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a b s t r a c t

This paper addresses the set-membership filtering problem for a class of discrete time-varying systems
with sensor saturation in the presence of unknown-but-bounded process and measurement noises. A
sufficient condition for the existence of set-membership filter is derived. A convex optimisationmethod is
proposed to determine a state estimation ellipsoid that is a set of states compatiblewith sensor saturation
and unknown-but-bounded process and measurement noises. A recursive algorithm is developed for
computing the ellipsoid that guarantees to contain the true state by solving a time-varying linear matrix
inequality. Simulation results are provided to demonstrate the effectiveness of the proposed method.
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1. Introduction

Most filtering approaches require system noises including
process noise and measurement noise in a stochastic framework
and then provide a probabilistic state estimation (Anderson &
Moore, 1979; Yang & Hung, 2002; Yang, Wang, & Hung, 2002;
Yang, Wang, Ho, & Liu, 2006). The probabilistic nature of the
estimates leads to the use of mean and variance to describe the
state spreads (distributions). These spreads cannot guarantee that
the state is included in some region, because they are not hard
bounds. However, in many real-world applications, such as, target
tracking and attack, system guidance and navigation, they need
100% confidence to be estimated. This has motivated to develop an
ellipsoidal state estimation (Kurzhanski & Valyi, 1996). The idea of
the ellipsoidal state estimation is to provide a set of state estimates
in state space which always contains the true state of the system
by assuming hard bounds instead of stochastic descriptions on
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the system noises (Bertsekas & Rhodes, 1971; Schweppe, 1968).
The actual estimate is a set in state space rather than a single
vector. These methods are therefore known as set-membership or
set-valued state estimation (filtering) (Bertsekas & Rhodes, 1971;
Morrell & Stirling, 1991; Schweppe, 1968; Witsenhausen, 1968).
Weprefer to adopt thename set-membership filtering in this paper
as it is easy to distinguish between a set estimation and a point
estimate in the stochastic framework.
Set-membership filtering problem was first considered by

Witsenhausen (1968). The set of all possible values of the states
compatible with the measurement of outputs is completely char-
acterised by their support functions. An ellipsoidal approximation
algorithm was provided by Schweppe (1968). In this algorithm,
the measurements are used to calculate recursively a bounding
ellipsoid to the set of possible states, under the assumption that
the set containing the initial condition and the process and mea-
surement noises is, or can be approximated by ellipsoids. The
solution to a set-membership filtering problem with the instanta-
neous constraints was determined by using the results derived for
an energy constraint in Bertsekas and Rhodes (1971). The result-
ing estimator is similar to that proposed by Schweppe (1968), but
it has an important advantage that the gainmatrix does not depend
on the particular output measurements and is therefore precom-
putable. Recently, many researchers have attempted to deal with
the set-membership filtering problems with various methods. For
example, a convex optimisation approachwas applied to deal with
the robust set-membership filtering for the systems with norm-
bounded uncertainty in the system matrices (Ghaoui & Calafiore,
2001). An ellipsoidal state boundingmethodwas developed to pro-
vide an optimal outer approximation of the sum and intersection
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of ellipsoids for set-membership filtering in Durieu, Walter, and
Polyak (2001);Maskarov andNorton (1996); Polyak, Nazin, Durieu,
and Walter (2002). A recursive scheme for constructing an ellip-
soidal state estimation set of all states consistent with the mea-
sured output and the given noise and unstructured uncertainty
described by a sum quadratic constraint was presented in Petersen
and Savkin (1999); Ra, Jin, and Park (2004); Savkin and Petersen
(1995, 1998). In the existing literature concerning set-membership
filtering techniques, it is implicitly assumed that the measure-
ments are working under the linear condition such that the effect
of possible amplitude saturation is ignored (Ghaoui & Calafiore,
2001; Polyak et al., 2002; Ra et al., 2004; Savkin & Petersen, 1995,
1998). In practical applications, however, sensor saturation arises
frequently in measurements due to physical limitations on sen-
sors (Sadhar & Rajagopalan, 2004). This motivates us to investigate
the set-membership filtering problem with sensor saturation.
Analysis and design for systems with sensor saturation have

