
Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 1

A Comprehensive Investigation of the Role of
Imbalanced Learning for Software Defect

Prediction
Qinbao Song, Yuchen Guo and Martin Shepperd*

This article is dedicated to the memory of Prof. Qinbao Song (1966-2016)

Abstract—Context : Software defect prediction is an important challenge in the field of software engineering, hence much research
work has been conducted, most notably through the use of machine learning algorithms. However, class-imbalance typified by few
defective components and many non-defective ones is a common occurrence causing difficulties for standard methods. Imbalanced
learning aims to deal with this problem and has recently been deployed by some researchers, unfortunately with inconsistent results.
Objective: We conduct a comprehensive experiment to explore the performance of imbalanced learning and its complex interactions
with (i) data sets (ii) classifiers, (iii) different metrics and (iv) imbalanced learning methods.
Method : We systematically evaluate 27 data sets, 7 classifiers, 7 input metrics and 17 imbalanced learning methods (including doing
nothing); an experimental design that enables exploration of interactions between these factors and individual imbalanced learning
algorithms. This yields 27x7x7x17 = 22491 results. The Matthews correlation coefficient (MCC) is used as an unbiased performance
measure (unlike the more widely used F1 and AUC measures).
Results: a) Imbalance in software defect data clearly harms the performance of standard learning even if the imbalance ratio is not
severe. b) Imbalance learning methods are recommended when the imbalance ratio is greater than 4. c) The particular choice of
classifiers and imbalance learning methods is important. d) Though the improvement of imbalanced learning on different input metrics
are similar, the performance various a lot.
Conclusion: This paper shows that predicting software defects with imbalanced data can be very challenging. Fortunately the
appropriate combination of imbalanced learner and classifier can a good way to ameliorate this problem, but the indiscriminate
application of imbalanced learning can be problematic. Other actionable findings include using a wide spectrum of input metrics derived
from static code analysis, network analysis and from the development process.

Index Terms—Defect prediction, bug prediction, imbalanced learning, ensemble learning, imbalance ratio, effect size.

F

1 INTRODUCTION

TO help ensure software quality, much effort has been
invested on software module testing, yet with lim-

ited resources this is increasingly being challenged by the
growth in the number and size of software systems. Ef-
fective defect prediction could help test managers locate
bugs and allocate testing resources more efficiently thus
it has become an extremely popular research topic [1],
[2].

Obviously this is an attractive proposition, however
despite a significant amount of research, this is having
limited impact upon professional practice. One reason is
that researchers are presenting mixed signals due to the
inconsistency of results (something we will demonstrate
in our summary review of related defect prediction
experiments in Section 2.2). We aim to address this
through attention to the relationship between data set
and predictor, secondly by integrating all our analysis

• Q. Song and Y. Guo are with the Dept. of Computer Science & Technology,
Xi’an Jiaotong University, China. E-mail: wispcat@stu.xjtu.edu.cn

• M. Shepperd is with the Dept. of Computer Science, Brunel University
London, UK. E-mail: martin.shepperd@brunel.ac.uk

Manuscript received June 13, 2017; revised ??.

into a single consistent and comprehensive experimental
framework, and thirdly by avoiding biased measures
of prediction performance. So our goal is to generate
conclusions that are actionable by software engineers.

Machine learning is the dominant approach to soft-
ware defect prediction [3]. It is based on historical
software information, such as source code edit logs [4],
bug reports [5] and interactions between developers [6].
Such data are used to predict which modules are more
likely to be defect-prone in the future. We focus on
the classification based methods since these are most
commonly used. These methods first learn a classifier as
the predictor by applying a specific algorithm to training
data, then the predictor is evaluated on new unseen
software module as a way to estimate it’s performance
if it were to be used in the ‘wild’.

A problem that is frequently encountered is that real
world software defect data consists of only a few defec-
tive modules (usually referred to as positive cases) and a
large number of non-defective ones (negative cases) [7].
Consequently the distribution of software defect data is
highly skewed, known as imbalanced data in the field of
machine learning. When learning from imbalanced data,
standard machine learning algorithms struggle [8] and
consequently perform poorly in finding rare classes. The

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 2

underlying reasons are that most algorithms:

• suppose balanced class distributions or equal mis-
classification costs [9], thus fail to properly represent
the distributive characteristics of the imbalanced
data.

• are frequently designed, tested, and optimized ac-
cording to biased performance measures that work
against the minority class [10]. For example, in the
case of accuracy, a trivial classifier can predict all
instances as the majority class, yielding a very high
accuracy rate yet with no classification capacity.

• utilize a bias that encourages generalization and
simple models to avoid the possibility of over-fitting
the underlying data [11]. However, this bias does
not work well when generalizing small disjunctive
concepts for the minority class [12]. The learning
algorithms tend to be overwhelmed by the majority
class and ignore the minority class [13], a little like
finding proverbial needles in a haystack.

As a result, imbalanced learning has become an active
research topic [9], [8], [14] and a number of imbal-
anced learning methods have been proposed such as
bagging [15], boosting [16] and SMOTE [17]. Imbalanced
learning has also drawn the attention of researchers
in software defect prediction. Yet, although imbalanced
learning can improve prediction performance, overall
the results seem to be quite mixed and inconsistent.

We believe there are three main reasons for this un-
certainty concerning the use of imbalanced learning for
software defect prediction. First, performance measures
commonly used are biased. Second, the interaction be-
tween the choice of imbalanced learning methods and
choice of classifiers is not well understood. Likewise
with the choice of data set and input metric type (e.g.,
static code or process metrics, network metrics1). Third,
the relationship between the imbalance ratio and the
predictive performance is unexplored for software defect
data. Consequently, there is a need to systematically
explore the following questions regarding the use and
value of imbalanced learning algorithms.

1) How does standard learning perform under
imbalanced data?

2) How does imbalanced learning perform com-
pared with standard learning?

3) What is the effect of the following factors: (i)
data sets (including imbalance ratio and types
of input metric) (ii) type of classifier algorithm
(iii) imbalanced learning methods?

This paper makes the following contributions:

1) Given the complexity and contradictory results
emerging from other studies we exhaustively eval-
uate the impact of different classifiers, data sets
(imbalance ratio) and input metrics. This is the

1. Input metric types are limited which barely include popular
software metrics such as process metrics and network metrics for the
research of imbalanced learning on software defect prediction

largest single experimental investigation of imbal-
anced learning for software defect prediction as
we evaluate the performance of 16 imbalanced
methods plus a benchmark of a null imbalanced
method making a total of 17 approaches which
are combined with 7 examples of the main types
of classifiers and 7 classes of input metric, yields
27x7x7x17 = 22491 results.

2) Our experiment is conducted using 27 data sets all
in the public domain. This enables us to thoroughly
explore impact of imbalance ratio of defect data
upon prediction capability and how it can be re-
mediated.

3) We generate a number of practical or actionable
findings. These include that we show that im-
balanced data is a challenge for software defect
prediction. Our findings suggest that imbalanced
learners should be deployed if the imbalance ratio
exceeds four. We show that the blind application of
imbalanced learners may not be successful but that
particular combinations of imbalance learner and
classifier can yield very practical improvements in
prediction.

4) Finally, we demonstrate that typical classification
performance measures (e.g., F-measure and AUC)
are unsound and demonstrate a practical alterna-
tive in the form of the Matthews correlation coef-
ficient (MCC). We also focus on effect size namely
dominance rather than p-values.

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to imbalanced
learning methods and summarizes how these ideas have
been applied in software defect prediction research. It
then shows that many results are inconsistent. Section
3 sets out the details of our experimental design and
the data used. Next, Section 4 presents and discusses
our experimental results. Section 5 considers potential
threats to validity and our mitigating actions; Section 6
draws our study conclusions.

2 RELATED WORK

2.1 Imbalanced Learning

A good deal of work have been carried out by the ma-
chine learning community—although less so in empirical
software engineering—to solve the problem of learning
from imbalanced data. Imbalanced learning algorithms
can be grouped into four categories:
• Sub-Sampling
• Cost-Sensitive Learning
• Ensemble Learning
• Imbalanced Ensemble Learning

We briefly review these. For more detailed accounts
see [9], [18].

Sub-sampling is a data-level strategy in which the
data distribution is re-balanced prior to the model con-
struction so that the built classifiers can perform in a

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 3

similar way to standard classification [19], [17]. Within
sub-sampling there are four main approaches. 1) Under-
sampling extracts a subset of the original data by the
random elimination of majority class instances, but the
major drawback is that it can discard potentially useful
data. 2) Over-sampling creates a superset of the original
data through the random replication of some minority
class instances, however, this may increase the likelihood
of overfitting [18]. 3) SMOTE [17] is a special over-
sampling method that seeks to avoid overfitting by
synthetically creating new minority class instances via
interpolation between near neighbours . 4) Hybrid meth-
ods combine more than one sub-sampling technique [20].

Cost-sensitive learning can be naturally applied to
address imbalanced learning problems [21]. In the con-
text of defect prediction, false negatives are likely to be
considerably more costly than false positives. Instead of
balancing data distributions through sub-sampling, cost-
sensitive learning optimizes training data with a cost
matrix that defines the different misclassification costs
for each class. A number of cost-sensitive learning meth-
ods have been developed by using cost matrices, such
as cost-sensitive K-nearest neighbors [22], cost-sensitive
decision trees [23], cost-sensitive neural networks [24],
and cost-sensitive support vector machines [25]. Unfor-
tunately misclassification costs are seldom available2.

Ensemble learning is the basis of generalizability
enhancement; each classifier is known to make errors,
but different classifiers have been trained on different
data, so the corresponding misclassified instances are not
necessarily the same [27]. The most widely used methods
are Bagging [15] and Boosting [16] whose applications
in several classification problems have led to significant
improvements [28]. Bagging consists of building differ-
ent classifiers with bootstrapped replicas of the original
training data. Boosting serially trains each classifier with
the data obtained by weighted sampling original data,
which focus on difficult instances. AdaBoost [16] is the
most commonly used boosting method, and was identi-
fied as one of the top ten most influential data mining
algorithms [29].

Imbalanced ensemble learning combined ensemble
learning with the aforementioned sub-sampling tech-
niques to address the problems of imbalanced data
classification. Here the idea is straightforward: embed a
data preprocessing technique into an ensemble learning
method to create an imbalanced ensemble learner. For
instance, if under-sampling, over-sampling, underover-
sampling, and SMOTE rather than the standard random
sampling that used by Bagging were carried out before
training each classifier this leads to UnderBagging [13],
OverBagging [30], UnderOverBagging [13], and SMOTE-
Bagging [13]. In the same way, by integrating under-
sampling and SMOTE with Boosting we obtain RUS-

2. Misclassification costs could be given by domain experts, or can
be learned via other approaches [26], but do not naturally exist.
Typically, the cost of misclassifying minority instances is higher than
the opposite, which biases classifiers toward the minority class.

