-based GI at such resolutions. We present an approach for coping
with today’s situation, where designers would like to have a quick, high-quality
visualization of products at high resolutions, while modern GPUs are not yet
fast enough to compute high-resolution, physically-based GI in an acceptable
time frame. Our basic assumption is that an image can be divided into areas
with different significance for the user. Consequently, the focus will mostly be
put on regions with higher significance, making the convergence of outer areas
less important as they are not perceived in a detailed way by the human visual
system. Nevertheless, outer areas are still important in order to provide a visual
context. Our main contributions are:

1. A general framework for adaptive rendering based on a user-centered context
2. Two interaction metaphors for choosing the relevant image regions
3. A scheduling method based on Sparse Matrix Compression (SMC) for effi-

ciently rendering an image with a varying sample density on the GPU
4. A basic filtering approach providing an improved visual context

The GI rendering method we employ throughout this paper is Path Tracing.
However, the presented methods are applicable to all rendering methods dealing
with similar issues. All benchmarks and other results are based on a resolution
of 3840× 2160 pixels, unless stated otherwise. Our work focuses mainly on large
projection systems. Lacking a 4k projection system in our lab, we use our large,
high-resolution display wall HORNET, consisting of 7× 5 displays with a 1080p
resolution each, to mimic such a system.

2 Related Work

Over the last decades several visualization algorithms that make use of focus and
context techniques and ROIs have been published. Most of them try to support
the user in understanding complex data in 2D and 3D, e.g., the work in [2] for
reading documents or [3] for graphs and hierarchies. Another focus and context
technique was introduced in [4] to display giga-pixel images on a large, high
resolution display wall. For Giga-pixel images , dealing with a system’s limited
bandwidth is the major challenge. To overcome this issue, ROIs that can be
specified by the user to guide which data to load, defined by a specific position
and resolution are employed. Focus and context techniques for 3D data sets are
often used in combination with direct volume rendering as the sampling rate
for individual rays can be altered at run time. Volume rendering with focus and
context can be categorized into (a) distortion lenses, which use approaches sim-
ilar to the Document Lens, altering the sampling with lenses like ROIs [5], (b)
cutaway illustrations, which allow exploring the data using cut planes or x-ray
vision, as proposed in [6] and (c) multi-resolution focus and context approaches
like the system in [7], where a multi-resolution technique based on eye-tracking
is introduced, altering the resolution and sampling rates of volume rendering
based on the actual viewing direction. These systems use ROIs specified by the
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user’s gaze in combination with a linear falloff of the visual acuity in the visual
peripheral (foveated rendering). They either use eye-tracking or only the head-
tracked view-direction. User-centered approaches like [8] use the latter method
to generate constant frame rates in virtual environments, combining different
rendering approaches. Content-based models of visual attention are used in [9].
This approach also includes a user-centered GI method for prerendered anima-
tions. Another approach that utilizes foveated rendering was introduced in [10],
employing raster graphics to create three layers with different sampling rates
that are blended to a final image. In addition, they use different geometric lev-
els of detail employing tesselation of parametric surfaces to further reduce the
computational workload. Geometric simplification based on ROIs and gaze has
been proposed in [11–13]. The system proposed in [11] uses ray tracing in com-
bination with gaze-based geometric simplification with multi-resolution meshes.
Weier et al. [13] present a simplification based on a hybrid voxel representation.
Another method that is based on ray tracing without geometric simplification
was introduced in [14]. This system uses eye tracking in combination with VR
Headsets. Their main contribution consists of thread creation methods for ray
tracing with OpenCL on modern graphics hardware. In contrast to the existing
methods our approach concentrates on (a) large projection-based systems and
(b) enhancing rendering performance and image quality with global illumina-
tion. Our ROI-based rendering technique enables us to render the ROIs at a
high quality and the periphery based on a level-of-detail approach, dynamically
altering the sampling densities.