been addressed by several authors (Cao, Lin, & Chen, 2003; Hu &
Lin, 2001; Koplon, Hantus, & Sontag, 1994; Kreisselmeier, 1996;
Lin & Hu, 2001; Xiao, Cao, & Lin, 2004; Zuo, Wang, & Huang,
2005). For example, the stabilization for linear systems subject to
sensor saturation has been considered in Kreisselmeier (1996); Lin
and Hu (2001). An output feedback control with sensor saturation
has been proposed for linear continuous-time systems in Cao
et al. (2003). An extension to linear discrete-time systems has
been presented in Zuo et al. (2005). The observability of linear
systemswith saturated outputs has been discussed in Koplon et al.
(1994). A robust filter has been designed for discrete-time systems
with sensor saturation and applied to the digital transmultiplexer
systems in Xiao et al. (2004). In this paper, we consider the set-
membership filtering problem for discrete-time systems subject
to sensor saturation. Our goal is to provide a region of state
estimate where the true state resides despite the presence of both
measurement saturation, and unknown-but-bounded process and
measurement noises. For this purpose, a sufficient condition for
the existence of set-membership filter is derived for discrete-time
systems with sensor saturation. A convex optimisation method
is proposed to determine a state estimation ellipsoid that is a set
of states compatible with sensor saturation and unknown-but-
bounded process and measurement noises. A recursive algorithm
is developed for computing the ellipsoid that guarantees to contain
the true state by solving a time-varying linear matrix inequality.
The rest of this paper is organised as follows. The set-

membership filter design problem is formulated in Section 2
for discrete time-varying systems subject to sensor saturation. A
convex optimisation method for computing the state estimation
ellipsoid is developed in Section 3. Section 4provides an illustrative
example to demonstrate the effectiveness of our algorithm.
Conclusions and future directions are described in Section 5.

Notation. The notation X ≥ Y (respectively, X > Y ) where X and Y
are symmetric matrices, means that X−Y is positive semi-definite
(respectively, positive definite). The superscript T stands formatrix
transpose. The notation trace(P) denotes the trace of P .

2. Problem formulation

Consider a discrete time-varying system in the presence of
sensor saturation

xk+1 = Akxk + Fkuk + Bkwk, (1)

yk = σ(Ckxk)+ Dkvk, (2)

where xk ∈ Rn is the system state; uk ∈ Rl is the known deter-
ministic input; yk ∈ Rm is the measurement output; Ak, Bk, Ck,
Dk and Fk are known time-varying matrices with appropriate
dimensions; The saturation function σ(·):Rm 7→ Rm is defined as

σ(r) =

 σ1(r1)σ2(r2)
· · ·

σm(rm)

 (3)

with σi(ri) = sign(ri)min{ri,max, |ri|}, where ri,max denotes the ith
element of the vector rmax, the saturation level; wk ∈ Rr is the
process noise and vk ∈ Rp is the measurement noise, which is
assumed to be confined to specified ellipsoidal sets:

Wk := {wk : w
T
kQ
−1
k wk ≤ 1}, (4)

Vk := {vk : v
T
kR
−1
k vk ≤ 1}, (5)

where Qk = Q Tk > 0 and Rk = RTk > 0 are known matrices
with compatible dimensions; the initial state x0 belongs to a given
ellipsoid:

X0 := {x0 : (x0 − x̂0)TP−10 (x0 − x̂0) ≤ 1}, (6)

where x̂0 is an estimate of x0 which is assumed to be given, and
P0 = PT0 > 0 is a known matrix.

Remark 1. Sensor saturation exists in many practical applications
due to the use of cheaper sensors with inadequate range in
instrument device, amplifier saturation of electronic circuit, rate
limitation in mechanical systems. The examples are flight control
systems (Cao et al., 2003) and restoration of images (Sadhar
& Rajagopalan, 2004). Here we only consider the Occasional
measurement saturations. Deep saturations are beyond our study
in this paper.

In this paper, a filter based on the current measurement is
considered for the system (1)–(2) subject to the saturation (3),
which is of the form:

x̂k+1 = Gkx̂k + Fkuk + Lkyk+1, (7)

where x̂k ∈ Rn is the state estimate of xk. Gk and Lk are the filter
parameters to be determined.
Our objective is to determine an ellipsoid

Xk+1 := {xk+1 : (xk+1 − x̂k+1)TP−1k+1(xk+1 − x̂k+1) ≤ 1}, (8)

for the state xk+1, given the measurement information yk+1 at the
time instant k+1 for the process noisewk ∈ Wk and the measure-
ment noise vk ∈ Vk subject to the saturation (3). In other words,
we look for Pk+1 and x̂k+1 such that

(xk+1 − x̂k+1)TP−1k+1(xk+1 − x̂k+1) ≤ 1, (9)

subject towk ∈ Wk, vk ∈ Vk and (3).
This problem will be referred to as a set-membership filter

design problem.

