
Evolutionary Learning of Dynamic Probabilistic
Models with Large Time Lags
Allan Tucker1, Xiaohui Liu1, Andrew Ogden-Swift2
1Department of Information Systems and Computing, Brunel University, Uxbridge,
Middlesex. UB8 3PH, UK. {Allan.Tucker, Xiaohui.Liu}@Brunel.ac.uk

2Chilworth Research Centre, Honeywell Hi-Spec Solutions,
Southampton.S016 7NP, UK. Andrew.Ogden-Swift@uk.Honeywell.com

In this paper, we explore the automatic explanation of Multivariate Time
Series (MTS) through learning Dynamic Bayesian Networks (DBNs). We have
developed an evolutionary algorithm which exploits certain characteristics of
process MTS in order to generate good networks as quickly as possible. We
compare this algorithm to other standard learning algorithms that have
traditionally been used for static Bayesian networks but are adapted for DBNs
in this paper. These are tested on both synthetic and real-world MTS. We
evaluate sample explanations which have been generated from chemical
process data using our methodology, and several useful heuristics, we have
found that the proposed method is more efficient for learning DBNs from MTS
with large time lags, especially in time-demanding situations.

1. INTRODUCTION
 Many complex dynamic processes record Multivariate Time-Series
(MTS) data at frequent time periods. These data will be characterized by a
large number of interdependent variables, though some may have no
substantial impact on any others. There can be large time lags between
causes and effects. Take the oil refinery process as an example. In reviewing
oil refinery data, process engineers often come across trends with
unexpected characteristics. In many cases these anomalous events have a
significant adverse economic impact, whether in terms of reduced yield,
excessive equipment stress, or violation of environmental constraints. The
identification of such events is important but of greater importance still are
adequate explanations of how they occur, which could then be used to
modify operating practices, retrain operators or conduct anticipatory
planning.

In order to explain events, some method is required for reasoning about
relationships between these variables back in time. For example, the reason
for a particular temperature becoming extremely high may be that a flow
rate dropped ten minutes ago and the flow dropped because, one minute
before that, a valve was closed by a control engineer. A well-known
paradigm for performing probabilistic inference about a system is the
Bayesian Network [15, 21] and its dynamic counterpart can model a system
over time [7, 11, 14, 17]. Most of this research, however, has not focussed

 1

on learning models automatically or has focussed on models with small time
lags. It would be desirable to learn a Dynamic Bayesian Network (DBN) for
large datasets with large possible time lags such as the refinery time series.
This is a challenging task, particularly if the DBN must be found quickly. In
some applications such as analysis of oil refinery data, the explanation may
be required in a very short space of time so that action can be promptly
taken to prevent the escalation of abnormal events leading to possible plant
shutdown.

This paper introduces a methodology that learns DBNs efficiently from
MTS with large possible time lags. In section 2 we give some general
background to Bayesian Networks and learning them from data. Section 3
introduces our methodology, including the representation and heuristics
adopted, and the full algorithm is outlined in section 4. Other well
established algorithms that exist for learning static networks are adapted to
learn DBNs using our proposed representation. These are described in
section 5 before being compared to one another for efficiency on synthetic
datasets of varying size. Section 5 also documents extensive analysis of the
efficiency and accuracy of our methodology which includes looking at how
generated explanations compare to the expectations of experienced control
engineers. Finally, section 6 discusses conclusions and future work.

2. BACKGROUND

2.1 Dynamic Bayesian Networks
A Bayesian network consists of the following:

(1) A set of n nodes, {x1, …,xn}, representing the N variables in the
domain and directed links between the nodes. Each node, xi, has a finite set
of ri mutually exclusive states, to v . 1iv

iir

(2) To each node xi with a set of parents, iπ there is an associated
probability table, P(xi | iπ). Let wij denote the parent iπ 's jth unique
instantiation where there are qi possible instantiations.

A DBN consists of the above where n nodes represent variables at
differing time slices. Therefore links occur between nodes over different
time lags (non-contemporaneous links) and within the same time lag
(contemporaneous links).

Figure 1 shows a DBN with five variables over six time lags where
each node represents a variable at a certain time slice and each link
represents a conditional dependency between two nodes. Given some
evidence about a set of variables at time t, we can infer the most probable
explanations for the current observations.

 2

 Inference in DBNs is very similar to standard inference in static
BNs. Within this paper we use a form of stochastic simulation, as described
in [21], to generate the explanations in Section 5.5 through a process of
scrolling and rollup. [6, 9], This involves entering observations about the
state of a system at various time points, applying inference to obtain the
effect of these observations on the distributions of other nodes, and then
time-shifting the DBN backward so that variable 0 at time t becomes
variable 0 at time t-1, variable 0 at t-2 becomes variable 0 at t-3, etc.
Inference can then be re-applied using the newly computed distributions as
observations and the process is repeated. As this process is projected further
back in time, the inferred posterior probabilities will travel further from the
true states of the system. However, in some problems where a system is
monitored and the time-shifting is forward in time, the current states of a
system are, in fact, available from the current sensor readings. Recently,
there has been much work investigating ways to remedy this "wandering" of
the projected states from their true values when monitoring [3, 17, 18].

Figure 1. A DBN with five variables over six time lags

2.2 Learning Bayesian Networks
There has been a great deal of research into learning good Bayesian

network structures using many different approaches such as the K2/K3
algorithms [5, 2], the Branch and Bound technique [25], and evolutionary
methods [20, 29]. A good guide to the literature can be found in [4]. K2 and
K3 use a greedy search which begins with an empty structure with no links.
It then explores the effect of adding each of the possible links to the current
structure with no links. It then explores the effect of adding each of the
possible links to the current structure and the one that results in the best
score is added. K2 uses this algorithm with a log likelihood metric and K3
with a description length metric, both of which are explained later in this

 3

section. The Branch and Bound technique offers a method for performing an
efficient exhaustive search by stopping any further exploration along a
search path based on a bound which is calculated on the scoring metric.