Boost [31] and SMOTEBoost [32]. In instead of sampling,
EM1v1 [33] handles the imbalanced data by splitting and
coding techniques.

2.2 Software Defect Prediction

As discussed, researchers are actively seeking means of
predicting the defect-prone components within a soft-
ware system. The majority of approaches use historical
data to induce prediction systems, typically dichotomous
classifiers where the classes are defect or not defect-
prone. Unfortunately software defect data are highly
prone to the class-imbalance problem [35], yet “many
studies [still] seem to lack awareness of the need to
account for data imbalance” [1]. Fortunately there have
been a number of recent experiments that explicitly
address this problem for software defect prediction.

Table 1 summarizes this existing research. Defect pre-
diction methods can be viewed as a combination of clas-
sification algorithm, imbalanced learning method and
class of input metric. We highlight seven different classi-
fier types (C4.5, ..., NB) in conjunction with 16 different
imbalanced learners (Bag, ..., SBst) together with the
option of no imbalanced learning yielding 17 possibil-
ities. Method labels are constructed as <classifier> +
<imbalanced learner> for instance NB+SMOTE denotes
Naı̈ve Bayes coupled with SMOTE. Next there are four3

classes of metric (code, ... code+network+process) yield-
ing 7×17×4 = 476 combinations displayed and a further
357 implicit combinations.

Each cell in Table 1 denotes published experiments
that have explored a particular interaction. Note that
the matrix is relatively sparse with only 54 cells covered
(54/833 ≈ 6%) indicating most combinations have yet
to be explored. This is important because it is quite
possible that there are interactions between the imbal-
anced learner, classifier and input metrics such that it
may be unwise to claim that a particular imbalanced
learner has superior performance, when it has only been
evaluated on a few classifiers. Indeed some types of
input metric e.g., code + network metrics have yet to be
explored in terms of unbalanced learning. By contrast,
five independent studies have explored the classifier
C4.5 with under-sampling.

In addition, some of these experiments report con-
flicting results. The underlying reasons include differing
data sets, experimental design and performance mea-
sures along with differing parameterization approaches
for the classifiers [10]. This makes it very hard to
determine what to conclude and what advice to give
practitioners seeking to predict defect-prone software
components. We give three examples of conflicting re-
sults.

3. Strictly speaking there are seven combinations of metric class
however, Network, Process and Network+Process are all empty i.e.,
thus far unexplored, so for reasons of space they are excluded from
Table 1.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 4

Metrics Metrics Metrics

Method Code
Code

+Network
Code

+Process

Code
+Network
+Process

Method Code
Code

+Network
Code

+Process

Code
+Network
+Process

Method Code
Code

+Network
Code

+Process

Code
+Network
+Process

C4.5 [34][33][35][36][37][38][39] [4][40][39] SVM+Bst IBk+OBag
RF [33][7][37] SVM+US [37] IBk+UOBag
SVM [37] SVM+OS [37] IBk+SBag
Ripper [33][37] SVM+UOS IBk+UBst
Ibk [37] SVM+SMOTE [37] IBk+OBst
LR [41][37] [4] SVM+COS IBk+UOBst
NB [33][7][36][37][39] [4][39] SVM+EM1v1 IBk+SBst
C4.5+Bag [33] SVM+UBag LR+Bag
C4.5+Bst [7][34][33] [40] SVM+OBag LR+Bst
C4.5+US [34][33][7][36][37] SVM+UOBag LR+US [41][37]
C4.5+OS [34][33][36][37] SVM+SBag LR+OS [41][37]
C4.5+UOS SVM+UBst LR+UOS
C4.5+SMOTE [33][37][38] SVM+OBst LR+SMOTE [41][37]
C4.5+COS [33][7] [4][40] SVM+UOBst LR+COS
C4.5+EM1v1 [33] SVM+SBst LR+EM1v1
C4.5+UBag [39] [39] Ripper+Bag [33] LR+UBag
C4.5+OBag Ripper+Bst [33] LR+OBag
C4.5+UOBag Ripper+US [33][37] LR+UOBag
C4.5+SBag Ripper+OS [33][37] LR+SBag
C4.5+UBst Ripper+UOS LR+UBst
C4.5+OBst Ripper+SMOTE [33][37] LR+OBst
C4.5+UOBst Ripper+COS [33] LR+UOBst
C4.5+SBst [7] Ripper+EM1v1 [33] LR+SBst
RF+Bag [33] Ripper+UBag NB+Bag [33]
RF+Bst [33] Ripper+OBag NB+Bst [33]
RF+US [33][37] Ripper+UOBag NB+US [33][36][37]
RF+OS [33][37] Ripper+SBag NB+OS [33][36][37]
RF+UOS Ripper+UBst NB+UOS
RF+SMOTE [33][37] Ripper+OBst NB+SMOTE [33][37]
RF+COS [33] Ripper+UOBst NB+COS [33]
RF+EM1v1 [33] Ripper+SBst NB+EM1v1 [33]
RF+UBag IBk+Bag NB+UBag [39] [39]
RF+OBag IBk+Bst NB+OBag
RF+UOBag IBk+US [37] NB+UOBag
RF+SBag IBk+OS [37] NB+SBag
RF+UBst IBk+UOS NB+UBst
RF+OBst IBk+SMOTE [37] NB+OBst
RF+UOBst IBk+COS NB+UOBst
RF+SBst IBk+EM1v1 NB+SBst
SVM+Bag IBk+UBag -

Note: Please see Section 4.2 for the interpretation of abbreviations for the defect prediction methods.

TABLE 1: Summary of Previous Experiments on Imbalanced Learners, Classification Methods and Input Metrics
for Software Defect Prediction

First, Menzies et al. [36] conducted an experiment
based on twelve PROMISE data sets. Their results
showed that sub-sampling offers no improvement over
unsampled Naı̈ve Bayes which does outperform sub-
sampling C4.5. This is confirmed by Sun et al. [33].
However, Menzies et al. also found that under-sampling
beat over-sampling for both Naı̈ve Bayes and C4.5, but
Sun et al.’s work indicates this is only true for C4.5.

Second, Seiffert et al. [37] conducted a further study on
class imbalance coupled with noise for different classi-
fiers and data sub-sampling techniques. They found that
only some classifiers benefitted from the application of
sub-sampling techniques in line with Menzies et al. [36]
and Sun et al. [33]. However, they also reported conflicts
in terms of the performance of random over-sampling
methods outperform other sub-sampling methods at
different levels of noise and imbalance.

A third example, again from Seiffert et al. [34] is where
they compared sub-sampling methods with Boosting for
improving the performance of decision tree model built
for identifying the defective modules. Their results show

that Boosting outperform even the best sub-sampling
methods. In contrast, Khoshgoftaar et al. [40] built
software quality models by using Boosting and cost-
sensitive Boosting where C4.5 and decision stumps were
used as the base classifiers, respectively. They found that
Boosting and cost-sensitive Boosting do not enhance the
performance of individual pruned C4.5 decision tree.

Therefore, our study focuses on an exhaustive com-
parison of 16 ∗ 7 = 112 different popular imbalanced
learning methods with seven representative and widely
used standard machine learning methods on static code,
process, and network metrics in terms of five perfor-
mance measures in the same experimental context for
the purpose of software defect prediction.
3 METHOD

Our goal is to conduct a large scale comprehensive ex-
periment to study the effect of imbalanced learning and
its complex interactions between the type of classifier,
data set characteristics and input metrics in order to im-
prove the practice of software defect prediction. We first
discuss our choice of MCC as the performance measure

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 5

and then describe the experimental design including
algorithm evaluation, statistical methods and defect data
sets.

3.1 Classification Performance Measures
Since predictive performance is the response variable
for our experiments, the choice is important. Although
the F-measure and AUC are widely used, we see them
as problematic due to bias particularly in the presence
of unbiased data sets which is of course precisely the
scenario we are interested in studying. Consequently, we
use the Matthews correlation coefficient MCC [42] as our
measure of predictive performance.

The starting point for most classification measures is
the confusion matrix. This represents the four possible
outcomes when using a dichotomous classifier to make
a prediction (see Table 2)4.

Actually +ve Actually -ve
Predict Positive TP FP

Predict Negative FN TN

TABLE 2: Confusion Matrix

F1 is the most commonly used derivative of the F-measure
family and is defined by Eqn. 1.

F1 =
2 · TP

2 · TP + FP + FN
. (1)

However, it excludes True Negatives (TN) in its calcu-
lation which is potentially problematic. The reason is
that it originated from the information retrieval domain
where typically the number of true negatives, e.g., irrele-
vant web pages that are correctly not returned is neither
knowable nor interesting. However unlike recommend-
ing task5, this is not so for defect prediction because test
managers would be happy to know if components are
truly non-defective.

Let us compare F1 with the Matthews correlation
coefficient (MCC, also known as φ - see [45]). MCC is
the geometric mean of the regression coefficients of the
problem and its dual [46] and is defined as:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

As a correlation coefficient it measures the relationship
between the predicted class and actual class, MCC is on
a scale [-1,1] where 1 is a perfect positive correlation
(also perfect prediction), zero no association and -1 a
perfect negative correlation. In contrast, we illustrate the
problematic nature of F1 with a simple example and
compare it with MCC.

Suppose our defect classifier predicts as following:

4. Note that, in the context of software defect prediction, the positive
class and negative class denote defective and non-defective respec-
tively.

5. Recommending is in the information retrieval domain, such as
bug triage [43] or recommending code snippets [44].

Actually +ve Actually -ve
Predict Positive 5 45

Predict Negative 5 45

We can see the proportion of cases correctly classified is
0.5 i.e., TP+TN/n = 5+45/100. This yields an F1 of 0.17
on a scale [0,1] which is somewhat difficult to interpret.
Let us compare F1 with MCC. In this case, MCC=0 which
is intuitively reasonable since there is no association
between predicted and actual.

Actually +ve Actually -ve
Predict Positive 5 45

Predict Negative 5 0

Now suppose the True Negatives are removed so
n=55. F1 remains unchanged at 0.17 whilst MCC=-
0.67 signifying substantially worse than random per-
formance. The proportion of correctly classified cases
is now 5/55 = 0.09, clearly a great deal worse than
guessing and so we have a perverse classifier. However,
F1 cannot differentiate between the two situations. This
means experimental analysis based upon F1 would be
indifferent to the two outcomes.