3. Set-membership filter design with sensor saturation

In this section, we will design a set-membership filter for the
system (1)–(2) subject to sensor saturation. We start with some
basic notions that we are interested in. We then recall two useful
lemmas for our following development. After that we derive the
existence conditions for the set-membership filter that the true
state is guaranteed to reside in a set of state estimates. We finally
provide the convex optimisation recursive algorithm for designing
the set-membership filter.
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Fig. 1. The saturation type nonlinearity.

Definition 1 (Cao et al., 2003; Khalil, 1996). A nonlinearity ψ: Rm
7→ Rm is said to satisfy a sector condition if

(ψ(v)− K1v)T(ψ(v)− K2v) ≤ 0, ∀v ∈ Rm (10)

for some real matrices K1, K2 ∈ Rm×m, where K = K2 − K1 is
a positive-definite symmetric matrix. In this case, we say that ψ
belongs to the sector [K1, K2].

If we assume that there exist the diagonal matrices H1 and H2
such that 0 ≤ H1 < I ≤ H2, then the saturation function σ(Ckxk)
in (2) can be written as follows

σ(Ckxk) = H1Ckxk + ψ(Ckxk), (11)

where ψ(Ckxk) is a nonlinear vector-valued function which
satisfies a sector condition with K1 = 0 and K2 = H , in which
H = H2 − H1, i.e., ψ(Ckxk) satisfies the following inequality:

ψT(Ckxk)(ψ(Ckxk)− HCkxk) ≤ 0. (12)

Remark 2. In theory, we should choose H1 as zero to guarantee
that the inequality (12) holds in whole. However, in practical
applications, Ckxk is limited, i.e., Ckxk is not greater than smax in
Fig. 1. So we can use a smaller sector (a bigger H1) to cover the
saturation type nonlinearities and guarantee that the inequality
(12) is satisfied. If H1 is chosen too small, the saturation function
will belong to a bigger sector (see Fig. 1), and the estimated region
will become bigger too.

In the following set-membership filter design for sensor
saturation, we will take into account the saturation constraints
(11) and (12). Before providing the solution to the set-membership
filtering problem with sensor saturation, we recall the following
two useful lemmas:

Lemma 1 (S-Procedure Boyd, Ghaoui, Feron, & Balakrishnan, 1994;
Skelton, Iwasaki, & Grigoriadis, 1998). Let Y0(η), Y1(η), . . ., Yp(η) be
quadratic functions of η ∈ Rn

Yi(η) = ηTTiη, i = 0, 1, . . . , p, (13)

with Ti = T Ti . Then, the implication

Y1(η) ≤ 0, . . . , Yp(η) ≤ 0 H⇒ Y0(η) ≤ 0, (14)

holds if there exist τ1, . . . , τp > 0 such that

T0 −
p∑
i=1

τiTi ≤ 0. (15)
Lemma 2 (Schur Complements Boyd et al., 1994). Given constant
matrices L1, L2, L3 where L1 = LT1 and L2 = L

T
2 < 0, then

L1 − LT3L
−1
2 L3 ≤ 0,

if and only if[
L1 LT3
L3 L2

]
≤ 0,

or equivalently[
L2 L3
LT3 L1

]
≤ 0.

We are now in position to provide the main results in the
following theorem. The existence conditions are developed for the
set-membership filter that the true state is guaranteed to reside in
a set of state estimates.

Theorem 1. For the system (1)–(2) subject to the sensor saturation
(3), suppose that the state xk belongs to its state estimation ellipsoid
(xk − x̂k)TP−1k (xk − x̂k) ≤ 1. Then one-step ahead state xk+1 resides
in its state estimation ellipsoid (xk+1− x̂k+1)TP−1k+1(xk+1− x̂k+1) ≤ 1,
if there exist Pk+1 > 0, Gk, Lk, τ1 > 0, τ2 > 0, τ3 > 0, τ4 > 0 such
that[
−Pk+1 Π(x̂k, uk)

ΠT(x̂k, uk) −Θ(τ1, τ2, τ3, τ4)

]
≤ 0. (16)

Moreover the centre of the state estimate ellipsoid is determined by

x̂k+1 = Gkx̂k + Fkuk + Lkyk+1, (17)

where Θ(τ1, τ2, τ3, τ4) and Π(x̂k, uk) are given in Box I, and Φk is
given in Box II.