When evolutionary methods are applied to static Bayesian networks
the application of various operators is required to prevent the generation of
cycles within the network. Larranaga et al. [20] used a Genetic Algorithm
(GA) and applied a repair operator to remove cycles within the network.
Wong et al. [29] used Evolutionary Programming (EP) with three operators:
freeze, defrost and a Knowledge Guided Mutation (KGM) to improve the
scalability and speed of convergence as well as remove any cycles. Using a
KGM involves generating a list of all single links, ordered on their
description length (DL). This list guided the mutation within an EP by
adding edges which appear in the higher ranks of the list and removing
edges which appear in the lower ranks. Sahami [23] used the mutual
information between a node and its parents to select networks.

Missing data have been tackled while learning BNs in different ways.
The structural EM algorithm [12] makes use of Dempster's Expectation
Maximization algorithm [8] and incorporates structure search through the
improvement of the likelihood of a network. Ramoni and Sebastiani use a
bound and collapse method which places bounds on the final parameters of
a network to account for the lack of information due to missing data [22].

We are interested in finding out how evolutionary methods can be
applied to the learning of Dynamic Bayesian Networks where time is
limited. For example in a control situation, given a new set of refinery data,
it would be useful to be able to automatically explain certain events as
quickly as possible in order to identify how the plant is being operated.

Learning BNs, both static and dynamic, involve scoring candidate
network structures. In this paper we utilise two scoring metrics. Firstly, we
use the log likelihood [5, 13] which is calculated using metric 1 and the
higher this score the better the structure fits the dataset. Another well known
metric that we use is the Description Length metric (DL) [19, 24], which has
arisen out of information theory, and is constructed from the summation of
the description length of a network structure (metric 2) and the description
length of encoding the dataset given that model (metric 3). The lower this
metric is, the better the network should fit the data.

∏∏ ∏
= = =−+

−n

i

q

j

r

k
ijk

iij

i
i i

F
rF

r

1 1 1)!1(
)!1(

log
(1)

∑ ∏
= ∈














−+

n

i j
jii

i

rrn
1

)1()log(
π

π
(2)

∑∑∑
= = =











×−

n

i

q

j ij

ijk
r

k
ijk

i i

F
F

F
1 1 1

log
(3)

 4

where n is the number of nodes, Fijk is the frequency of occurrences in the
dataset that the node xi takes on the value vik (where there are ri possible
instantiations) and the parent nodes iπ take on the instantiation wij (where

there are qi possible instantiations) and . ∑
=

=
ir

k
ijkij FF

1

3. METHODOLOGY
This section is in three parts. Firstly, an assumption is made about the

time series in order to develop an appropriate representation for a DBN.
Secondly, we describe some heuristics which are useful in learning the
structure of a DBN using genetic algorithms with the DL metric. Finally, the
general methodology is outlined.

3.1 Representation
We assume that a dynamic network contains no links within the same

time slice (contemporaneous links). A DBN with only non-
contemporaneous links can be represented by a selection of n = N + Q
nodes, where N is the number of variables at a single time slice, and Q is the
collection of nodes at previous time slices up to some maximum lag MaxT
(Q ≤ N×MaxT) where all members of Q have a direct dependency on nodes
at time slice t. We can use a list of triples to represent a possible network:
(a,b,l) where a is the parent variable, b is the child variable and l is the time
lag. Therefore, each triple maps directly to a link in the network.

A list for N = 5, MaxT = 5 and Q = 9 such as {(2,4,5), (4,3,4),
(0,1,3), (2,1,2), (0,0,1), (1,1,1), (2,2,1), (3,3,1), (4,4,1)} would represent the
DBN in Figure 2. Note, as this network is for illustration only, a small
number of time lags is used.

Figure 2. An example DBN using the triple representation

 5

In many applications where data is recorded frequently, the assumption that
all variables take at least one time slice to impose any effect on another may
well be true. Although this assumption has already significantly reduced the
search space, the number of possible network structures is still very large.
For N variables and MaxT possible time lags it will be . For
example, for a multivariate time series with 10 variables and a maximum
possible time lag of 120, the search space will be 2

2
2 NMaxT ⋅

12000.

3.2 Useful Heuristics
In the context of learning dynamic networks, we can apply a standard

GA [16] to the representation described in the above section by using the list
of triples of each DBN as a chromosome. These triples can then be
optimised through the recombination and mutation operators. However, this
technique still takes too long to converge to a good solution as the number
of variables increases. Useful heuristics or knowledge are required to speed
up the convergence.

 (i) As there are no contemporaneous links in our proposed
representation, each node at time t, along with its parents, will be
independent of the other nodes at time t. Therefore, we can treat the problem
of finding a good network structure as a parallel problem of finding a group
of simple tree structures where each tree consists of a node at time t and all
of its parents. So for variable 1 in Figure 2, the tree is represented by the
triples {(0,1,3), (2,1,2), (1,1,1)}. A change to one tree does not mean the
entire structure has to be re-evaluated but only the tree in question.

(ii) Observing how the score of an individual triple varies with
differing lags shows the resultant curve to be relatively smooth (Figure 3 is
an example of the DL of a link with differing time lags using two oil
refinery variables). For this reason a specific mutation has been applied to
the lags of a triple (which we call LagMutation) and is such that each
mutation is based on a uniform distribution with mean equal to the present
lag.

300
310
320
330
340
350
360
370
380
390
400

1 11 21 31 41 51

Lag

D
L

DL of link
(4,6) over
differing lags

Figure 3. The DL of a single link between two oil refinery variables over

60 time lags. Note the relative smoothness of the curve.

 6

(iii) Experimentation has shown that autoregressive links with a time
lag of one (triples of the form (a,a,1)) are always the most common in
chemical process data. This is most likely to the relatively smooth nature of
the data. For this reason, these links were excluded from possible triples and
automatically inserted into the networks before evaluation.