This example illustrates not only the drawback of F1,
but also the weakness of all derivative measures from
Recall and Precision as they ignore TNs. Measures such
as Accuracy and the F-measure are also known to be
biased as they are sensitive to data distributions and the
prevalence of the positive class [47]. Thus, we seek a
measure that satisfies the following requirements:

1) A single metric to cover the whole confusion ma-
trix because one can always be optimized at the
expense of the other we seek a single metric to
compare classifiers;

2) Easy to interpret so in our case aligned from plus
unity for a perfect classifier, through zero for no as-
sociation, i.e., random performance to minus unity
for a perfectly perverse classifier;

3) Properly takes into account the underlying fre-
quencies of true and negative cases;

4) Evaluates a specific classifier, as opposed to a fam-
ily of classifiers such as is the case for the Area
Under the Curve (AUC) measure [48]

The fourth requirement needs further discussion in
that AUC—another commonly used measure for eval-
uating classifiers—is also problematic. AUC calculates
the area under an ROC curve which depicts relative
trade-offs between TPR (true positive rate which is
TP/(TP+FN)) and FPR (false positive rate which is
FP(FP+TN)) of classification for every possible threshold.
One classifier can only be preferred to another if it
strictly dominates i.e., every point on the ROC curve of
this classifier is above the other curve. Otherwise, we
cannot definitively determine which classifier is to be
preferred since it will depend upon the relative costs of
FPs and FNs.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 6

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

Fig. 1: ROC curves of Classifier
A (the solid curve) and Classifier
B (the dotdash curve)

FPR TPR(A) TPR(B)
0.05 0.1 0.15
0.1 0.22 0.35
0.2 0.41 0.58
0.3 0.58 0.66
0.4 0.72 0.72
0.5 0.89 0.76
0.6 0.97 0.8
0.8 0.99 0.89

AUC A B
0.725 0.704

TABLE 3: Points on the A and
B ROC curves

Consider the example in Fig. 1 that shows ROC curves
for two classifiers (Classifier Family A and Classifier
Family B) derived from the values of some points on
these curves (Table 3). We can observe that B is better
than A when FPR is less than 0.4, but this reverses
when FPR is greater than 0.4. Without knowing the
relative costs of FP and FN we cannot determine which
classifier is to be preferred. As a compromise, the area
under the curve can be calculated to quantify the overall
performance of classifier families, i.e. the AUC of A is
0.725 which is greater than the AUC of B (0.704). The
AUC values indicate A is better than B, but this still
doesn’t help us determine which specific classifier we
should actually choose.

Moreover, AUC is incoherent in that it is calculated on
different misclassification cost distributions for different
classifiers [49], since various thresholds relate to varying
misclassification costs. Hence we conclude AUC is un-
suitable for our purposes. Consequently, we select MCC
as our performance measure.

3.2 Algorithm Evaluation
In order to be as comprehensive as possible, we apply
a total of 17 different imbalanced learning methods (16
plus a null method - see Table 4) to seven standard
classifiers chosen to be representative of commonly used
approaches [1] (see Table 5). We then use seven classes
of input metric (see Table 6). Since the design is factorial
this yields 833 combinations which are evaluated across
27 different data sets as a repeated measure design as this
enables us to compare performance between approaches
for a given data set.

Then for each combination we use M×N-way cross-
validation to estimate the performance of each classifier,
that is, each data set is first divided into N bins, and
after that a predictor is learned on (N-1) bins, and then
tested on the remaining bin. This is repeated for the N
folds so that each bin is used for training and testing
while minimizing the sampling bias. Moreover, each
holdout experiment is also repeated M times and in

Method Type Abbr Method Name Ref
US Under-Sampling [17]

Sub-sampling OS Over-Sampling [17]
methods UOS Underover-Sampling [17]

SMOTE SMOTE [17]
Cost-sensitive COS Cost-sensitive

methods learning [50]
Ensemble Bag Bagging [15]
methods Bst Boosting [16]

EM1v1 EM1v1 [33]
UBag UnderBagging [13]
OBag OverBagging [30]

Imbalanced UOBag UnderoverBagging [13]
ensemble SBag SMOTEBagging [13]
methods UBst UnderBoosting [31]

OBst OverBoosting
UOBst UnderoverBoosting

SBst SMOTEBoosting [32]

TABLE 4: Summary of imbalanced learning methods

Abbr Classification Algorithm Ref
LR Logistic Regression [6], [51]
NB Naı̈ve Bayes [52]

C4.5 Decision tree [4]
IBk Instance based kNN [53]

Ripper Rule based Ripper [54]
SVM Support vector machine (SMO) [55]
RF Random Forest [7]

TABLE 5: Summary of classifiers

each repetition the data sets are randomized. In our case
M = 10 and N = 10 so overall, 100 models are built and
100 results obtained for each data set.

To summarize, the experimental process is shown
by the following pseudo-code. Notice that attribute
selection is applied to the training data of each base
learner, see Lines 14 and 22.

3.3 Statistical Methods
Given the performance estimates of each classifier on
every dataset, how to determinate which classifier is

Input Metrics Metrics Type Ref
CK Source Code metrics [56]

NET Network metrics [57]
PROC Process metrics [4]

CK+NET Combined metrics -
CK+PROC Combined metrics -

NET+PROC Combined metrics -
CK+NET+PROC Combined metrics -

TABLE 6: Input metric classes used in our experiment

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 7

Procedure Experimental Process
1 M ← 10; /*the number of repetitions*/
2 N ← 10; /*the number of folds*/
3 DATA ← {D1, D2, ..., Dn}; /*software data sets*/
4 Learners ← {C4.5, RF, SVM, Ripper, IBk, LR, NB};
5 ImbalancedMethods ← {Bag, Bst, US, OS, UOS, SMOTE, COS, EM1v1,

UBag, UOBag, OBag, SBag, UBst, OBst, UOBst, SBst};
6 for each data ∈ DATA do
7 for each times ∈ [1, M] do /*M times N-fold

cross-validation*/
8 data′ ← randomize instance-order for data;
9 binData ← generate N bins from data′;

10 for each fold ∈ [1, N] do
11 testData ← binData[fold];
12 trainingData ← data′ - testData;
13 for each learner ∈ Learners do

/*evaluate standard learning */
14 trainingData’ ← attributeSelect(trainingData);
15 classifier ← learner(trainingData’);
16 learnerPerformance ← evaluate classifier on testData;

17 for each imbMethod ∈ ImbalancedMethods do
18 T ← iteration number of imbMethod;

/*build classifiers from each standard
learner */

19 for each learner ∈ Learners do
20 for each t ∈ [1, T] do
21 Dt ← generateData(t, trainingData,

imbMethod);
22 D′

t ← attributeSelect(Dt);
23 Ct ← learner(D′

t);

24 imbClassifier ← ensembleClassifier({Ct,
t = 1..T}, imbMethod);
/*evaluate imbalanced learning */

25 imbPerformance ← evaluate imbClassifier on
testData;

better?
First we need to examine whether or not the per-

formance difference between two predictors could be
caused by chance. We use a Wilcoxon signed-rank test
(a non-parametric statistical hypothesis test used when
comparing paired data) to compare pairs of classifiers.
Like the sign test, it is based on difference scores, but
in addition to analyzing the signs of the differences, it
also takes into account the magnitude of the observed
differences. The procedure is non-parametric so no as-
sumptions are made about the probability distributions,
which is important since a normal distribution is not
always guaranteed. We correct for multiple tests by us-
ing the Benjamini-Yekutieli step-up procedure to control
the false discovery rate [58]. Then the Win/Draw/Loss
record is used to summarise each comparison by pre-
senting three values, i.e., the numbers of data sets for
which Classifier Cd1 obtains better, equal, and worse
performance than Classifier Cd2.

Next, effect size is computed since it emphasises the
size of the difference rather than confounding this with
sample size [59]. The effect statistics of difference (av-
erage improvement) and dominance (Cliff’s δ) are both
reported. Cliff’s δ is a non-parametric robust indicator
which measure the magnitude of dominance as the
difference between two groups [60]. It estimates the
likelihood of how often Predictor Cd1 is better than
Predictor Cd2. We use the paired version since our data
are correlated [61], [62]. By convention, the magnitude

of the difference is considered trivial (|δ| < 0.147), small
(0.147 <= |δ| < 0.33), moderate (0.33 <= |δ| < 0.474), or
large (|δ| >= 0.474) as suggested by Romano et al. [63].

3.4 Software Metrics
As indicated, we are interested in three classes of metric
based upon static code analysis, network analysis and
process. These choices are made because static code
metrics are most frequently used in software defect
prediction [64], network metrics may have a stronger
association with defects [57] and process metrics reflect
the changes to software systems over time. We also
consider combinations of these metrics yielding a total
of seven possibilities (Table 6). The details are as follows:

(1) Source code metrics measure the ‘complexity’ of
source code and assume that the more complex the
source code is, the more likely defects are to appear.
The most popular source code metrics suite is the
Chidamber-Kemerer (CK) metrics [56] which are de-
tailed in Appendix A.1. All six CK metrics and LOC
(lines of code) were chosen as code metrics in this paper
and marked as CK.

(2) Network metrics are actually social network analy-
sis (SNA) metrics calculated on the dependency graph of
a software system. These metrics quantify the topological
structure of each node of the dependency graph in a
certain sense, and have been found as effective indicators
for software defect prediction [57]. In this study, the
networks are call graphs of software systems, where the
nodes are the components of a software and the edges
are the call dependencies among these components. The
DependencyFinder6 tool was used to extract the call
relations. Once networks are built, the UCINET7 tool was
employed to calculate three kinds of network (NET) met-
rics of dependency networks, i.e., Ego network metrics,
structural metrics and centrality metrics. The details of
25 types of SNA metrics are given in the Appendix A.2.

(3) Process metrics represent development changes
on software projects. We extracted 11 process (PROC)
metrics, which were proposed by Moser et al. [4] from
the CVS/SVN repository of each specific open source
project (see Appendix A.3).

3.5 Data Sets
The PROMISE repository [65] includes many software
defect prediction data sets that are publicly available
and widely used by many researchers from which we
selected 22 data sets. To this we added a further 5 from
D’Ambros et al.’s defect prediction benchmark data sets
[66]. Thus we use a total of 27 data sets derived from
13 distinct software projects, since there are multiple
releases for many of these projects (e.g., ant has releases
1.3 to 1.6 see Table 7). From these data sets we extract the
necessary metrics and also calculate the imbalance ratio

6. http://depfind.sourceforge.net/
7. http://www.analytictech.com/ucinet/

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 8

(IR8). These show considerable diversity ranging from
1.51 to 43.73.

Note that although the NASA MDP data sets have
been widely used in developing defect prediction mod-
els we do not use them because “although the repository
holds many metrics and is publicly available, it does
have limitations. It is not possible to explore the source
code and the contextual data are not comprehensive
(e.g., no data on maturity are available). It is also not
always possible to identify if any changes have been
made to the extraction and computation mechanisms
over time. In addition, the data may suffer from impor-
tant anomalies.” [1].

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first look at the basic characteristics
of imbalanced learning problem on software defect pre-
diction by investigating:

RQ1) How does the level of predictive performance
vary?

RQ2) How does the standard learning perform under
imbalance?

RQ3) How does the imbalanced learning perform com-
pare with standard learning?