Proof. For simplicity, we denote ψ(Ckxk) by ψk, then one-step
ahead estimation error xk+1 − x̂k+1 is written as:

xk+1 − x̂k+1
= Akxk + Fkuk + Bkwk − Gkx̂k − Fkuk − Lkyk+1
= Akxk + Bkwk − Gkx̂k − Lk[σ(Ck+1xk+1)+ Dk+1vk+1]
= Akxk + Bkwk − Gkx̂k − Lk(H1Ck+1xk+1 + ψk+1 + Dk+1vk+1)
= (I − LkH1Ck+1)Akxk − Gkx̂k − LkH1Ck+1Fkuk
+ (I − LkH1Ck+1)Bkwk − Lkψk+1 − LkDk+1vk+1. (20)

On the other hand, if (xk − x̂k)TP−1k (xk − x̂k) ≤ 1, then there
exists a z with ‖z‖ ≤ 1 such that (Ghaoui & Calafiore, 2001)

xk = x̂k + Ekz, (21)

where Ek is a factorisation of Pk = EkETk .
By using (21), (20) can be rewritten as

xk+1 − x̂k+1 = (I − LkH1Ck+1)Akx̂k − Gkx̂k − LkH1Ck+1Fkuk
+ (I − LkH1Ck+1)AkEkz + (I − LkH1Ck+1)Bkwk
− Lkψk+1 − LkDk+1vk+1. (22)

Denoting

η =


1
z
wk
vk+1
ψk+1

 (23)

and Π(x̂k, uk), given in Box III, we obtain a compact form for (21)
as follows:

xk+1 − x̂k+1 = Π(x̂k, uk)η, (24)
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8)

9)
Θ(τ1, τ2, τ3, τ4) = τ1Φk + diag(1− τ2 − τ3 − τ4, τ2I, τ3Q−1k , τ4R−1k+1, 0), (1

Π(x̂k, uk) =
[
(I − LkH1Ck+1)Akx̂k − Gkx̂k − LkH1Ck+1Fkuk (I − LkH1Ck+1)AkEk (I − LkH1Ck+1)Bk −LkDk+1 −Lk

]
(1

Box I.
Φk =
1
2


0 0 0 0 −(HCk+1Akx̂k + HCk+1Fkuk)T

0 0 0 0 −(HCk+1AkEk)T

0 0 0 0 −(HCk+1Bk)T

0 0 0 0 0
−HCk+1Akx̂k − HCk+1Fkuk −HCk+1AkEk −HCk+1Bk 0 2


Box II.
Π(x̂k, uk) =
[
(I − LkH1Ck+1)Akx̂k − Gkx̂k − LkH1Ck+1Fkuk (I − LkH1Ck+1)AkEk (I − LkH1Ck+1)Bk −LkDk+1 −Lk

]
Box III.
Hence, (xk+1 − x̂k+1)TP−1k+1(xk+1 − x̂k+1) ≤ 1 can be written as

ηT[ΠT(x̂k, uk)P−1k+1Π(x̂k, uk)− diag(1, 0, 0, 0, 0)]η ≤ 0. (25)

From (12), we have

ψTk+1(ψk+1 − HCk+1xk+1) ≤ 0. (26)

Substituting (1) and (21) into (26) yields

ψTk+1(ψk+1 − HCk+1Akx̂k
−HCk+1Fkuk − HCk+1AkEkz − HCk+1Bkwk) ≤ 0 (27)

which can be written in η as

ηTΦkη ≤ 0, (28)

whereΦk is as given in Box IV.
From (4), (5) and (21), z, wk and vk+1 have the following

constraints
‖z‖ ≤ 1,
wTkQ

−1
k wk ≤ 1,

vTk+1R
−1
k+1vk+1 ≤ 1.

(29)

which can be expressed in η as:η
Tdiag(−1, I, 0, 0, 0)η ≤ 0,
ηTdiag(−1, 0,Q−1k , 0, 0), η ≤ 0,
ηTdiag(−1, 0, 0, R−1k+1, 0)η ≤ 0.