3.3 Seeded GA for Search
The sort of algorithm that will be of use to rapid explanation

generation is one where a good but not necessarily optimal DBN can be
discovered very quickly. The application of a standard GA [20] using the
list of triples of each DBN as a chromosome should perform a relatively
efficient search over triples through recombination. However, useful
heuristics or knowledge may be required to increase efficiency and speed up
the convergence. EP has been shown to be a more efficient method [26]
when making use of the pre-processed single link scores through KGM.
However, this knowledge is only used each time the operator is applied. The
random starting population will be generally poor in quality. If the single
link knowledge is to be exploited as soon as possible in order to find better
networks in fewer generations we can seed [28] the entire first population
with links found from the single link analysis. If the pre-processing of these
single links can, itself, take a long time (if the MTS length, dimensionality
or MaxT is relatively large), it may be preferable to implement an
approximate method to find a list of good scoring links. Therefore, the
algorithm would be given a head start for the search of good DBN structure
in two ways: firstly, by using an approximate method to find a good list of
single links rather than scoring the entire set; secondly, by exploiting this
knowledge in the first population by seeding it entirely with a random
selection of good links.

We have found in [26] that an EP method is particularly efficient at
finding a good selection of links with good correlation, particularly when
we make use of self-adapting parameters (SAPs) which are able to `home in'
on structures within the dataset (such as over time lags in process data). We
can use an approximate algorithm such as an EP for finding good triples. In
an EP an individual could be represented as a single triple and the SAP
operators can be used to exploit structure within the data to quickly find
good single links. This representation would result in the entire population
being the solution to the problem as opposed to the fittest individual. An EP
should be better suited to this job since recombination, such as the GA’s
crossover, does not make much sense when chromosomes are particularly
short in length, i.e. triples in this case. GAs, on the other hand, are better
suited to exploring combinations of these triples. Note that the size of the
EP population will determine the size of the list of good triples. It will be
important to consider this value as it will have a large effect on the goodness

 7

of triples that are discovered. The discovered list can then be used to seed an
initial GA population. This is explained more fully in section 4.

If the initial population contains links with good scores as found using
an EP, it would be useful if the next stage of search emphasised the
recombination of these links. For this reason a uniform crossover operator is
used which will maximise the recombination of the high-ranking single
links.

4 ALGORITHM
Given a multivariate time series with N variables we can generate a

DBN with a maximum time lag of MaxT. This is achieved firstly by
applying Evolutionary Programming methods to a random selection of
single triples in order to produce a list, List, of good links of length ListSize
where the number of calls to the scoring function for the single links is
limited to a pre-defined value, c (see steps 1-10 in the algorithm). A random
selection of triples within EPList is then used to seed the initial generation
of a GA of size GAPopSize, where each individual comprises a selection of
triples. After GAGenerations, the fittest individual comprises Q triples
which correspond to the DBN learned from the multivariate time series (see
steps 11-19). We also use a parameter MaxBranch to prevent the maximum
number of parents for one node becoming too high. The algorithm is
described more fully below and figure 4 illustrates the general process.

Figure 4. The Process of using an Evolutionary Program to Seed the
Population of a Genetic Algorithm with a list of good scoring single

triples.

 8

 EP-Seeded-GA
I/P MTS with N variables, MaxT,
1 If the MTS is not discrete then apply an appropriate

discretisation procedure.
2 Initialize N to the number of variables and MaxT to the

maximum possible time lag, ListSize to be the size of List and
c_count to 0, c to be the maximum number of function calls.

3 Set the initial EP population, List, to a random selection of
links (a,b,l)
where 0 ≤ a < N, 0 ≤ b < N, 1 ≤ l ≤ MaxT.

4 While c_count < c
5 Score each individual triple using metric 1 or the sum of

metric 2 and metric 3, and increment c_count for each one
6 Sort List according to each triple's score
7 Make a copy of each link and apply the EPMutation

operator to each duplicate
8 Add the mutated duplicates back to the population
9 Remove the lower ranking links until the population is

back to its original size, namely ListSize.
10 End While
11 Set GAPopulation to a set of GAPopSize valid triple lists of

random length from the distribution U(1,MaxBranch*N) where
each triple is selected from List.

12 Construct the network represented by each individual’s triple list
and set the fitness using metric 1 or the sum of metric 2 and metric
3

13 For i = 1 to GAGenerations
14 Sort population according to their fitness
15 Apply UniformCrossover depending on GACrossover Rate

to randomly selected individuals biased on their fitness to
generate offspring

16 Apply LagMutation to the chromosome of the offspring
17 Apply standard mutation to GAMutationRate percent of the

chromosome of the offspring, essentially making a random
change to those triples.

18 Add offspring to the population and remove the least fittest
individuals thus reducing the population to its original size,
GAPopSize.

19 End For
O/P The best network structure will be the one with the smallest DL /

largest Log Likelihood within the last generation of
GAPopulation.

 9

For the proposed algorithm the following operators were used:

EPMutation Operator
EPMutation uses the notion of self adapting parameters to quickly

converge to a good selection of links with good score. Within the EP, a gene
can be any element of a triple (a,b,l). The idea of self-adapting parameters
[1] has been used in this context to mutate the genes using a normal
distribution that is rounded up to the nearest discrete value. While this is
unlikely to have any effect on mutating variables (the ordering of the
variables is arbitary), it is hoped that this controlled mutation will assist the
EP in 'homing in' on the best time lag for a triple, as we have found
previously [26]. Here each gene, ai, in each chromosome is given a
parameter, σi. Mutation is defined as follows:

),0(iii Naa σ+=′ (4)
)),0(),0(exp(iii NN ττσσ +⋅=′ (5)

len2
1

=τ
(6)

len
i

2

1
=τ

(7)

Note that τ is constant for each gene in each chromosome but different
between chromosomes, and τi is different for all genes. Both parameters are
generated each time mutation occurs. Each chromosome consisted of three
parameters and their corresponding σi values. The value of len is the size of
each chromosome, i.e. three. Each gene within a chromosome is mutated
according to the Normal distribution with mean 0 and standard deviation
equal to the gene's corresponding standard deviation, σi, in equation 4. Each
σi is then mutated according to equation 5.