RQ4) What is the relationship between the imbalance
ratio (IR) and the effect of imbalanced learning?

Then we explore the effect of imbalanced learning and its
complex interactions with our three experimental factors
by answering the following questions:

RQ5) How do classifiers matter?
RQ6) How do input metrics matter?
RQ7) How do imbalanced learning methods matter?

4.1 Variation in predictive performance

As we discussed in Section 3.1 our choice of a measure
of predictive performance (i.e., our response variable)
is MCC. It is unbiased and is easy to interpret as a
correlation coefficient (+1 denotes perfect classification,
0 no association between predicted and actual and -1 a
perfectly perverse classification).

Table 8 provides some basic summary statistics for our
response variable. First, we observe considerable spread
from a maximum of 0.679 to a disappointing -0.112. Note
that negative values indicate perverse performance and
an immediate improvement could be achieved by doing
the opposite of what the classifier predicts! Next it can
be seen that there is negative skewness and the median
exceeds the mean. The kurtosis is 2.67 which suggests
rather fat tails, again confirmed by visual inspection of
the histogram and also of the qqplot in Fig. 2 where
we see the tails deviating from the expected normal
distribution shown as a red line. This suggests the need
for non-parametric and robust statistical techniques [79]

8. IR is defined as the ratio of the number of the majority class
instances to the number of the minority class instances [67]

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

Normal Q−Q Plot

norm quantiles

M
C

C

Fig. 2: QQplot of predictive performance (MCC)

0 10 20 30 40

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Imbalance Ratio

M
C

C

Fig. 3: Performance of predictive performance (MCC)
without imbalanced learning

So the answer for RQ1 is that the distribution of
predictive performance (MCC) departs from normality
at a level that cannot be ignored. This would indicate
that parametric techniques should be used with caution
and robust statistics are to be preferred.

4.2 Performance of Standard Learning

To understand what happens if we only employ stan-
dard learning, we show the relationship between the
imbalance ratio and the predictive performance (MCC)
without imbalanced learning (see Fig. 3). The red line is
drawn by a non-parameter smoother (loess smoothing)
and the dotted lines indicate ± one standard deviation.

From this enhanced scatter plot we observe that im-
balance ratio has a negative impact upon classification
performance; broadly speaking the more imbalanced the
data set the worse the prediction. Although most obser-
vations are located in the range [1,10] of IR (excepting
the observations from two extremely imbalanced data
sets), the smoothed line reduces rapidly. It can be seen
that even a small increase in the imbalance ratio can
potentially cause a substantial reduction in predictive
performance even the imbalance ratio is not high.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 9

Data Modules
Defective
Modules

IR References Data Modules
Defective
Modules

IR References

ant-1.3 125 20 5.25 [68], [69] log4j-1.0 135 34 2.97 [70], [71]
ant-1.4 178 40 3.45 [68], [69] poi-2.0 314 37 7.49 [68], [69]
ant-1.5 293 32 8.16 [68], [69] synapse-1.0 157 16 8.81 [68], [69]
ant-1.6 351 92 2.82 [68], [69] synapse-1.1 222 60 2.7 [68], [69]
camel-1.0 339 13 25.08 [68], [69] synapse-1.2 256 86 1.98 [68], [72], [69]
camel-1.2 608 216 1.81 [68], [69] velocity-1.6 229 78 1.94 [68], [72], [69]
camel-1.4 872 145 5.01 [68], [73], [69] xerces-1.2 440 71 5.20 [68], [69], [74]

camel-1.6 965 188 4.13
[68], [73], [69]
[70], [71]

xerces-1.3 453 69 5.57
[68], [69], [74]
[70], [71]

ivy-2.0 352 40 7.8 [68], [72], [69]
Eclipse
JDT Core-3.4

997 206 3.84 [66], [75], [74]

jedit-3.2 272 90 2.02
[68], [69], [76]
[77]

Eclipse
PDE UI-3.4.1

1497 209 6.16 [66], [75],[71]

jedit-4.0 306 75 3.08
[78], [68], [69]
[76], [77], [70]

Equinox
framework-3.4

324 129 1.51 [66], [75],[71]

jedit-4.1 312 79 2.95 [78], [76], [77] Lucene-2.4.0 691 64 9.80
[66], [68], [75]
[73], [69], [72]
[74], [70],[71]

jedit-4.2 367 48 6.65 [78], [76], [77] Mylyn-3.1 1862 245 6.6 [66],[71]

jedit-4.3 492 11 43.73
[78], [72], [76]
[77]

Mean 496.63 88.63 6.91

TABLE 7: Description of the 27 Data Sets

Statistic Value Statistic Value
Min -0.112 Max 0.679

Mean 0.319 Median 0.335
sd 0.137 Trimmed (0.2) sd 0.140

Skewness -0.271 Kurtosis 2.672

TABLE 8: Summary statistics for predictive performance
(MCC)

The robust percentage bend correlation coefficient [79]
is -0.524 with p < 0.0001. This indicates a moderate
negative correlation between the performance and IR
which confirms the smoothing line. Therefore, the an-
swer to RQ2 is that the performance of standard learning
is highly threatened by the imbalance of defect data. It is
clear that any means of addressing imbalance in the data
is potentially important for software defect prediction.

4.3 Does imbalanced learning help defect predic-
tion?
Our next research question explores whether there is
an effect on defect prediction through applying imbal-
anced learning algorithms. An effect means a non-zero
difference between imbalanced learning and standard
learning and of course we are most interested in positive
effects, i.e., a greater correlation. The data are correlated
or paired as a result of the repeated measure design
of the experiment thus we can compute the difference
between predicting defects with and without an imbal-
anced learner for each data set.

Fig. 4 shows the distribution of the effect (difference)
as a histogram. The shaded bars in the histogram indi-

Histogram of Difference

Difference on MCC

F
re

q
u
e
n
c
y

−0.2 0.0 0.2 0.4

0
5
0
0

1
5
0
0

2
5
0
0

Fig. 4: Histogram of differences in predictive perfor-
mance (MCC) with and without imbalanced learning

Statistic Value Statistic Value
Min -0.258 Max 0.504

Mean 0.050 Trimmed mean 0.033
sd 0.092 Trimmed (0.2) sd 0.069

Skewness 1.246 Kurtosis 5.041

TABLE 9: Summary statistics for differences in perfor-
mance (MCC) with and without imbalanced learning

cate negative effects, i.e., the imbalanced learning makes
the predictive performance worse. Overall, this happens
in about 29% of the cases. Careful examination of these
negative cases suggests that imbalanced learning can be
counter-productive due to the lack of structure to learn
from for challenging datasets.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 10

−0.25

0.00

0.25

0.50

1~2 2~4 4~8 8~16 16~64

Imbalance Ratio

D
if
fe

re
n
c
 o

n
 M

C
C

Fig. 5: Boxplot for differences in performance with and
without imbalanced learning on 5 imbalance levels

Table 9 provides summary statistics of the differences.
We see that the standard deviation (sd) and trimmed sd
are both larger than mean or median. This indicates that
there is a good deal of variability in impact and that the
possibility of negative effects from imbalanced learning
cannot be ignored. The kurtosis is considerably greater
than 3 which implies a very heavy tailed distribution.
This all indicates that our analysis needs robust statistics.
Therefore using the percentile bootstrap method [79]
we can estimate the 95% confidence limits around the
trimmed mean 0.033 as being (0.032, 0.034). We can
be confident the average difference between using an
imbalanced learner and not is a small positive effect
on the ability to predict defect prone software. So the
answer for RQ3 is that overall the effect is small but
positive, however, there is a great deal of variance must
not be ignored.

Interestingly these results are not limited to software
defects. Lopez et al. [67] identify a number of intrinsic
data set characteristics that have a strong influence on
imbalanced classification, namely, small disjuncts, lack
of density, lack of class separability, noisy data and
dataset shift. They also pointed out that a reduction of
performance could happen across the range of imbalance
ratios. This means imbalanced learning is not a simple
panacea for all situations. It must be carefully chosen and
applied on software defect prediction. In the following
sections we report Cliff’s δ and drill deeper to better
understand factors that are conducive to successful use
of imbalanced learning.

4.4 Effect of the Imbalance Ratio

Next, we present in Fig. 5 the distributions of effect (dif-
ference) as boxplots grouped into five bins ranging from
extremely imbalanced to almost balanced (the rationale
for the bins is given in Fig. 6). The notches show the
95% confidence intervals around the median (shown as
a thick bar).

0

10

20

30

40

1~2 2~4 4~8 8~16 16~64

Imbalance Levels

IR

Fig. 6: Data sets’ IR in 5 imbalance levels

We observe IR impacts the predictive difference of
performance such that the benefits of using an imbal-
anced learner are greatest when the Imbalance Ratio is
most extreme. This is to be expected since the standard
learning is predicated on learning from an imbalanced
distribution. For each bin, Table 11 presents the effect
size as both average improvement (difference in MCC)
and dominance statistics which show the stochastic like-
lihood that imbalanced learning is better than nothing.
As shown in the table the higher IR is, the greater
improvement the imbalanced learning can gain, which
confirms Fig. 5. Also we are confident that the im-
provement is larger than 0.046 when IR>4 with a non-
small Cliff’s δ that could interpret a good change to
get improved by imbalanced learning, which is the case
imbalanced learning should be considered.

IR Average Improvement Cliff’s δ

1∼2 0.013 (0.011, 0.014) +S (+S +S)
2∼4 0.022 (0.020, 0.023) +M (+S +M)
4∼8 0.048 (0.046, 0.050) +L (+L +L)

8∼16 0.053 (0.048, 0.058) +M (+M +M)
16∼64 0.076 (0.070, 0.082) +L (+M +L)

TABLE 10: Effect size (and confidence interval) by imbal-
ance ratio bin. Direction is denoted by + or -. For Cliff’s
δ, size is denoted as follows: N=negligible, S=small,
M=medium, L=large

The overall, robust correlation coefficient9 is
(0.216, p < 0.0001) which indicates non-zero but
weak association between IR and improvement as the
answer for RQ4.

4.5 Effect of Classifier Type
In our experiment we investigate seven different types of
classifier (listed in Table 5). Fig. 7 shows the difference
i.e., the effect achieved by introducing an imbalanced
learning algorithm as boxplots organised by classifier
type. Support vector machines (SVM) consistently ben-
efit from imbalanced learning. This is in line with

9. We use the percentage bend correlation coefficient from pbcor in
the WRS2 R package.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 11

−0.25

0.00

0.25

0.50

C4.5 IBk LR NB RF Ripper SVM

Classifier Type

D
if
fe

re
n
c
 o

n
 M

C
C

Fig. 7: Boxplot of differences in performance (MCC) with
and without imbalanced learning by classifiers

Batuwita and Palade [80] who report that “The sepa-
rating hyperplane of an SVM model developed with an
imbalanced dataset can be skewed towards the minority
class, and this skewness can degrade the performance
of that model with respect to the minority class”. Oth-
erwise, there is little evidence of any consistent positive
effect, particularly for Naı̈ve Bayes (NB) classifiers which
do not appear sensitive to imbalance. In all cases, there
are long whiskers suggesting high variability of perfor-
mance and in all cases the whiskers extend below zero
suggesting the possibility (though falling outside the
95% confidence limits given in Table 11) of a deleterious
or negative effect. Therefore we provide both the average
improvement and the probability to gain improvement.