3 Framework and Implementation

The basic idea is to provide a framework for user-centered, adaptive high-quality
rendering. Therefore, we suggest a number of building blocks taking care of the
various tasks that have to be carried out throughout the rendering process. These
are described in section 3.1. As a proof of concept and a basic guide, we provide
exemplary implementations of each building block and plug them together into
a complete system in sections 3.2 to 3.6.

3.1 Building Blocks

Figure 1 shows an overview of the building blocks we suggest. The interaction
block is responsible for getting information on how to construct the ROI and also
for computing it, which is done in a per-pixel manner. In order to do this, it is
necessary to provide a method for determining the actual importance of a pixel.
This is done by a user-defined distance measure taking into account the image
resolution, the focused pixel coordinates and a set of user-defined parameters
like the user’s position relative to the display system. Based on this information,
the measure then has to determine the distance between each pixel and the ROI.
Section 3.2 provides an example for such a distance measure.
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Fig. 1: Building blocks of our suggested framework, exemplary implementations
and data flow; the clouds represent the building blocks and contain exemplary
implementations represented by green boxes. The orange nodes illustrate the
data provided by each of the blocks.

The ROI resulting from the distance computation can be represented with
per-pixel values stored as a distance-guide image (DGI); alternatively, it would
also be possible to do the actual computation of these values on-the-fly in the
scheduling block without an intermediate storage. However, as the ROI is only
modified on-demand in our current implementation, it makes sense to store the
current DGI instead of recomputing it in each iteration. The DGI is assumed
to have the same resolution as the rendered image and stores values between 0
and 1. The scheduling block takes this actual distance information and applies
a suitable scheduling algorithm. The scheduling depends on the actual represen-
tation of distance values as well as the targeted processor architecture employed
for rendering. The generated task distribution is then used to efficiently render
an image accounting for the user-defined ROI in the rendering block with a suit-
able rendering method. As the resulting image is potentially sampled sparsely
(see section 3.3), there might be a high variance due to low sample numbers
or even unsampled pixels outside the ROI. These areas tend to be perceptually
disturbing. In order to increase the visual context’s quality for the user, a post-
processing block is suggested. Here, image parameters such as brightness can
be locally adapted to yield a more homogenous appearance and actual filtering
algorithms can be applied. The resulting image is then forwarded to the display-
block, the abstract representation of the actual display system, such as a simple
desktop display, a projection system or a high-resolution multi-display system
with an underlying management middleware. The following subsections provide
further information on how the individual components can be implemented by
giving a few examples.

3.2 Interaction and Distance Measure

In this section we present the two interaction methods we implemented for se-
lecting a region of interest. Besides the mentioned methods we also experimented
with head-tracking, which seemed to be a natural approach to select a region



Guided High-Quality Rendering 5

for convergence. However, this forces the user to stare at the same region un-
til the desired image quality is achieved, which can be anywhere from seconds
to hours depending on the scene and the lighting configuration. This is a huge
drawback and renders this approach practically useless in the presented context.
Obviously, the same argument is also valid for the additional use of eye-tracking.

Ray-Gun-based Tracking Our first interaction method is based on a “Ray-
Gun” approach. We use a tracked interaction device (FlyStick) for pointing
at the display system and “shooting” a ray through the center of the ROI on
demand. The FlyStick’s analog stick can also be used to modify the horizontal
and vertical fields of view. The distance measure is defined by the projection of
an elliptical shape onto the display system, oriented orthogonally to the user’s
pointing direction. To determine the field of view’s (FOV) projection on the
display system, the view center and four corner points are used, defining the
horizontal and vertical size of the ROI. We determine the pixel coordinates of
these points by intersecting rays with a virtual model of the display system.
As we make no fixed assumption about the shape of the display system but
use an exact geometric model, the projected shape might not be an elliptic or
oval shape. In our case, the display wall is curved with a 10◦ angle between each
display column and the resulting DGI looks similar to the one shown in Figure 2.
For each pixel in the image, the importance is now determined by computing the
minimum distance to any point inside the projected elliptic shape, normalized
to [0, 1]. All pixels inside the projected shape get assigned the distance value 0,
which means that they are sampled in each iteration of the Path Tracing process.
A hybrid approach between bisection and Newton’s method can be used to find
the closest point on the projected shape and thus the shortest distance. For a
detailed explanation see [13].