UniformCrossover Operator
Uniform crossover [27] works through the use of multiple crossover points.
In the context of the DBN representation, each triple in each parent is
selected to form part of one of the two offspring based on an unbiased
random number generator. Therefore, each triple has a fifty percent chance
of forming part of either offspring's chromosome (see Figure 5).

LagMutation Operator
This simply mutates the lag of the individual’s genes with the probability
Lag Mutation Rate to a value from a uniform random distribution, U(lag-X,
lag+X).

 10

Figure 5. Uniform Crossover on the DBN Triple Representation. Any
triple from either parent ahs a 50% chance of being assigned to either

child.

5 EVALUATION
Within this section we investigate two aspects of the learnt DBNs:
(i) Efficiency: First of all in section 5.1, we describe existing

methods for learning static BNs which were adapted to search for DBN
using our proposed representation. In section 5.2 the efficiency of these
methods were compared to one another on synthetic datasets with varying N
and MaxT. This involved examining the shapes of the learning curves to
determine which were the best performers on larger datasets. Section 5.3
compares the best of these methods to our proposed algorithm on larger
synthetic datasets and the oil refinery dataset. We also investigate how the
parameters of our algorithm can affect efficiency.

(ii) Accuracy: Next, in section 5.4, the accuracy of the algorithm was
tested by looking at structural differences (SD) between networks learnt
from the synthetic data and the original network. This is repeated after
varying numbers of function calls to see how the quality of the model
depends upon learning time. Finally, in section 5.5, accuracy was
investigated using the oil refinery dataset through comparisons of learnt
structures with causal diagrams drawn up by control engineers and feedback
concerning the explanations that have been generated using the discovered
networks.

5.1 Adapting Static BN Search Algorithms for DBN Search
Taking existing methods for searching for static BNs, we investigated

how well they could be adapted to efficiently learn DBNs. This involved

 11

converting the algorithms to work with the representation that we have
proposed in section 3.1.

K2 / K3 (adapted for DBNs from [5] and [2])

This algorithm usually requires an ordering on the nodes. However,
due to the assumption that is made based on ignoring contemporaneous
links, this ordering can be ignored as all nodes will be ordered based upon
their time slice. It works by iterating through each node at time, t, scoring
the effect of adding all possible single parents to the current node. The
parent that increases the score the most is then added to that that node's list
of parents. This procedure is repeated until there are no parents that can be
added to any nodes at time t that will increase the network's score.

I/P MTS with N variables, MaxT
1 For i=0 to N-1 (each node at time t)
2 iπ =∅
3 oldP =),(iig π
4 Proceed = True
5 While Proceed
6 Let be the node that maximises z }){,(zig i ∪π where

, Qz∈ iz π∉
7 newP = }){,(zig i ∪π
8 If is a better score than Then newP oldP
9 oldP = newP
10 iπ = }{zi ∪π
11 Else
12 Proceed = False
13 End If
14 End While
15 End For
O/P Set of parents iπ for each of the N variables

where),(iig π is calculated using either metric 1 or the summation of
metric 2 and metric 3 but only applied to the node i. Rather than iterating
over all nodes, we only apply this to nodes at time t. These are the only
nodes which have changing parents and so all other nodes scores will
remain fixed. Step 8 depends on the metric being used (a lower score is
better for DL and a higher score is better for log likelihood).

 12

Genetic Algorithm (adapted for DBN from [20])
The Genetic Algorithm (introduced by [16]) searches for the global
optimum through the application of recombination and mutation operators.
These operators are applied to a population of candidate solutions which we
will represent using the triple list method. The Genetic Algorithm
determines parents based on their fitness, the fitter being more likely to be
selected. Crossover Rate determines the number of times two parents are
selected to perform crossover. Mutation Rate determines the likelihood that
a chromosome has one triple mutated. The general algorithm is as follows:

I/P MTS with N variables, MaxT
1 Initialise random Population of varying length triple lists
2 Calculate the fitness of each individual using either metric with the

MTS
3 For g=1 to Gens
4 Select parents from Population based on their fitness

according to Crossover_Rate
5 Generate children from selected parents using Crossover
6 Mutate individuals using Mutation according to Mutation

Rate
7 Add children to Population and calculate their fitness
8 Remove the least fittest individuals until Population is of

size Popsize
9 End For
O/P The fittest individual in Population

Many different forms of operator exist, the most common being single point
crossover and standard mutation. These operators have been adapted for the
application to two triple list parents where each parent can be of varying
length, and is described below.

The Crossover Operator (see Figure 6) is defined below.
I/P Two triple lists: par1, par2 containing len1 and len2 triples

respectively
1 Cp1 and cp2 are set to random values in the uniform distribution

U(0,len1) and U(0,len2), respectively
2 Set Child1 to the triples: { })2,...,2(2)1,...,1(1 lencpparcppar ∪
3 Set Child2 to the triples: { })1,...,1(1)2,...,1(2 lencpparcppar ∪
O/P Child1, Child2

 13

Figure 6. The Crossover Operation Applied to two Parent Triple Lists to

generate two new Children Triple Lists. Crossover points were 2 and 5 for
Par1 and Par2 respectively.

The mutation operator involves randomly adding or removing a

triple from the triple list in question. Any new triple is generated using
random values from uniform distributions of the form:

()),1(),1,0(),1,0(MaxTUNUNU −−

Fitness is calculated using either of the scoring metrics. As we wish
to increase fitness with each successive generation, the DL is inverted
whenever a comparison is made (steps 4 and 8 in the algorithm).