Classifier Average Improvement Cliff’s δ

SVM 0.145 (0.140 0.151) +L (+L +L)
C4.5 0.042 (0.040, 0.045) +M (+M +L)
LR 0.038 (0.036, 0.040) +L (+L +L)

Ripper 0.028 (0.026, 0.031) +S (+S +M)
IBk 0.023 (0.021, 0.025) +S (+S +M)
RF 0.018 (0.017, 0.020) +M (+S +M)
NB 0.006 (0.004, 0.007) +N (+N +S)

TABLE 11: Effect size compared with no imbalanced
learning by algorithm

Table 11 presents the effect size of both two statistics
for each type of classifier in the decreasing order of the
average improvement. As we can see the large positive
effect for SVM confirms that there are opportunities to
improve SVM by imbalanced learning. The effect size
also reflects the sensitivity of each type of the classifiers
to the IR. Naı̈ve Bayes is insensitive to imbalanced
distribution therefore the effect size on NB is very small.
So as for RQ5, classifiers’ sensitivity to imbalance largely
influence the effect size.

4.6 Effect of Input Metrics
The next factor in our experiment is the type of input
metric. Seven different classes are summarized in Table

−0.25

0.00

0.25

0.50

CK
NET

PROC

CK+NET

CK+PROC

NET+PROC

CK+NET+PROC

Input Metrics

D
if
fe

re
n

c
 o

n
 M

C
C

Fig. 8: Boxplot of differences in performance (MCC) with
and without imbalanced learning by metrics

6 and the distributions of the difference on predictive
performance through imbalanced learning shown as
boxplots grouped by Metrics in Fig. 8. The red dotted
line shows zero difference or no effect. Overall we see a
high level of similarity between the boxplots and also the
effect size of each type of input metric is not significantly
different (see Table 12). This indicates little difference in
responsiveness to imbalanced learning by type of input
metric, which is the answer for RQ6.

Input Metrics Average Improvement Cliff’s δ

CK 0.043 (0.039, 0.046) +M (+M +L)
NET 0.035 (0.033, 0.038) +M (+M +M)

PROC 0.036 (0.033, 0.039) +M (+M +M)
CK+NET 0.035 (0.033, 0.038) +M (+M +L)

CK+PROC 0.027 (0.024, 0.030) +M (+M +M)
NET+PROC 0.030 (0.027, 0.032) +M (+M +M)

CK+NET+PROC 0.029 (0.027 0.032) +M (+M +M)

TABLE 12: Effect size compared with no imbalanced
learning by input metrics

However, in passing we do note that there is consid-
erable difference in overall predictive performance de-
pending upon the class of input metric (see Fig. 9. Here
there is evidence of much more of an effect between the
different input metrics with the best performance from
the widest range of input metrics (CK+NET+PROC).

4.7 Detailed comparisons of imbalanced learner al-
gorithms

Next we review the impact by specific, imbalanced learn-
ing algorithm. Fig. 10 shows side by side boxplots for the
difference each algorithm makes over no algorithm. The
red dashed line shows zero difference. It can be seen that
all types of imbalanced methods are capable of produc-
ing negative impacts upon the predictive capability of
a classifier. In such case, dominance statistics are useful
to quantify the likelihood that one is better than another
(see Table 13).

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 12

0.00

0.25

0.50

CK
NET

PROC

CK+NET

CK+PROC

NET+PROC

CK+NET+PROC

Input Metrics

P
e

rf
o

rm
a

n
c
e

 (
M

C
C

)

ImbLearner

N

Y

Fig. 9: Boxplot of performance (MCC) with and without
imbalanced learning by metrics

−0.25

0.00

0.25

0.50

Bag Bst US OS UOS SMOTE COS EM1v1 UBag OBag UOBag SBag UBst OBst UOBst SBst

Imbalanced learning methods

D
if
fe

re
n
c
 o

n
 M

C
C

Fig. 10: Boxplot of differences in performance (MCC)
with and without imbalanced learning by imbalanced
learner

Additionally, Table 13 shows the average improve-
ment. The values in parentheses give the lower and
upper bounds of 95% confidence limits. The algorithms
are organised in decreasing order of improvement rang-
ing from 0.069 to 0.008. The five types of imbalanced
methods that show the largest positive effect in both
improvement and Cliff’s δ are UOBag, UBag, SBag, OBag
and EM1v1.

Combining all the previous analyses Table 14 sum-
marises the results broken down by imbalanced learning
algorithm, classifier and input metrics as win/draw/loss
counts from the 27 data sets in our experiment. We then
use the Benjamini-Yekutieli step-up procedure [58] to
determine significance10. This is indicated by the graying
out of the non-significant cells.

Table 14 summarizes the Win/Draw/Loss (W/D/L)
records of comparisons between imbalanced learners in
the first row and standard learners in the first column
over the seven different types of metric data shown
in the second column. Each cell contains three counts
W/D/L for the imbalanced learner against no learning.

10. We need a correction procedure such as Benjamini-Yekutieli since
we are carrying out a large (784 to be exact) number of significance
tests. We prefer a more modern approach based on a false discovery
rate than other more conservative corrections such as Bonferroni.

Classifier Improvement Cliff’s δ

UOBag 0.069 (0.065, 0.074) +L (+L,+L)
UBag 0.067 (0.063, 0.072) +L (+L +L)
SBag 0.058 (0.054, 0.062) +L (+L,+L)
OBag 0.049 (0.045, 0.054) +L (+L,+L)

EM1v1 0.047 (0.043, 0.052) +L (+L,+L)
UBst 0.039 (0.035, 0.044) +M (+M,+L)

SMOTE 0.034 (0.030, 0.039) +M (+M,+M)
COS 0.030 (0.027, 0.033) +L (+M,+L)
SBst 0.030 (0.026, 0.034) +M (+S,+M)
OS 0.023 (0.019, 0.027) +S (+S,+S)

OBst 0.022 (0.018, 0.026) +S (+S,+S)
UOBst 0.022 (0.018, 0.026) +S (+S,+S)

US 0.017 (0.012, 0.021) +N (+N,+S)
Bag 0.013 (0.011, 0.015) +M (+S,+M)
UOS 0.013 (0.008, 0.018) +N (+N,+N)
Bst 0.008 (0.005, 0.011) +N (+N,+S)

TABLE 13: Effect size compared with no imbalanced
learning by imbalanced method

iM uses standard learner S as its base learner obtained
better, equal, or worse performance outcomes than S
using MCC (the performance measure introduced in
Section 4). If iM wins S more than loses, a Wilcoxon
test is used to verify the assumption iM is better than S.
A table cell is shaded if iM does not win S more than
lose or iM is not significantly better than S.

So from Table 14 we focus on the white areas as
these represent statistically significant results and show
the intersection of Imbalanced Learning algorithm, base
classifier and type of metric. From this we derive five
findings.

1) There is greater variability in the performance of
the imbalanced learning algorithms compared with
standard learner. Yet again this reveals that not
all imbalanced learning algorithms can improve
the performance of every classifier and indeed no
algorithm is always statistically significantly better.

2) Approximately half of the table cells are unshaded.
This indicates if the imbalanced learning algorithm,
classifier and input metrics can be carefully chosen,
there are good opportunities to improve predictive
performance.

3) The choice of imbalanced learning algorithm
strongly depends upon the base classification al-
gorithm. For instance, all the table cells of SVM
are unshaded except five cells in the COS column.
This indicates that all 16 learner types, excluding
COS, can improve SVM for all input metrics. By
contrast, none of these algorithms can improve NB
as almost all table cells for the NB row are shaded.
This supports the idea that NB is insensitive to
imbalanced data distribution and therefore is hard
to be improve.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 13

Metrics Bag Bst US OS UOS SMOTE COS EM1v1 UBag OBag UOBag SBag UBst OBst UOBst SBst

CK 17/1/9 16/0/11 17/0/10 18/0/9 17/0/10 18/0/9 22/0/5 18/4/5 24/0/3 21/0/6 24/0/3 25/0/2 19/0/8 16/0/11 17/0/10 19/0/8
NET 21/0/6 19/0/8 18/0/9 17/0/10 16/0/11 24/0/3 26/0/1 20/4/3 26/0/1 25/0/2 27/0/0 26/0/1 21/0/6 21/0/6 18/0/9 19/0/8

PROC 17/0/10 15/0/12 19/0/8 15/0/12 16/0/11 19/0/8 24/0/3 18/4/5 23/0/4 21/0/6 21/0/6 22/1/4 21/0/6 16/0/11 16/0/11 18/0/9
C4.5 CK+NET 23/0/4 22/0/5 16/0/11 19/0/8 15/0/12 21/0/6 27/0/0 21/2/4 27/0/0 27/0/0 27/0/0 27/0/0 21/0/6 22/0/5 22/0/5 22/0/5

CK+PROC 19/0/8 16/0/11 15/0/12 11/0/16 11/0/16 17/0/10 22/0/5 19/4/4 21/0/6 20/0/7 22/0/5 21/0/6 16/0/11 17/0/10 15/0/12 16/0/11
NET+PROC 23/0/4 20/0/7 14/0/13 11/0/16 8/0/19 16/0/11 21/0/6 18/4/5 25/0/2 22/0/5 26/0/1 24/0/3 17/0/10 19/0/8 19/0/8 20/0/7

CK+NET+PROC 23/0/4 19/0/8 12/0/15 12/0/15 9/0/18 14/0/13 25/0/2 22/3/2 27/0/0 23/0/4 27/0/0 25/0/2 18/0/9 19/0/8 19/0/8 19/0/8

CK 19/0/8 13/0/14 12/0/15 16/0/11 13/0/14 18/0/9 22/0/5 21/0/6 25/0/2 20/0/7 25/0/2 23/0/4 19/0/8 16/0/11 15/0/12 19/0/8
NET 17/0/10 17/0/10 9/0/18 17/0/10 15/0/12 21/0/6 24/0/3 21/0/6 24/1/2 21/0/6 26/0/1 22/0/5 17/0/10 16/0/11 12/0/15 17/0/10

PROC 13/0/14 12/0/15 17/0/10 17/0/10 16/0/11 20/0/7 20/0/7 21/1/5 24/0/3 19/0/8 24/0/3 20/0/7 19/0/8 14/0/13 14/1/12 18/0/9
RF CK+NET 16/0/11 17/0/10 5/0/22 18/0/9 14/0/13 19/0/8 22/0/5 22/0/5 25/0/2 22/0/5 26/0/1 21/0/6 21/0/6 18/0/9 13/0/14 20/0/7