(30)

Therefore we need to find a condition tomake (25) hold subject
to the saturation constraints (28), and constraints (30). By using
the S-procedure (Lemma 1), the sufficient condition such that the
inequalities (28) and (30) imply (25) to hold is that there exist
positive scalars τ1, τ2, τ3, and τ4 such that

ΠT(x̂k, uk)P−1k+1Π(x̂k, uk)− diag(1, 0, 0, 0, 0)− τ1Φk

− τ2diag(−1, I, 0, 0, 0)− τ3diag(−1, 0,Q−1k , 0, 0)

− τ4diag(−1, 0, 0, R−1k+1, 0) ≤ 0. (31)

(31) is written in the following compact form:

ΠT(x̂k, uk)P−1k+1Π(x̂k, uk)− τ1Φk

− diag(1− τ2 − τ3 − τ4, τ2I, τ3Q−1k , τ4R−1k+1, 0) ≤ 0. (32)

By denoting

Θ(τ1, τ2, τ3, τ4) = τ1Φk

+ diag(1− τ2 − τ3 − τ4, τ2I, τ3Q−1k , τ4R−1k+1, 0), (33)
(32) is written as

ΠT(x̂k, uk)P−1k+1Π(x̂k, uk)−Θ(τ1, τ2, τ3, τ4) ≤ 0. (34)

By using the Schur complements (Lemma 2), (34) is equivalent
to:[
−Pk+1 Π(x̂k, uk)

ΠT(x̂k, uk) −Θ(τ1, τ2, τ3, τ4)

]
≤ 0. (35)

Thus, if there exist the filter parameters Gk and Lk, and scalars
τ1 > 0, τ2 > 0, τ3 > 0, τ4 > 0 such that (16) holds, then one-step
ahead state xk+1 resides in its state estimation ellipsoid (xk+1 −
x̂k+1)TP−1k+1(xk+1 − x̂k+1) ≤ 1. �

Theorem 1 outlines the principle of determining the current
state estimation ellipsoid containing xk+1. However, it does not
provide an optimal (minimal) state estimation ellipsoid. Next, we
apply the convex optimisation approach (Nesterov & Nemirovski,
1994; Vandenberghe & Boyd, 1996) to determine an optimal
ellipsoid. Pk+1 is obtained by solving the following optimisation
problem:

min
Pk+1>0,Gk,Lk,τ1>0,τ2>0,τ3>0,τ4>0

trace(Pk+1)

subject to (16)
(36)

Remark 3. We can see from Theorem 1 that the inequality (16)
is linear to the variables Pk+1, Gk, Lk, τ1, τ2, τ3, τ4. Hence, the
optimisation problem (36) subject to (16) can be solved by
the existing semi-definite programming (SDP) via interior-point
approach (Nesterov & Nemirovski, 1994; Vandenberghe & Boyd,
1996).

Remark 4. The sufficient conditions are provided to estimate a
state ellipsoid. In order to reduce the conservativeness, the convex
optimisation method has been proposed in (36). The trace of Pk+1
is optimised at each time step in an effort to find the smallest
ellipsoid for the state estimate. Other measures of the ellipsoid can
also be introduced, for example, determinant (Durieu et al., 2001;
Ghaoui & Calafiore, 2001).

Remark 5. It is worthmentioning that a set-value state estimation
problem has been proposed in Petersen and Savkin (1999); Savkin
and Petersen (1995, 1998) by designing a robust Kalman filter and
then deriving the bound of (xk+1−x̂k+1)TP−1k+1(xk+1−x̂k+1) via using
an analytical method. In this paper, we assume a general structure
of the filter as the centre of the state estimate ellipsoid, and then



1900 F. Yang, Y. Li / Automatica 45 (2009) 1896–1902
Φk =
1
2


0 0 0 0 −(HCk+1Akx̂k + HCk+1Fkuk)T

0 0 0 0 −(HCk+1AkEk)T

0 0 0 0 −(HCk+1Bk)T

0 0 0 0 0
−HCk+1Akx̂k − HCk+1Fkuk −HCk+1AkEk −HCk+1Bk 0 2


Box IV.
use a numerical optimisation method to find a minimum positive-
definite matrix Pk+1 such that (xk+1− x̂k+1)TP−1k+1(xk+1− x̂k+1) < 1
in the sense of trace performance. The advantage of our method
is that it is easy to deal with saturation nonlinearity by using
the S-procedure. Moreover, the process and measurement noises
we consider are assumed to be confined to specified ellipsoidal
sets, whereas the process and measurement noises considered
in Petersen and Savkin (1999); Savkin and Petersen (1995, 1998)
are assumed to satisfy an integral quadratic constraint.