Evolutionary Program (adapted for DBN from [29])
The Evolutionary Program (EP) described here is a simplified

version of Wong's EP which was applied to static BNs in that it makes use
of a specialised operator called the Knowledge Guided Operator. An EP is
similar to a GA in that it uses a population of chromosomes whose fitness
we try to improve through mutation. However, in EP there is no
recombination.
 Knowledge Guided Mutation (KGM) requires calculating the DL of
all possible single links in the network in order to bias the mutations. For
DBNs the DL must be calculated over all possible time lags as well as
between all possible variables. This means that a pre-processing stage is
required in the same way as our methodology. However, rather than using
an approximate pre-processing method, Wong used an exhaustive search
over all single links. For our experiments, the log likelihood of a single link
was used to bias the mutation where the log likelihood metric was used.
KGM takes a list, List, of all possible links (triples) in the DBN which have
been scored according to Log Likelihood or Description Length. Given a
parent, it then randomly adds or deletes a triple. A triple is more likely to be
added if it has a better score and is more likely to be deleted if it has a worse

 14

score. Mutation is identical to the Mutation operator applied to the GA and
once again, as in the GA, the DL is inverted whenever a comparison is made
as we are trying to maximise the fitness.

I/P MTS with N variables, Pre-processed List of all scored single links
1 Initialise random Population
2 Calculate the fitness of each individual using either metric with the

MTS
3 For g=1 to Gens
4 Generate a child for each member of Population using KGM

and List
5 Add each child to Population and
9 Randomly Mutate all individuals in new Population and

score their fitness
10 Select the Popsize individuals with the highest scores to

recreate the next Population
11 End For
O/P The Fittest Individual in Population

5.2 Comparing Efficiency of Adapted Methods on Synthetic Data
The algorithms were tested on various synthetic datasets generated

from DBNs. Each DBN consisted of differing numbers of variables and
time. The generated data contained 1000 data points for each Boolean
variable. We used a stochastic simulation inference scheme to generate the
datasets. This involved starting with random values for all nodes at time < t,
and using these values as observations to the inference algorithm. New
values could then be assigned to variables at time t based on the computed
posterior distributions. By time-shifting the DBN forward one time slice,
each successive time point in the MTS could be assigned values based on
the previous values. For more information on stochastic simulation as
inference in Bayesian networks see [21].

Figure 7 shows the learning curves of the search methods on synthetic
DBN data of varying N and MaxT using the description length metric. The
y-axis represents description length and the x-axis represents the number of
Function Calls (FC). Figure 8 shows the results of exactly the same
experiments carried out using the log likelihood scoring metric on the same
set of synthetic datasets. Notice that the GA starts off on a large number of
FC. This is due to the best population size being found was 100 resulting in
many FC required for the initial population. EP on the other hand is found to
have optimal performance when its initial population (of size 10) contains
no links, and K"/K3 does not use a population of candidates.

 15

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th

K3
EP
GA

(b)

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500

Function Calls

D
es

cr
ip

tio
n

Le
ng

th

K3
EP
GA

(c)

3500

3700

3900

4100

4300

4500

4700

4900

5100

0 500 1000 1500 2000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th

K3
EP
GA

(d)

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

0 2000 4000 6000 8000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th

K3
EP
GA

(e)

5000

6000

7000

8000

9000

10000

11000

0 5000 10000 15000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th

K3
EP
GA

Figure 7. Comparing the Search Methods on DBN-Generated MTS using
Minimum Description Length (a) N=5, MaxT=10; (b) N=10, MaxT =10;

(c) N =5, MaxT =30; (d) N =10, MaxT =30; (e) N =10, MaxT =60

It is evident from graphs 7(a) and 8(a) that on the smaller synthetic
datasets the K2 and K3 algorithms are the fastest at finding a good structure.
However, these algorithms can suffer from local maxima and some of the
experiments using other global methods have found structures with better
scores after a larger number of function calls. Notice that as either N or
MaxT increases, graphs 7(b), (c) and (d), and 8(b), (c) and (d), the EP
method appears to find better networks in a shorter number of function calls.
The KGM heuristic is of assistance in speeding the convergence of the
algorithm. What is more, as the networks increase in both dimensionality
and time lag, K2 and K3 become less and less efficient. This is probably due
to the unnecessary search over the addition of every possible single link to
the network (including all variables and time lags). The GA does not appear
to perform that well, particularly in the smaller networks but performs better
than K2 and K3 in the earlier generations on larger networks, graphs 7(e)

 16

and 8(e). This is likely to be due to the efficient recombination of good links
in the first few generations followed by the reliance upon chance mutation
to find any further links. In short, on datasets with larger dimensionality and
larger maximum time lag, EP performs more efficiently than any of the
other methods. We will now see how our proposed methodology compares
to EP on synthetic and real-world datasets with larger N and MaxT.

(a)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000

Function Calls

Lo
g

Li
ke

lih
oo

d

K2
EP
GA

(b)

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

0 500 1000 1500 2000 2500

Function Calls

Lo
g

Li
ke

lih
oo

d

K2
EP
GA

(c)

-3500

-3400

-3300

-3200

-3100

-3000

-2900

-2800

-2700

-2600

-2500

0 500 1000 1500 2000

Function Calls

Lo
g

Li
ke

lih
oo

d

K2
EP
GA

(d)

-7500

-7000

-6500

-6000

-5500

-5000

-4500

-4000

0 2000 4000 6000 8000

Function Calls

Lo
g

Li
ke

lih
oo

d

K2
EP
GA

(e)

-7500

-7000

-6500

-6000

-5500

-5000

-4500

-4000

-3500

0 5000 10000 15000

Function Calls

Lo
g

Li
ke

lih
oo

d

K2
EP
GA

Figure 8. Comparing the Search Methods on DBN-Generated MTS using
Maximum Log Likelihood (a) N=5, MaxT=10; (b) N=10, MaxT =10; (c)

N =5, MaxT =30; (d) N =10, MaxT =30; (e) N =10, MaxT =60.