CK+PROC 21/0/6 17/0/10 7/0/20 12/0/15 11/0/16 19/0/8 23/0/4 20/0/7 26/0/1 25/0/2 26/0/1 24/0/3 18/0/9 19/0/8 12/0/15 17/0/10
NET+PROC 20/0/7 16/0/11 8/0/19 13/0/14 11/0/16 19/0/8 22/0/5 18/0/9 24/0/3 19/0/8 25/0/2 22/0/5 20/0/7 17/0/10 13/0/14 18/0/9

CK+NET+PROC 18/0/9 21/0/6 5/0/22 15/0/12 10/0/17 16/1/10 21/0/6 19/0/8 24/0/3 19/0/8 26/0/1 21/0/6 21/0/6 22/0/5 15/0/12 17/0/10

CK 14/11/2 20/2/5 25/0/2 25/0/2 25/0/2 25/0/2 9/7/11 21/3/3 25/0/2 25/0/2 25/0/2 25/0/2 24/0/3 25/0/2 25/0/2 25/0/2
NET 17/4/6 22/0/5 23/1/3 25/1/1 23/0/4 24/1/2 16/2/9 23/1/3 25/1/1 25/1/1 25/1/1 25/1/1 22/0/5 25/0/2 24/0/3 24/0/3

PROC 11/9/7 20/4/3 27/0/0 25/0/2 27/0/0 25/0/2 7/7/13 26/0/1 27/0/0 25/0/2 26/0/1 25/0/2 27/0/0 27/0/0 26/0/1 26/0/1
SVM CK+NET 20/1/6 23/0/4 25/0/2 26/0/1 23/0/4 26/0/1 15/0/12 25/1/1 27/0/0 26/0/1 26/0/1 26/0/1 23/0/4 24/0/3 25/0/2 24/0/3

CK+PROC 17/5/5 24/0/3 25/0/2 24/0/3 26/0/1 26/0/1 10/2/15 22/1/4 26/0/1 24/0/3 26/0/1 26/0/1 26/0/1 25/0/2 26/0/1 26/0/1
NET+PROC 21/2/4 24/0/3 24/0/3 25/1/1 24/0/3 25/0/2 14/1/12 23/1/3 25/1/1 25/1/1 25/1/1 25/1/1 25/0/2 25/0/2 25/0/2 25/0/2

CK+NET+PROC 22/2/3 23/0/4 23/0/4 25/0/2 24/0/3 25/0/2 17/1/9 24/1/2 24/1/2 25/1/1 25/1/1 25/0/2 24/0/3 25/0/2 25/0/2 24/0/3

CK 13/0/14 10/0/17 16/0/11 17/0/10 15/0/12 17/0/10 23/0/4 17/0/10 20/0/7 21/0/6 22/0/5 24/1/2 20/0/7 13/0/14 16/0/11 15/0/12
NET 16/1/10 11/0/16 15/0/12 15/0/12 14/0/13 20/0/7 22/0/5 22/0/5 24/0/3 26/0/1 27/0/0 26/0/1 21/0/6 13/0/14 17/0/10 16/0/11

PROC 12/0/15 10/0/17 16/0/11 14/0/13 14/0/13 18/0/9 23/0/4 20/0/7 21/0/6 20/0/7 24/0/3 22/0/5 19/0/8 11/0/16 17/0/10 15/0/12
Ripper CK+NET 17/0/10 14/0/13 13/0/14 14/0/13 11/0/16 14/0/13 23/0/4 20/0/7 23/0/4 26/0/1 26/0/1 25/0/2 14/0/13 20/0/7 15/0/12 16/0/11

CK+PROC 17/0/10 10/0/17 15/0/12 13/0/14 12/0/15 16/0/11 22/0/5 20/0/7 22/0/5 22/0/5 23/0/4 22/0/5 16/0/11 11/0/16 11/0/16 12/0/15
NET+PROC 17/0/10 14/0/13 14/0/13 11/0/16 10/0/17 19/0/8 22/0/5 23/0/4 23/0/4 24/0/3 25/0/2 24/0/3 15/1/11 18/0/9 15/0/12 17/0/10

CK+NET+PROC 21/0/6 16/0/11 12/0/15 13/0/14 8/0/19 16/0/11 21/0/6 22/0/5 25/0/2 25/0/2 27/0/0 26/0/1 19/0/8 17/0/10 16/0/11 18/0/9

CK 15/0/12 8/0/19 13/0/14 15/0/12 9/0/18 19/0/8 17/1/9 19/4/4 22/0/5 18/0/9 22/0/5 22/1/4 18/0/9 12/0/15 14/0/13 15/0/12
NET 21/0/6 17/0/10 13/0/14 18/0/9 7/0/20 19/0/8 21/0/6 21/4/2 22/0/5 23/0/4 24/0/3 25/0/2 22/0/5 19/0/8 19/0/8 18/0/9

PROC 12/0/15 9/0/18 18/0/9 18/0/9 15/0/12 21/0/6 23/0/4 20/4/3 25/0/2 20/0/7 24/0/3 21/0/6 21/0/6 15/0/12 16/0/11 16/1/10
IBk CK+NET 20/0/7 14/0/13 10/0/17 13/0/14 8/0/19 17/0/10 20/0/7 17/4/6 21/0/6 21/0/6 23/0/4 25/0/2 19/0/8 14/0/13 14/0/13 20/0/7

CK+PROC 17/0/10 5/0/22 10/0/17 11/0/16 7/0/20 15/0/12 18/0/9 20/4/3 23/0/4 16/0/11 22/0/5 23/0/4 18/0/9 8/0/19 13/0/14 15/0/12
NET+PROC 18/0/9 16/0/11 12/0/15 14/0/13 6/0/21 19/0/8 22/0/5 21/4/2 22/0/5 22/0/5 24/0/3 27/0/0 22/0/5 14/0/13 15/0/12 19/0/8

CK+NET+PROC 18/0/9 15/0/12 10/0/17 11/0/16 6/0/21 15/0/12 20/0/7 19/4/4 22/0/5 20/0/7 25/0/2 27/0/0 22/0/5 13/0/14 15/0/12 17/0/10

CK 17/1/9 13/0/14 23/0/4 23/0/4 23/0/4 22/0/5 23/0/4 20/4/3 26/0/1 25/0/2 24/0/3 24/0/3 24/0/3 22/0/5 23/0/4 26/0/1
NET 18/1/8 13/0/14 16/0/11 18/0/9 16/0/11 18/0/9 21/0/6 21/4/2 22/0/5 24/0/3 23/0/4 23/1/3 21/0/6 17/0/10 17/0/10 21/0/6

PROC 13/0/14 15/0/12 21/0/6 22/0/5 20/0/7 20/0/7 21/0/6 19/4/4 23/0/4 21/1/5 24/0/3 24/0/3 23/0/4 22/0/5 21/0/6 23/0/4
LR CK+NET 19/0/8 14/0/13 17/0/10 24/0/3 16/0/11 20/0/7 23/0/4 22/4/1 26/0/1 27/0/0 27/0/0 25/0/2 22/0/5 18/0/9 16/0/11 23/0/4

CK+PROC 18/0/9 13/0/14 17/0/10 21/0/6 20/0/7 20/0/7 22/0/5 20/4/3 23/0/4 24/0/3 23/0/4 24/0/3 23/0/4 21/0/6 19/0/8 25/0/2
NET+PROC 22/0/5 15/0/12 15/0/12 19/0/8 14/0/13 18/0/9 23/0/4 19/4/4 24/0/3 21/0/6 23/0/4 23/0/4 20/0/7 16/0/11 16/0/11 20/0/7

CK+NET+PROC 20/0/7 15/0/12 12/0/15 20/0/7 13/0/14 20/0/7 24/0/3 18/4/5 24/0/3 23/0/4 23/0/4 23/0/4 21/0/6 18/0/9 14/0/13 21/0/6

CK 22/0/5 16/0/11 22/0/5 24/0/3 23/0/4 19/1/7 21/0/6 20/4/3 24/0/3 23/0/4 23/0/4 22/0/5 23/0/4 21/0/6 22/0/5 17/0/10
NET 17/0/10 7/0/20 11/0/16 16/0/11 14/0/13 13/0/14 17/0/10 15/4/8 20/0/7 17/0/10 18/0/9 19/0/8 14/0/13 10/0/17 10/0/17 11/0/16

PROC 14/0/13 8/0/19 11/0/16 13/0/14 10/0/17 12/0/15 16/0/11 14/4/9 15/0/12 12/0/15 16/0/11 13/0/14 11/0/16 7/0/20 9/0/18 10/0/17
NB CK+NET 20/0/7 11/0/16 14/0/13 18/0/9 17/0/10 13/0/14 15/0/12 15/4/8 21/0/6 18/0/9 20/0/7 19/0/8 17/0/10 13/0/14 15/0/12 15/0/12

CK+PROC 17/0/10 10/0/17 10/0/17 15/0/12 14/0/13 15/0/12 15/0/12 16/4/7 19/0/8 15/0/12 19/0/8 18/0/9 15/0/12 12/0/15 12/0/15 15/0/12
NET+PROC 18/1/8 8/0/19 9/0/18 15/0/12 11/0/16 14/0/13 13/0/14 15/4/8 18/0/9 18/0/9 18/0/9 16/0/11 13/0/14 9/0/18 8/0/19 9/0/18

CK+NET+PROC 18/0/9 7/0/20 10/0/17 13/0/14 12/0/15 14/0/13 11/0/16 14/4/9 16/0/11 18/0/9 17/0/10 19/0/8 14/0/13 11/0/16 11/0/16 12/0/15

Note:
(1) Each cell contains the W/D/L counts of each dataset so W +D + L = 27.
(2) Shaded table cells imply a p-value greater than the threshold suggested by FDR-control procedure, i.e., the predictive performance

with imbalanced learning is not significantly better than the performance without imbalanced learning.

TABLE 14: W/D/L records of the comparison between predictive performance with and without imbalanced learning

4) The column of Bagging-based imbalanced ensem-
ble methods (UBag, OBag, UOBag, SBag) and
Em1v1 have the largest white area in Table 14
showing that they are clearly better than other
imbalanced learners for all rows of C4.5, RF, SVM,
Ripper, IBk and LR. We can see that UBag and
EM1v1 are the top two of the 16 imbalanced learner
types indicated by the largely white columns.
Therefore these imbalanced algorithms could be
recommended in most circumstances.