Fig. 2: The Detail-guide Image (DGI) used to guide the rendering process

Mouse-based An ROI can also be defined in a mouse-based manner by sim-
ply defining its center with a click. In a projection system, this is more of a
fallback method when no tracking is available. However, it can be useful in a
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high-resolution desktop environment. Due to the user’s lower distance to the
display system and the higher pixel density, the aforementioned ROI generation
method is also employed in this case. Although, as we assume that there is no
tracking system in a desktop environment, the direction for projecting the field
of view is perpendicular to the display system’s surface, which is considered to
be plane. This projection is performed in an orthogonal way, as no distance be-
tween the user and the display system is known. Instead, the size of the ROI can
be defined in a graphical user-interface when using the mouse.

3.3 Scheduling

Based on the generated DGI, a method has to be developed to compute the
sampling densities used during the rendering process in a way so that they are
inverse to the DGI’s distances. In order to do that, we interpret the distance
values d(x, y) ∈ [0, 1] as inverse probability values for sampling the individual
pixels, i.e., p(x, y) = 1 − d(x, y). We then make a binary sampling decision for
each pixel individually based on these probabilities and store this decision in
a binary image with the same resolution as the rendered image (1 for pixels
to be sampled, 0 otherwise). Note due to the probabilistic approach, there is a
variation in the number of samples computed between the individual iterations.

This step is necessary because simply computing the samples for pixels with
a positive sampling decision would lead to a high thread divergence, thus re-
sulting in idle threads on the GPU. Instead, the binary image computed in the
aforementioned step is processed with cuSparse’s Sparse Matrix Compression
(SMC), which effectively yields the pixel coordinates of non-zero values, i.e., the
pixels that have to be sampled. Also, this provides the total number of non-zero
values, which means that the Path Tracing process can now be launched with
an appropriate number of threads. In turn, the pixel area they have to sample
can be directly determined by looking it up in the coordinate array.

Figure 3a shows an unfiltered rendering resulting from SMC-based schedul-
ing. One major issue that arises from rendering an image with these sparsely
sampled areas is the potentially high variance in brightness which the human
visual system can perceive still well outside the area of sharp vision. Section 3.5
suggests a basic filtering method to overcome this issue, also providing an image
brightness similar to the full-resolution image early in the rendering process.

3.4 Rendering

Rendering is performed using our path tracer Spark, which is based on NVIDIA’s
OptiX framework. The rendering process is done completely on the GPU.

3.5 Filtering

As shown in Figure 3a, the varying noise and sampling density outside the ROI
can be visually disturbing. We suggest a Gaussian-based filter with varying kernel
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size in order to improve the user’s visual context. However, the implementation
of this filter is still prototypical and does not deliver sufficient performance for a
continuous use in an interactive environment. Thus, it serves only as an example
for how a filtering approach for an improved visual context could work in general.
Note that due to the probabilistic sampling decision made for each pixel, there
may always be pixels whose area has not been sampled at all so far. Thus,
during the filtering process, only pixels that have been sampled at least once
are accounted for, which means that there is no negative influence of unsampled
pixels on the image brightness. We use a Gaussian filter kernel with σ = ki/3,
with ki being the kernel radius for pixel i. The maximum kernel size kmax is
set by the user, so that the actual kernel size ki = wi · kmax · di for a pixel i
can be computed, based on the distance value di contained in the DGI. Also,
wi = max{0, 1 − (si/c)} is used to linearly blend between the values from the
original image and the filtered results, so that the original, unblurred image
becomes more and more visible with the number of samples approaching c.
Here, si is the current number of samples rendered for the specific pixel and
c is a blending constant. This blending constant effectively leads to a slowly
decreasing kernel size with the rendering process going on. This also means
that image regions are kept at their respective number of samples regardless of
whether the ROI is changed.