5.3 Comparing Efficiency of EP-Seeded GA with Standard EP on
Larger Synthetic and Real World Datasets

The efficiency of our proposed algorithm was assessed through

comparing its learning curves to the standard EP on synthetic data and the
oil refinery MTS. The refinery data consisted of 1000 datapoints over 11
variables that were discretised into four states. For these experiments, the

 17

algorithms were parametrised as shown in the table below. Notice that the
number of calls during the pre-processing stage, c, was varied between 20%
of the total search space and 100%. In the 100% case, the time taken for pre-
processing is identical to that of the pre-processing stage of the standard EP
algorithm. It must be noted that ListSize and c can be set according to the
available time and required accuracy of the final DBN. For all these
experiments MaxT=60 and MaxBranch=3.

Figures 9a to 9f show the learning curves of the methods: standard EP
and the proposed EP-Seeded-GA with c=20% and c= 100%. Notice that EP-
Seeded GA where c is 100%, which takes the same amount of time to pre-
process as the standard EP, not only begins with better scoring network
structures but continues to improve at a similar gradient to the standard EP
method. When the curves finally do meet, they generally converge at a
similar rate. In contrast, the EP-Seeded-GA with c=20% starts off with a
score higher than standard EP. However, as the function calls increase this
method slows down in convergence rate. In fact on the real dataset at the
later stages of the experiments, it is overtaken by the standard EP.
 Figure 10 shows how the number of calls in the EP Seeding stage
affects the overall efficiency of the EP-Seeded-GA when learning DBN
structure. The number of calls, c, is varied between 10% and 100% of the
entire search space. An interesting feature of this graph is that the
performance when c is 30% is almost identical to that when c is 100%.

 c PopSize GAPop-
Size

ListSize GACross-
overRate

GAMutat-
ionRate

LagMutat-
ionRate

Standard
EP

100% 10 - 100% - - -

EP-Seeded
GA

20 / 100% - 10 2.5% 0.8 0.1 0.1

Table 1. Parameters for the Standard EP and EP-Seeded GA

 18

 (a)

-7000

-6500

-6000

-5500

-5000

-4500

-4000

0 500 1000 1500 2000 2500 3000

Function Calls

Lo
g

Li
ke

lih
oo

d EP

EP Seeded GA
(c=20%)
EP Seeded GA
(c=100%)

(b)

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

0 500 1000 1500 2000 2500 3000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th EP

EP Seeded GA
(c=20%)
EP Seeded GA
(c=100%)

(c)

-15000

-14000

-13000

-12000

-11000

-10000

-9000

0 1000 2000 3000 4000

Function Calls

Lo
g

Li
ke

lih
oo

d EP

EP Seeded GA
(c=100%)
EP Seeded GA
(c=20%)

(d)

14000

15000

16000

17000

18000

19000

20000

21000

0 1000 2000 3000 4000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th EP

EP Seeded GA
(c=100%)
EP Seeded GA
(c=20%)

(e)

-16000

-14000

-12000

-10000

-8000

-6000

-4000

0 500 1000 1500 2000 2500 3000

Function Calls

Lo
g

Li
ke

lih
oo

d EP

EP Seeded GA
(c=100%)
EP Seeded GA
(c=20%)

(f)

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 500 1000 1500 2000 2500 3000

Function Calls

D
es

cr
ip

tio
n

Le
ng

th EP

EP Seeded GA
(c=100%)
EP Seeded GA
(c=20%)

Figure 9. Performance on Synthetic Datasets: (a) (b) N=10, MaxT=60;

(c) (d) N=20, MaxT=60; and Oil Refinery Datasets: (e) (f) N=11,
MaxT=60.

 To sum this section up, on larger MTS the pre-processing stage

(learning the single link information) requires much more time and so if
good networks are required rapidly, it appears that the approximate
approach utilised by EP-Seeded-GA with a lower value of c (around 30%) is
the most suitable. If time is not as expensive, the EP-Seeded GA with
c=100% is recommended as it takes the same amount of time to pre-process
the single links as the standard EP and is more likely to converge quicker.

 19

-7000

-6500

-6000

-5500

-5000

-4500

-4000

0 1000 2000 3000 4000 5000

Function Calls

Lo
g

Li
ke

lih
oo

d
c=10%
c=20%
c=30%
c=50%
c=70%
c=100%
EP

Figure 10. Performance on Synthetic Dataset with N=10 and MaxT=60
with varying number of calls, c, in the EP-Seeding Stage of EP-Seeded-

GA.

5.4 Structural Comparison of DBNs learnt using EP-Seeded GA
and Standard EP

In this section the resulting structures generated from the synthetic
datasets after varying number of function calls (FC) were investigated by
calculating the Structural Difference (SD). The SD is the summation of all
the links that were found within the resulting structures but should not have
been due to spurious correlations and implicit dependencies, and all links
that were missing from the resultant structures but which should have
appeared. The smaller the SD the better the structure is deemed to be. If the
time lag of a parent is out by three or less, then it is not deemed to be
different from the original network. This value was arrived at as it was
decided that an explanation that was incorrect in the time aspect by three
minutes or less would not affect the overall quality. Anything larger than
three minutes, however, may be misleading to a control engineer using the
tool. What is more, discretisation of the data may affect the accuracy so that
precise time lags may be shifted a few minutes in either direction. We only
show results from this analysis using the log likelihood metric. DL scores
produce almost identical results.

The SD analysis (Table 2) shows a surprising result in the standard EP
algorithm. Whilst the SD of the EP-Seeded-GA steadily decreases as
function calls increase, the standard EP actually increases in SD for some
time before falling. This is most probably due to the EP initially finding
structures that produce relatively good DBN metric scores against the
dataset even though they bear little relation to the original generating
structure. This may be through the discovery of the correct links at the
expense of also finding spurious correlations or implicit dependencies. A

 20

spurious correlation is a dependency that appears to exist between two
nodes due to a common parent between the two nodes (see figure 11a), an
implicit dependency is one which appears to exist due to indirect causes (see
figure 11b).