5) Bag is not as good as the Bagging-based imbal-
anced ensemble methods in that it contains more
shaded table cells in its column. Similarly Bst is
less effective than the Boosting-based imbalanced
ensemble methods. The reason behind this is that
ensemble learning methods Bagging and Boosting
aim to approximate a real target from different
directions; they are not inherently designed to deal
with imbalanced data. Sub-sampling methods fare
a little better. The underlying reason may relate
to the random error of sampling. But SMOTE
performed better probably because it brings novel
information by interpolating between existing ones

data points.
As Table 14 illustrates, we can answer RQ7 by noting

the 16 imbalanced learning methods vary a lot, how-
ever Bagging-based imbalanced ensemble methods and
EM1v1 appear to be the top methods.

5 THREATS TO VALIDITY
In this section, we identify factors that may threaten the
validity of our results and present the actions we have
taken to mitigate the risk.

The first possible source of bias is the data used. To
alleviate this potential threat, 27 defect data sets from
13 public domain software projects were selected. These
data sets are characterized by (i) they are drawn from
different types of publicly available software projects,
(ii) the data sets range considerably in size from 125
to 2196 modules and (iii) there are wide variations in
the imbalance ratio between 1.51 and 43.73. These data
sets are also widely used by many other researchers.
This enables potential replication and comparison with
findings from other experiments. Moreover, we have
made our raw results and scripts available11. However,

11. https://github.com/yuchen1990/ImbSDP

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 14

to extend our findings it would be valuable to investigate
software defect data not drawn from the open software
community.

Stochastic data processing techniques, such as sam-
pling or dividing data into training sets and testing sets,
also can threaten validity. For this reason we have used
10 × 10-fold cross-validation in order to mitigate the
effects of variability due to the random allocation. This is
a well-established approach for comparing classification
methods in the fields of machine learning and data
mining.

Another possible source of bias are the choice of
classifiers explored by this study. There are many such
methods and any single study can only use a subset of
them. We have chosen representative methods from each
major type of standard machine learning methods. The
selected methods cover six out of seven of the categories
identified by the recent review from Malhotra [2]. Fur-
ther work might explore neural networks / evolutionary
algorithms which we excluded due to the complexities of
parameterization and execution time. Hence, we would
encourage other researchers to repeat our study with
other classifier learning methods.

6 CONCLUSIONS

In this paper, we have reported a comprehensive exper-
iment to explore the effect of using imbalanced learning
algorithms when seeking to predict defect-prone soft-
ware components. This has explored the complex in-
teractions between type of imbalanced learner, classifier
and input metrics over 27 software defect data sets from
the public domain.

Specifically, we have compared 16 different types of
imbalanced learning algorithm—along with the control
case of no imbalanced learning—with seven representa-
tive classifier learning methods (C4.5, RF, SVM, Ripper,
kNN, LR and NB) using seven different types of input
metric data over 27 data sets. Our factorial experimental
design yields 22491 combinations. Each combination was
evaluated by 10× 10-fold cross validation.

We believe our results are valuable for the software
engineering practitioners for at least three reasons.

First, our experimental results show a clear, negative
relationship between the imbalance ratio and the perfor-
mance of standard learning. This means irrespective of
other factors, the more imbalanced your data the more
challenging it will be to achieve high quality predictions.

Second, imbalanced learning algorithms can amelio-
rate this effect, particularly if the imbalance ratio exceeds
four. However, the unthinking application of any imbal-
anced learner in any setting is likely to only yield a very
small, if any, positive effect. However, this can be con-
siderably optimized through the right choice of classifier
and imbalanced learning methods in the context. Our
study has highlighted some strong combinations which
are given in the summary table 14 in particular bagging-
based imbalanced ensemble methods and EM1v1.

Third, although different choices of input metric have
little impact upon the improvement that accrue from
imbalanced learning algorithms, we have observed they
have a very considerable effect upon overall perfor-
mance. Consequently we recommend, wherever possi-
ble, using a wide spectrum of input metrics derived
from static code analysis, network analysis and from the
development process.

We also believe there are also additional lessons for
researchers. First, a number of experimental studies have
reported encouraging results in terms of using machine
learning techniques to predict defect-prone software
units. However, this is tempered by the fact that there is
also a great deal of variability in results and often a lack
of consistency. Our experiment shows that a significant
contributing factor to this variability comes from the data
sets themselves in the form of the imbalance ratio.

Second, the choice of a predictive performance mea-
sure that enables comparisons between different clas-
sifiers is a surprisingly subtle problem. This is partic-
ularly acute when dealing with imbalanced data sets
which are the norm for software defects. Therefore we
have avoided some of the widely used classification
performance measures (such as F1) because they are
prone to bias. We have chosen the unbiased performance
measure Matthews Correlation Coefficient. Although not
the main theme of this study we would encourage fellow
researchers to consider unbiased alternatives to the F
family of measures [46] or Area Under the Curve [49].

Third, comprehensive experiments tend to be both
large and complex which necessitate particular forms of
statistical analysis. We advocate use of False Discovery
Rate procedures [58] to militate against problems of
large numbers of significance tests. We also advocate
use of effect size measures [81], with associated confi-
dence limits rather than relying on significance values
alone since these may be inflated when the experimen-
tal design creates large numbers of observations. In
other words highly significant but vanishingly small real
world effects may not be that important to the software
engineering community.

Finally we make our data and program available to
other researchers and would encourage them to confirm
(or challenge) the strength of our findings so that we
are able to increase the confidence with which we make
recommendations to software engineering practitioners.

APPENDIX A
METRIC DEFINITIONS

A.1 CK Metrics

Chidamber-Kemerer (CK) metrics suite [56]:
� WMC: Weighted Methods Pr Class
� DIT: Depth of Inheritance Tree
� NOC: Number of Children
� CBO: Coupling between object classes
� RFC: Response For a Class
� LCOM: Lack of Cohesion in Methods

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 15

Fig. 11: Ego Network

A.2 Network Metrics

A.2.1 Ego network metrics

An ego network is a subgraph that consists of a node
(referred to as an “ego”) and its neighbours that have a
relationship represnted by an edge with the “ego” node).
This describes how a node is connected to its neighbours,
for example, in Fig. 11, node A is the “ego”, and the
nodes in the box consist A’s ego network.

Ego network metrics include:
� The size of the ego network (Size) is the number of nodes

connected to the ego network.
� Ties of ego network (Tie) are directed ties corresponding to

the number of edges.
� The number of ordered pairs (Pairs) is the maximal number

of directed ties, i.e., Size×(Size - 1).
� Density of ego network (Density) is the percentage of possi-

ble ties that are actually present, i.e., Ties / Pairs.
� WeakComp is the number of weak components (= sets of

connected nodes) in neighborhood.
� nWeakComp is the number of weak components normal-

ized by size, i.e., WeakComp / Size.
� TwoStepReach is the percentage of nodes that are two steps

away.
� The reach efficiency (ReachEfficency) normalizes

TwoStepReach by size, i.e., TwoStepReach / Size. High
reach efficiency indicates that egos’ primary contacts are
influential in the network.

� Brokerage is the number of pairs not directly connected.
The higher this number, the more paths go through ego,
i.e., ego acts as a broker in its network.

� nBrokerage is the Brokerage normalized by the number of
pairs, i.e., Brokerage / Pairs.

� EgoBetween is the percentage of shortestpaths between
neighbors that pass through ego.

� nEgoBetween is the Betweenness normalized by the size of
the ego network.

A.2.2 Structural metrics

Structural metrics describe the structure of the whole
dependency graph by extracting the feature of structural
holes, which are suggested by Ronald Burt [82].

� Effective size of network (EffSize) is the number of entities
that are connected to a module minus the average number
of ties between these entities.

� Efficiency normalizes the effective size of a network to the
total size of the network.

� Constraint measures how strongly a module is constrained
by its neighbors.

� Hierarchy measures how the constraint measure is dis-
tributed across neighbors.

A.2.3 Centrality Metrics

Centrality metrics measure position importance of a
node in the network.

� Degree is the number of edges that connect to a node,
which measure dependencies for a module.

� nDegree is Degree normalized by number of nodes.
� Closeness is sum of the lengths of the shortest paths from

a node from all other nodes.
� Reachability is the number nodes that can be reached from

a node.
� Eigenvector assigns relative scores to all nodes in the

dependency graphs.
� nEigenvector is Eigenvector normalized by number of

nodes.
� Information is Harmonic mean of the length of paths

ending at a node.
� Betweenness measures for a node on how many shortest

paths between other nodes it occurs.
� nBetweenness is Betweenness normalized by the number

of nodes.

A.3 Process Metrics

The extracted PROC metrics as suggested by Moser et
al. [4] are as follows:

� REVISIONS is the number of revisions of a file.
� AUTHORS is the number of distinct authors that checked

a file into the repository.
� LOC ADDED is the sum over all revisions of the lines of

code added to a file.
� MAX LOC ADDED is the maximum number of lines of

code added for all revisions.
� AVE LOC ADDED is the average lines of code added per

revision.
� LOC DELETED is the sum over all revisions of the lines

of code deleted from a file.
� MAX LOC DELETED is the maximum number of lines

of code deleted for all revisions.
� AVE LOC DELETED is the average lines of code deleted

per revision.
� CODECHURN is te sum of (added lines of code - deleted

lines of code) over all revisions.
� MAX CODECHURN is the maximum CODECHURN for

all revisions.
� AVE CODECHURN is the average CODECHURN per

revision.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under grants 61373046 and
61210004 and by Brunel University London.

REFERENCES

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1276–1304, 2012.

[2] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Applied Soft Computing, vol. 27, pp.
504–518, 2015.

[3] C. Catal and B. Diri, “Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem,” Information Sciences, vol. 179, no. 8, pp. 1040–
1058, 2009.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 16

[4] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes for
defect prediction,” in 30th ACM/IEEE International Conference on
Software Engineering. IEEE, 2008, pp. 181–190.

[5] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,” in
Proceedings of the 34th International Conference on Software Engineer-
ing. IEEE Press, 2012, pp. 419–429.

[6] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indi-
cators of software vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772–787, 2011.

[7] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” IEEE Transactions on Reliability, vol. 62, no. 2,
pp. 434–443, 2013.

[8] Q. Cai, H. He, and H. Man, “Imbalanced evolving self-organizing
learning,” Neurocomputing, vol. 133, pp. 258–270, 2014.

[9] H. He and E. A. Garcia, “Learning from imbalanced data,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 21, no. 9,
pp. 1263–1284, 2009.

[10] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Transactions
on Software Engineering, vol. 40, no. 6, pp. 603–616, 2014.

[11] G. M. Weiss, “Foundations of imbalanced learning,” Imbalanced
Learning: Foundations, Algorithms, and Applications, pp. 13–41, 2013.

[12] R. C. Holte, L. Acker, B. W. Porter et al., “Concept learning and
the problem of small disjuncts.” in IJCAI, vol. 89. Citeseer, 1989,
pp. 813–818.

[13] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets
by using ensemble models,” in Computational Intelligence and Data
Mining, 2009. CIDM’09. IEEE Symposium on. IEEE, 2009, pp. 324–
331.