Instead of performing the blending based on a fixed number of samples,
which does not allow for a reliable estimation of the actual noise contained in
the image, pixel variance could be employed. Figure 3b shows an example of
Gaussian filtering for unconverged, non-focused areas.

(a) An unfiltered image with at most 128
samples per pixel

(b) Result of the Gaussian filtering ap-
proach applied to the same image

Fig. 3: Unfiltered vs. filtered image: The perceived difference in brightness is
clearly visible.

3.6 Display

As mentioned above, we employ our large, high-resolution display consisting of
7×5 1080p displays to mimic a 4k projection system. Figure 4 shows an example
of the rendering results displayed on this system with and without filtering. In
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order to bring the 4k rendering to the display wall, the DVI output of a regular
PC is connected to a video grabber card, which streams the desktop to the SAGE
framework, which is in turn responsible for displaying it.

(a) max. 1 sample per pixel,
no filtering

(b) max. 8 samples per
pixel, no filtering

(c) max. 64 samples per
pixel, no filtering

(d) max. 1 sample per pixel,
Gaussian-based filtering

(e) max. 8 samples per
pixel, Gaussian-based fil-
tering

(f) max. 64 samples per
pixel, Gaussian-based fil-
tering

Fig. 4: Comparison between unfiltered and filtered images displayed on our large,
high-resolution display system. Filtering leads to a good approximation of the
overall image brightness.

4 Benchmarks

For the presented system, we performed various measurements. First, we are
interested in how the decreased ray coherence and density influence rendering
efficiency. Thus, we measured the rendering time per one million samples for
various fields of view, with larger fields of view corresponding to an increased co-
herence because of the overall higher sample density. This should in turn lead to
a lower thread divergence on the GPU. Also, the pixel density itself is presented.
All benchmark results regarding rendering efficiency represent the average of 100
runs.

4.1 Setup

With our current implementation we mainly target 4k projection systems. As
we do not have a large-scale 4k projection system available, we mimic it using
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(a) Percentage of samples com-
puted per frame for FOVs from
10 to 60 degrees

(b) Rendering efficiency

(c) Number of computed samples vs. ren-
dering time per one million samples for the
Cornell Box scene

(d) Number of computed samples vs. ren-
dering time per one million samples for the
Urban Sprawl scene

Fig. 5: Benchmarks: Computed samples for various FOVs, rendering efficiency

our large, tiled display wall by streaming and upscaling a PC’s 4k video output
to the SAGE framework. For rendering, we use a Xeon E5-2637 with 16GiB
RAM, equipped with a GeForce GTX 980 graphics adapter running Linux. As
test scenes we use a simple Cornell Box and the more complex city model Urban
Sprawl 2 by Stonemason (around 350k triangles), both with environmental illu-
mination only. All benchmarks have been performed with the viewpoint set to
an exemplary position 1m in front of the display wall, looking towards its center.
The rendering resolution is 3840× 2160 pixels.

4.2 Results

DGI generation using a separate CUDA kernel at a resolution of 3840 × 2160
pixels remained almost constant for all fields of view, taking 2-3 milliseconds.
Figure 5a shows the relation between the number of samples computed per frame
and a varying FOV. Clearly, an increased FOV results in a greater number of
samples that need to be rendered per iteration. The influence of this number
on rendering performance is shown in Figures 5c and 5d, which show rendering
time in milliseconds per one million samples, thus denoting rendering efficiency.
It becomes clear that a greater FOV with a consequently higher number of
samples usually results in an efficiency increase, as overheads can be reduced and
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scheduling efficiency increased, where the latter is strongly related to increased
ray coherence and sample density. Nonetheless, even with a reduced rendering
efficiency it has to be kept in mind that fewer samples have to be rendered per
iteration for smaller fields of view. This means that the focused areas usually
still converge much faster than with the original efficiency achieved for the full
resolution, as shown below. The general behaviour of rendering efficiency shown
in Figure 5b is similar for the Urban Sprawl scene.