EP-Seeded-GA

Standard EP FC

N=10
MaxT=60

N=20
MaxT=60

N=10
MaxT=60

N=20
MaxT=60

100 16 25.6 12.5 11.2
500 14 22.6 19.2 15
1000 12.8 20.4 16.4 21
2000 11.2 22 18.4 26.6
5000 9.2 20.6 24.6 31.4

10000 7.6 19.2 8.7 31

Table 2. The Average Structural Differences (SD) between the original
DBN and the discovered DBN using EP-Seeded-GA and Standard EP

with Log Likelihood after varying numbers of FC.

(a)

(b)

Figure 11. (a) Spurious Correlation denoted by a dotted line between
node A and node B. (b) Implicit Dependency between node A-1 and

node B.

The hypothesis that spurious correlations account for the rise in SD
for standard EP is supported by figure 12b. This shows the breakdown of
the SD into implicit dependencies, spurious correlations and missed links.
The actual number of missed links decreases as function calls progress.
However, the number of spurious correlations actually increases. It appears
that the EP-Seeded-GA avoids this growth in spurious correlations with all
elements of SD generally decreasing (see figure 12a).

 21

(a)

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Function Calls

St
ru

ct
ur

al
 D

iff
er

en
ce

Missed
Implicit
Spurious
Total

(b)

0

5

10

15

20

25

0 2000 4000 6000 8000 10000

Function Calls

St
ru

ct
ur

al
 D

iff
er

en
ce

Missed
Implicit
Spurious
Total

Figure 12. Breakdown of Structural Difference on Synthetic Dataset
where N=10 and MaxT=60 using (a) EP-Seeded-GA and (b) Standard

EP.

5.5 Quality of Explanations
For the oil refinery dataset, an analysis is required of how accurately

the learnt network structure represents the sort of relationships an expert
would find. This is done by asking control engineers, who have extensive
knowledge of the refinery process and data, to produce some dependency
diagrams that represent the expected relationships between the variables in
the oil refinery MTS (see Figure 14). These diagrams are then compared to
explanations generated using the discovered networks. To generate these
explanations, evidence about a subset of variables at various time slices is
entered into the network and inference is performed on the network.

Figure 13 shows some of the explanations that were generated from
the learnt structures using two oil refinery datasets, one with N = 11 and the
other with N = 20. The algorithm used to learn these structures was EP-
Seeded-GA with ListSize being 2.5% of the entire search space, c being
20%, and the algorithm was stopped after 1500 and 2000 function calls for
the 10 variable and 20 variable dataset, respectively. Shaded boxes in figure
13 represent observed nodes.

It is very encouraging to note that the current algorithm detects all of
the relationships within figure 14 correctly except for those limited by
MaxBranch being set to 3. For example, the explanation in figure 13a has
captured tail gas flow (TGF) as being dependant upon sponge oil flow (SOF
and top temperature (TT). However, the algorithm generates more
explanations than those found in the dependency diagram. This is to be
expected since the diagram is not meant to be exhaustive in that it only
captures some of the obvious relationships that should exist within the
dataset. From figure 13b we can see that bottom product flow (BPF) is
affected by three variables but mostly by its controller setpoint BPF_SP.
This is discovered from the data (the probability of BPF_SP being in state 3
if BPF is in state 3 in the next time step is 0.999). However, if we observe

 22

BPF_SP as being in state 0 at t-1 (figure 13c), we see an increase in the
probability of other variables being the cause of BPF's current state.

(a)

(b)

(c)

Figure 13 - Sample explanations generated using the refinery data. Shaded

blocks represent observed variables.

It must also be pointed out that there were a few relationships found

within the network structure that were known to be false, leading to some
incorrect explanations. These are likely to have occurred for various

 23

reasons. For example, a false link in the opposite direction of causality, is
most likely caused by spurious correlations. These are likely to occur due to
the smoothness of the CCF between two variables (see figure 3) where a
strong dependency from variable 4 to variable 6 will produce a strong
correlation in the CCF in the opposite direction, from 6 to 4. Other reasons
include loss of information during discretisation or if some related variables
are missing. For example, in figure 14 if feed flow (FF) affects TGF and
BPF but is missed out of the dataset, it is quite possible that a dependency
will be found between TGF and BPF. It is, therefore, important to ensure
that all of the relevant variables are included within the dataset and a good
discretisation policy is adopted.

Figure 14 - Example Dependency Diagrams constructed from advice of

Control Engineer

7. CONCLUSIONS
The learning of dynamic probabilistic models with large time lags is

an important issue, not only for complex process applications but also for
many AI problems (e.g. learning domain behaviour for robot navigation,
data-mining for temporal sequences, learning to control a complex plant).
It is a very challenging task and we have investigated the use of

 24

evolutionary methods in achieving this. The number of possible network
structures can be huge, even when dealing with a small number of
variables due to the consideration of large possible time lags. Tested on
synthetic datasets and oil refinery data, the proposed algorithm has
demonstrated some success in managing this complexity, especially in
comparison to algorithms that exist for static networks and which we
have adapted for dynamic models. When good quality explanations must
be produced in as short amount of time as possible, our EP-Seeded GA is
far more efficient than any other methods and the accuracy of
explanations generated from oil refinery datasets are very encouraging.

Future research will involve exploring ways to improve the
accuracy of this algorithm through better handling of discretisation (such
as [10]) and parameterisation, and ways to extend this sort of algorithm
to more complex data such as those multivariate time series where
dependencies can change over time.

The authors would like to thank their sponsors: The Engineering and Physical
Science Research Council, UK; Honeywell Hi-Spec Solutions, UK and Honeywell
Technology Centre, USA. We would also like to thank BP Oil for supplying the dataset.