4. An illustrative example

In this section, a simple example is provided to test our
algorithm. We consider a maneuvering target tracking system and
adopt a constant-accelerationmotionmodel as follows (Li & Jilkov,
2003)

xk+1 =

1 T T 2/2
0 1 T
0 0 1

 xk + [21
1

]
wk, (37)

where T is the sample period, the state xk = [ s(k) ṡ(k) s̈(k) ]T
is the position, velocity and acceleration of the target at time kT ,
respectively.
Since the position is measured by radar, the measurement is

described as

yk = σ
([
1 0 0

]
xk
)
+ vk, (38)

where σ(·) is a saturation function. The saturation function σ(·)
can be described as follows:{
σ(sk) = sk, if − ri,max ≤ sk ≤ ri,max;
σ(sk) = ri,max, if sk > ri,max;
σ(sk) = −ri,max, if sk < −ri,max

where sk is the position value of target. When sk is less than the
saturation value r1,max, the sensorwill display the value of sk.When
sk exceeds the saturation value r1,max, the sensor will display the
saturation value r1,max. In this example the saturation value r1,max
is 1.8.
In the simulation, the sample period T is chosen as 0.1 second,

and wk and vk as 0.5 sin(2k) and 0.2 sin(20k), respectively. H and
H1 are set as H = 0.3 and H1 = 0.7. The initial state is set as x0 =
[0 0 0]T, which belongs to the ellipsoid (x0−x̂0)TP−10 (x0−x̂0) ≤ 1,

where x̂0 = [1 1 1]T and P0 =
[
50 0 0
0 50 0
0 0 50

]
; Qk = 0.3, and

Rk = 0.1.
The simulation results are obtained by solving the convex

optimisation problem (36) subject to (16) under Matlab 6.5 with
YALMIP 3.0 and SeDuMi 1.1 (Löfberg, 2004). Fig. 2 shows that
the true position always resides between the upper bound and
lower bound. The upper bound and lower bound are determined
by calculating xk = x̂k+ Ekz. In this example, we choose z as a unit
ball. FromFig. 2,we can see that the target belongs to the estimated
region. The target can be fully tracked. Therefore, our proposed
filtering algorithm is useful for target tracking and target attack.
Figs. 3 and 4 also indicate that the true velocity and acceleration
reside between their upper bounds and lower bounds, i.e., the
Fig. 2. The true position value, position estimation, its upper bound and lower
bound with the proposed set-membership filtering method.

Fig. 3. The true velocity value, velocity estimation, its upper bound and lower
bound with the proposed set-membership filtering method.

estimated ellipsoids always contain the true states. When the
saturation value is changed to r1,max = 1.6, the simulation results
show that the state estimate values are little far away from the
true state values. Hence, the saturations will make the estimation
accuracy become poor. Moreover, the different values of H1 will
get different results. The bigger H1 which cannot guarantee that
the inequality (12) is satisfied will not give any solution.
Nowwe apply the traditional set-membership filteringmethod,

which does not consider the sensor saturation in design, to conduct
the simulation. The results are displayed in Figs. 5–7. We can see
the true position value becomes greater than its upper bound at
k = 47. This is because the sensor saturation is not taken into ac-
count in the filter design. Therefore, our filtering algorithmcandeal
with the sensor saturation in measurements. However, it is neces-
sary to point out that the traditionalmethod cannot guarantee that
the true state resides in the state estimation ellipsoid. It does not
mean that the target always goes out of the state estimation ellip-
soid.



F. Yang, Y. Li / Automatica 45 (2009) 1896–1902 1901
Fig. 4. The true acceleration value, acceleration estimation, its upper bound and
lower bound with the proposed set-membership filtering method.

Fig. 5. The true position value, position estimation, its upper bound and lower
bound with the traditional set-membership filtering method.

Fig. 6. The true velocity value, velocity estimation, its upper bound and lower
bound with the traditional set-membership filtering method.

5. Conclusions

This paper has provided a new approach that is able to
deal with sensor saturation and unknown-but-bounded process
and measurement noises in filtering problem for discrete time-
varying systems. A sufficient condition for the existence of
Fig. 7. The true acceleration value, acceleration estimation, its upper bound and
lower bound with the traditional set-membership filtering method.

set-membership filter has been derived. A convex optimisation
method has been proposed to determine a state estimation
ellipsoid that is a set of states compatible with sensor saturation
and unknown-but-bounded process and measurement noises. A
recursive algorithm has been derived for computing the state
estimate ellipsoid which always contains the state. A smallest
possible estimate set is computed recursively by solving the
semi-definite programming problems. An illustrative example has
demonstrated the feasibility of the proposed filtering methods.
The algorithm is computationally attractive for on-line systems
with sensor saturation in the presence of unknown-but-bounded
process and measurement noises. The much more challenging
future research topics should be the study of the convergence of
the algorithms and how to reduce the conservatism of the possible
estimation sets.
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