We also compared our results to plain Path Tracing without any guiding
methods, corresponding to the maximum achieveable rendering efficiency. The
pure rendering time for a full 3840 × 2160 image with one sample per pixel is
460 milliseconds for Cornell Box and 750 milliseconds for Urban Sprawl. Thus,
the rendering times per megasample result to 55.46 and 90.42 milliseconds, re-
spectively. For us however, the rendering time per iteration is very important, as
this yields some information on how far the image has converged in the focused
area after a certain amount of time. Looking at the numbers for several fields of
view, we can see that for a small FOV the convergence rate in the focused area
is enormous when compared to standard Path Tracing; a 10◦ FOV with SMC-
based scheduling yields a rendering time of 12.29ms vs. 460ms for full-resolution
rendering, which is a factor of 37.43, corresponding to approximately 84 % re-
duced noise according to MC methods’ probabilistic error of O(1/

√
n). For a

60◦ FOV, SMC-based scheduling yields a rendering time of 188ms vs. 460ms of
standard Path Tracing, which is still a factor of 2.44. The numbers for Urban
Sprawl are similar.

Note that with the rendering process progressing, the error difference between
areas converging at different rates decreases. With a sampling probability of
p0 = 1 for pixels inside the ROI and p1 ∈ [0, 1] for some pixel outside the ROI,
the number of drawn samples after k iterations should be n0 = k for pixels inside
the ROI and n1 ≈ p1k = p1n0 for the outside pixel. With the MC asymptotic
error of O(1/

√
n) the error difference between pixels inside and outside the ROI

is in

O
(

1
√
n1
− 1
√
n0

)
= O

(
1

√
p1n0

− 1
√
n0

)
= O

(
1−√p1√
p1n0

)
.

With p1 being constant for the specific pixel, this difference approaches 0 with
an increasing number of samples.

5 Conclusion and Future Work

We have shown how techniques using ROIs guiding the Path Tracing process
can be employed to increase performance and local quality in global illumination
rendering with a focus on, but not limited to large, 4k projection and desktop
systems. Moreover, we presented an approach to schedule the rendering tasks
guided by an ROI on GPUs and presented a prototypical filtering method to
combine the computed samples to a final image. To interpret our results correctly,
it is important to note that our work is based on the assumption that there
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actually is an important area in the image which is desired to be rendered at
a high quality, while the quality of the remaining image is not as important.
Though, the context of the non-focused area is preserved. We achieved our goal
of improving performance for such cases, as shown in the benchmark section,
where we also compared our runtime results with standard full-resolution Path
Tracing.

Future research should include scheduling methods for increased ray coher-
ence, which may result in a further performance benefit. Sparsely sampled as
well as focused areas could be processed with denoising methods such as Ray
Histogram Fusion [15], which has recently also been optimized for GPUs [16]. It
has to be analyzed whether denoising should be performed at full resolution or
at area-specific fractions of the original resolution.

Also, performance and perceptual aspects of such a reconstruction/filtering
step have to be taken into account. Even though the basics of gaze-based ren-
dering are well-understood, a user study has to be performed on how the noise
introduced by the stochastic nature of Path Tracing affects the perceived qual-
ity of rendered images using ROIs based on the user’s gaze. Depending on their
performance, reconstruction methods could also be implemented to be executed
once every few seconds or itereatively for static viewpoints. Generally, the pre-
sented work aims for the next step to be the realization of such a system with
the full 72 megapixel resolution of our lage display wall. As this rendering should
take place on a rendering cluster with several dozens of GPUs, a hybrid schedul-
ing approach for adaptive resolutions is one of the major challenges for achieving
this goal.
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