References

[1] T. Baeck, “Evolutionary Algorithms: Theory and Practice”, Oxford University
Press, 1996.

[2] R. R. Bouckaert, “Probabilistic Network Construction Using the Minimum
Description Length Principle”, Technical Report RUU-CS-94-27, Dept of
Computer Science, Utrecht University, July 1994.

[3] X. Boyen, D. Koller, “Tractable Inference for Complex Stochastic Processes”,
Proceedings of the 14th Annual Conference on Uncertainty in AI, pp. 33-42, 1998.

[4] W. Buntine, “Theory Refinement on Bayesian Networks”, Uncertainty in AI, pp.
52-60, 1991.

[5] G.F. Cooper, E. Herskovitz, “A Bayesian Method for the Induction of
Probabilistic Networks from Data”, Machine Learning, vol. 9, pp 309-347, 1992.

[6] P. Dagum, A.Galper, E. Horvitz, “Dynamic Network Models for Forecasting”,
Uncertainty in AI, pp 41-48, 1992.

[7] P. Dagum, A. Galper, E. Horvitz, A. Seiver, “Uncertain Reasoning and
Forecasting”, International Journal of Forecasting 11, pp 73-87, 1995.

[8] A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum-Likelihood from Incomplete
Data Via the EM Algorithm”, J. Royal Statist Soc Ser B 39, pp. 1-38, 1977.

[9] J. Forbes, “The BATMobile: Towards a Bayesian Automated Taxi”, Reasoning
Under Uncertainty, pp. 1878-1885, 1999.

[10] N. Friedman, M. Goldszmidt, “Discretizing Continuous Attributes while Learning
Bayesian Networks”, Proceedings of the 13th International Conference on
Machine Learning, pp 157-165, 1996.

 25

[11] N. Friedman, K. Murphy, S. Russell, “Learning the Structure of Dynamic
Probabilistic Networks”, Proceedings of the 14th Conference on Uncertainty in
AI, pp 139-147, 1998.

[12] N. Friedman, “The Bayesian Structural EM Algorithm”, 14th Annual Conference
on Uncertainty in AI, pp. 129-138, 1998.

[13] D. Geiger, “An Entropy Based Learning Algorithm of Bayesian Conditional
Trees”, Proceedings of the 8th Conference on Uncertainty in AI, pp 92-97, 1992.

[14] Z. Ghahramani, “Learning Dynamic Bayesian Networks, Adaptive Processing of
Sequences & Data Structures”, Lecture Notes in AI, Springer-Verlag, pp 168-197,
1998.

[15] D. Heckerman, “Bayesian Networks for Data Mining”, Data Mining and
Knowledge Discovery, Vol 1, pp 79-119, 1997.

[16] J.H. Holland, “Adaptation in Natural and Artificial Systems", The University of
Michigan Press, 1975.

[17] K. Kanazawa, D. Koller, S. Russell, “Stochastic simulation algorithms for
dynamic probabilistic networks”, Proceedings of the 11th Conference on
Uncertainty in AI, pp 346-351, 1995.

[18] D. Koller, “Approximate Probabilistic Inference in Dynamic Processes”, Working
Notes of the 1996 AAAI Spring Symposium on Learning Dynamic Systems,
1996.

[19] W. Lam, F. Bachus, “Learning Bayesian Networks. An approach based on the
MDL principal”, Computational Intelligence 10(3), pp 269-293, 1994.

[20] P. Larranaga, M. Poza, Y. Yurramendi, R. Murga, C. Kuijpers, “Structure
Learning of Bayesian Networks using GAs”, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol 18, no.9, pp 912-926, 1996.

[21] J. Pearl, “Probabilistic Reasoning in Intelligent Systems, Networks of Plausible
Inference”, Morgan Kaufmann, 1988.

[22] M. Ramoni, P. Sebastiani, “The Use of Exogenous Knowledge to Learn Bayesian
Networks from Incomplete Databases”, Proceedings of Intelligent Data Analysis
97, LNCS 1280, Springer-Verlag, pp. 537-548, 1997.

[23] M. Sahami, “Learning Limited Dependence Bayesian Classifiers”, Proceedings
of the Second International Conference on Knowledge Discovery and Data
Mining, pp 335-338, 1996.

[24] J. Suzuki, “A Construction of Bayesian Networks from Databases Based on the
MDL Principle”, Proceedings of the 9th Conference on Uncertainty in AI, pp. 266-
273, 1993.

[25] J. Suzuki, “On an Efficient MDL Learning Procedure Using Branch and Bound
Technique”, Technical Report COMP95-27, Institute of Electronics, Information
and Communication Engineers, 1995.

[26] S. Swift, A. Tucker and X. Liu, “Evolutionary Computation to Search for
Strongly Correlated Variables in High-Dimensional Time-Series”, Proceedings of
Intelligent Data Analysis 99, LNCS 1642, Springer-Verlag, pp 51-62, 1999.

[27] G. Syswerda, “Uniform Crossover in Genetic Algorithms”, Proceedings of the
Third International Conference on Genetic Algorithms", Morgan Kaufmann, pp.
10-19, 1989.

 26

[28] A. Tucker, X. Liu, “Extending Evolutionary Programming Methods to the
Learning of Dynamic Bayesian Networks”, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 99), pp 923-929, Orlando, 1999.

[29] M. Wong, W. Lam, S. Leung, “Using Evolutionary Programming and Minimum
Description Length Principle for Data Mining of Bayesian Networks”, IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 21, no.2, pp 174-178,
1999.

 27

	Evolutionary Learning of Dynamic Probabilistic Models with Large Time Lags
	Allan Tucker1, Xiaohui Liu1, Andrew Ogden-Swift2
	1Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex. UB8 3PH, UK. {Allan.Tucker, Xiaohui.Liu}@Brunel.ac.uk
	2Chilworth Research Centre, Honeywell Hi-Spec Sol