[14] L. I. Kuncheva and J. J. Rodrı́guez, “A weighted voting frame-
work for classifiers ensembles,” Knowledge and Information Systems,
vol. 38, no. 2, pp. 259–275, 2014.

[15] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[16] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[18] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Her-
rera, “A review on ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-based approaches,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 4, pp. 463–484, 2012.

[19] G. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,”
ACM SigKDD Explorations Newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[20] E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, “Smote-rsb*:
a hybrid preprocessing approach based on oversampling and
undersampling for high imbalanced data-sets using smote and
rough sets theory,” Knowledge and information systems, vol. 33,
no. 2, pp. 245–265, 2012.

[21] K. M. Ting, “An instance-weighting method to induce cost-
sensitive trees,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 14, no. 3, pp. 659–665, 2002.

[22] Z. Qin, A. T. Wang, C. Zhang, and S. Zhang, “Cost-sensitive
classification with k-nearest neighbors,” in International Conference
on Knowledge Science, Engineering and Management. Springer, 2013,
pp. 112–131.

[23] Y. Sahin, S. Bulkan, and E. Duman, “A cost-sensitive decision tree
approach for fraud detection,” Expert Systems with Applications,
vol. 40, no. 15, pp. 5916–5923, 2013.

[24] M. Kukar and I. Kononenko, “Cost-sensitive learning with neural
networks,” in Proceedings of the 13th European Conference on Artifi-
cial Intelligence (ECAI-98). John Wiley & Sons, 1998, pp. 445–449.

[25] J. Xu, Y. Cao, H. Li, and Y. Huang, “Cost-sensitive learning of
svm for ranking,” in European Conference on Machine Learning.
Springer, 2006, pp. 833–840.

[26] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbal-
anced data: a review,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 23, no. 04, pp. 687–719, 2009.

[27] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, “On combining
classifiers,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 3, pp. 226–239, 1998.

[28] N. C. Oza and K. Tumer, “Classifier ensembles: Select real-world
applications,” Information Fusion, vol. 9, no. 1, pp. 4–20, 2008.

[29] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms
in data mining,” Knowledge and information systems, vol. 14, no. 1,
pp. 1–37, 2008.

[30] R. Barandela, R. M. Valdovinos, and J. S. Sánchez, “New applica-
tions of ensembles of classifiers,” Pattern Analysis & Applications,
vol. 6, no. 3, pp. 245–256, 2003.

[31] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 40, no. 1, pp. 185–197, 2010.

[32] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smote-
boost: Improving prediction of the minority class in boosting,”
in European Conference on Principles of Data Mining and Knowledge
Discovery. Springer, 2003, pp. 107–119.

[33] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble
learning to improve software defect prediction,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 42, no. 6, pp. 1806–1817, 2012.

[34] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving
software-quality predictions with data sampling and boosting,”
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, vol. 39, no. 6, pp. 1283–1294, 2009.

[35] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Prob-
lems with precision: A response to ???comments on ???data
mining static code attributes to learn defect predictors??????”
IEEE Transactions on Software Engineering, vol. 33, no. 9, p. 637,
2007.

[36] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of ceiling effects in defect predictors,” in Proceedings
of the 4th international workshop on Predictor models in software
engineering. ACM, 2008, pp. 47–54.

[37] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An
empirical study of the classification performance of learners on
imbalanced and noisy software quality data,” Information Sciences,
vol. 259, pp. 571–595, 2014.

[38] L. Pelayo and S. Dick, “Applying novel resampling strategies to
software defect prediction,” in Fuzzy Information Processing Society,
2007. NAFIPS’07. Annual Meeting of the North American. IEEE,
2007, pp. 69–72.

[39] N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, “Predicting
faults in high assurance software,” in High-Assurance Systems
Engineering (HASE), 2010 IEEE 12th International Symposium on.
IEEE, 2010, pp. 26–34.

[40] T. M. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard, “Cost-
sensitive boosting in software quality modeling,” in High Assur-
ance Systems Engineering, 2002. Proceedings. 7th IEEE International
Symposium on. IEEE, 2002, pp. 51–60.

[41] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone
module detection,” in First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007). IEEE, 2007,
pp. 196–204.

[42] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification:
an overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, 2000.

[43] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu,
“Towards effective bug triage with software data reduction
techniques,” IEEE transactions on knowledge and data engineering,
vol. 27, no. 1, pp. 264–280, 2015.

[44] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning
for recommending code snippets,” IEEE Transactions on Services
Computing, 2016.

[45] M. Warrens, “On association coefficients for 2 ? 2 tables and
properties that do not depend on the marginal distributions,”
Psychometrika, vol. 73, no. 4, pp. 777–789, 2008.

[46] D. Powers, “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation,” Journal of
Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 17

[47] F. J. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms.” in ICML, vol. 98,
1998, pp. 445–453.

[48] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[49] D. J. Hand, “Measuring classifier performance: a coherent alterna-
tive to the area under the ROC curve,” Machine Learning, vol. 77,
no. 1, pp. 103–123, 2009.

[50] P. Domingos, “Metacost: A general method for making classifiers
cost-sensitive,” in Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1999,
pp. 155–164.

[51] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on.
IEEE, 2007, pp. 9–9.

[52] A. Tosun, B. Turhan, and A. Bener, “Validation of network mea-
sures as indicators of defective modules in software systems,” in
Proceedings of the 5th international conference on predictor models in
software engineering. ACM, 2009, p. 5.

[53] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[54] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the
twelfth international conference on machine Learning, 1995, pp. 115–
123.

[55] R. Premraj and K. Herzig, “Network versus code metrics to pre-
dict defects: A replication study,” in Empirical Software Engineering
and Measurement (ESEM), 2011 International Symposium on. IEEE,
2011, pp. 215–224.

[56] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on Software Engineering, vol. 20,
no. 6, pp. 476–493, 1994.

[57] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proceedings of the
30th International Conference on Software Engineering. ACM, 2008,
pp. 531–540.

[58] Y. Benjamini and D. Yekutieli, “The control of the false discovery
rate in multiple testing under dependency,” Annals of Statistics,
pp. 1165–1188, 2001.

[59] R. Coe, “It’s the effect size, stupid: What effect size is and why it
is important,” 2002.

[60] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, pp. 494–509, 1993.

[61] J. D. Long, D. Feng, and N. Cliff, “Ordinal analysis of behavioral
data,” Handbook of Psychology, 2003.

[62] D. Feng, “Robustness and power of ordinal d for paired data,”
Real data analysis, pp. 163–183, 2007.

[63] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and
L. Devine, “Exploring methods for evaluating group differences
on the nsse and other surveys: Are the t-test and cohensd indices
the most appropriate choices,” in annual meeting of the Southern
Association for Institutional Research, 2006.

[64] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software
fault prediction metrics: A systematic literature review,” Informa-
tion and Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[65] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan, “The promise repository of empirical software engi-
neering data,” West Virginia University, Department of Computer
Science, 2012.

[66] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect pre-
diction approaches: a benchmark and an extensive comparison,”
Empirical Software Engineering, vol. 17, no. 4–5, pp. 531–577, 2012.

[67] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera,
“An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics,”
Information Sciences, vol. 250, pp. 113–141, 2013.

[68] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation
on the feasibility of cross-project defect prediction,” Automated
Software Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[69] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on
software defect prediction with a simplified metric set,” Informa-
tion and Software Technology, vol. 59, pp. 170–190, 2015.

[70] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect predic-
tion models,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 2015, pp. 789–800.

[71] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project
defect prediction using a connectivity-based unsupervised classi-
fier,” in Proceedings of the 38th International Conference on Software
Engineering. ACM, 2016, pp. 309–320.

[72] A. Okutan and O. T. Yıldız, “Software defect prediction using
bayesian networks,” Empirical Software Engineering, vol. 19, no. 1,
pp. 154–181, 2014.

[73] F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 2013, pp. 432–441.

[74] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-
level bug prediction,” in Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement.
ACM, 2012, pp. 171–180.

[75] C. Couto, C. Silva, M. T. Valente, R. Bigonha, and N. Anquetil,
“Uncovering causal relationships between software metrics and
bugs,” in Software Maintenance and Reengineering (CSMR), 2012
16th European Conference on. IEEE, 2012, pp. 223–232.

[76] A. Kaur and R. Malhotra, “Application of random forest in
predicting fault-prone classes,” in Advanced Computer Theory and
Engineering, 2008. ICACTE’08. International Conference on. IEEE,
2008, pp. 37–43.

[77] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim, “Reducing
features to improve code change-based bug prediction,” IEEE
Transactions on Software Engineering, vol. 39, no. 4, pp. 552–569,
2013.

[78] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “A genetic
algorithm to configure support vector machines for predicting
fault-prone components,” in Product-Focused Software Process Im-
provement. Springer, 2011, pp. 247–261.

[79] R. Wilcox, Introduction to robust estimation and hypothesis testing
(3rd Edn), 3rd ed. Academic Press, 2012.

[80] R. Batuwita and V. Palade, Class imbalance learning methods for
support vector machines. Wiley, 2013.

[81] P. D. Ellis, The essential guide to effect sizes: Statistical power, meta-
analysis, and the interpretation of research results. Cambridge
University Press, 2010.

[82] R. S. Burt, Structural Holes: The Social Structure of Competition.
Harvard University Press, 1995.

Qinbao Song (1966-2016) received the PhD
degree in computer science from Xian Jiaotong
University, Xian, China, in 2001. He is a pro-
fessor of software technology in the Depart-
ment of Computer Science and Technology, Xian
Jiaotong University. He is also with the State
Key Laboratory of Software Engineering, Wuhan
University, Wuhan, China. He has authored or
coauthored more than 100 refereed papers in
the areas of machine learning and software en-
gineering. He is a board member of the Open

Software Engineering Journal. His current research interests include
data mining/machine learning, empirical software engineering, and
trustworthy software.

Yuchen Guo received BE degree in information
and computational science, from Xian Jiaotong
University, Xian, China. He is currently a Ph.D
student in Department of Computer Science and
Technology, Xian Jiaotong University. He is also
currently a member of BSEL (Brunel Software
engineering laboratory) as a visiting student. His
research area is software defect prediction.

Under
Rev

iew

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, JUNE 2017 18

Martin Shepperd received the PhD degree in
computer science from the Open University in
1991 for his work in measurement theory and
its application to empirical software engineering.
He is a professor of software technology at
Brunel University, London, United Kingdom. He
has published more than 150 refereed papers
and three books in the areas of software engi-
neering and machine learning. He was editor-
in-chief of the journal Information & Software
Technology (1992-2007) and was an associate

editor of the IEEE Transactions on Software Engineering (2000-2004).
He is currently an associate editor of the journal Empirical Software
Engineering. He was program chair for Metrics 01 and 04 and ESEM
11.

