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Abstract—Context: Software defect prediction is an important challenge in the field of software engineering, hence much research
work has been conducted, most notably through the use of machine learning algorithms. However, class-imbalance typified by few
defective components and many non-defective ones is a common occurrence causing difficulties for standard methods. Imbalanced
learning aims to deal with this problem and has recently been deployed by some researchers, unfortunately with inconsistent results.
Objective: We conduct a comprehensive experiment to explore the performance of imbalanced learning and its complex interactions
with (i) data sets (ii) classifiers, (iii) different metrics and (iv) imbalanced learning methods.

Method: We systematically evaluate 27 data sets, 7 classifiers, 7 input metrics and 17 imbalanced learning methods (including doing
nothing); an experimental design that enables exploration of interactions between these factors and individual imbalanced learning
algorithms. This yields 27x7x7x17 = 22491 results. The Matthews correlation coefficient (MCC) is used as an unbiased performance
measure (unlike the more widely used F1 and AUC measures).

Results: a) Imbalance in software defect data clearly harms the performance of standard learning even if the imbalance ratio is not
severe. b) Imbalance learning methods are recommended when the imbalance ratio is greater than 4. ¢) The particular choice of
classifiers and imbalance learning methods is important. d) Though the improvement of imbalanced learning on different input metrics
are similar, the performance various a lot.

Conclusion: This paper shows that predicting software defects with. imbalanced data can be very challenging. Fortunately the
appropriate combination of imbalanced learner and classifier can a good way to ameliorate this problem, but the indiscriminate
application of imbalanced learning can be problematic. Other actionable findings include using a wide spectrum of input metrics derived

from static code analysis, network analysis and from the development process.

Index Terms—Defect prediction, bug prediction, imbalanced learning, ensemble learning, imbalance ratio, effect size.

1 INTRODUCTION

O help ensure software quality, much effort hasbeen
Tinvested on software module testing, yet with lim-
ited resources this is increasingly being challenged by the
growth in the number and size of software systems. Ef-
fective defect prediction could help test managers locate
bugs and allocate testing resources more efficiently thus
it has become an extremely popular research topic [1],
[2].

Obviously this is an attractive proposition, however
despite a significant amount of research, this is having
limited impact upon professional practice. One reason is
that researchers are presenting mixed signals due to the
inconsistency of results (something we will demonstrate
in our summary review of related defect prediction
experiments in Section 2.2). We aim to address this
through attention to the relationship between data set
and predictor, secondly by integrating all our analysis
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into a single consistent and comprehensive experimental
framework, and thirdly by avoiding biased measures
of prediction performance. So our goal is to generate
conclusions that are actionable by software engineers.

Machine learning is the dominant approach to soft-
ware defect prediction [3]. It is based on historical
software information, such as source code edit logs [4],
bug reports [5] and interactions between developers [6].
Such data are used to predict which modules are more
likely to be defect-prone in the future. We focus on
the classification based methods since these are most
commonly used. These methods first learn a classifier as
the predictor by applying a specific algorithm to training
data, then the predictor is evaluated on new unseen
software module as a way to estimate it’s performance
if it were to be used in the ‘wild".

A problem that is frequently encountered is that real
world software defect data consists of only a few defec-
tive modules (usually referred to as positive cases) and a
large number of non-defective ones (negative cases) [7].
Consequently the distribution of software defect data is
highly skewed, known as imbalanced data in the field of
machine learning. When learning from imbalanced data,
standard machine learning algorithms struggle [8] and
consequently perform poorly in finding rare classes. The
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underlying reasons are that most algorithms:

o suppose balanced class distributions or equal mis-
classification costs [9], thus fail to properly represent
the distributive characteristics of the imbalanced
data.

o are frequently designed, tested, and optimized ac-
cording to biased performance measures that work
against the minority class [10]. For example, in the
case of accuracy, a trivial classifier can predict all
instances as the majority class, yielding a very high
accuracy rate yet with no classification capacity.

o utilize a bias that encourages generalization and
simple models to avoid the possibility of over-fitting
the underlying data [11]. However, this bias does
not work well when generalizing small disjunctive
concepts for the minority class [12]. The learning
algorithms tend to be overwhelmed by the majority
class and ignore the minority class [13], a little like
finding proverbial needles in a haystack.

As a result, imbalanced learning has become an active
research topic [9], [8], [14] and a number of imbal-
anced learning methods have been proposed such as
bagging [15], boosting [16] and SMOTE [17]. Imbalanced
learning has also drawn the attention of researchers
in software defect prediction. Yet, although imbalanced
learning can improve prediction performance, overall
the results seem to be quite mixed and inconsistent.

We believe there are three main reasons for this un-
certainty concerning the use of imbalanced learning for
software defect prediction. First, performance measures
commonly used are biased. Second, the interaction be-
tween the choice of imbalanced learning methods and
choice of classifiers is not well understood. Likewise
with the choice of data set and input metric type (e.g.,
static code or process metrics, network metrics'). Third,
the relationship between the imbalance ratio and the
predictive performance is unexplored for software defect
data. Consequently, there is a need to systematically
explore the following questions regarding the use and
value of imbalanced learning algorithms.

1) How does standard learning perform under
imbalanced data?
2) How does imbalanced learning perform com-

pared with standard learning?

3) What is the effect of the following factors: (i)
data sets (including imbalance ratio and types
of input metric) (ii) type of classifier algorithm
(iii) imbalanced learning methods?

This paper makes the following contributions:

1) Given the complexity and contradictory results
emerging from other studies we exhaustively eval-
uate the impact of different classifiers, data sets
(imbalance ratio) and input metrics. This is the

1. Input metric types are limited which barely include popular
software metrics such as process metrics and network metrics for the
research of imbalanced learning on software defect prediction

largest single experimental investigation of imbal-
anced learning for software defect prediction as
we evaluate the performance of 16 imbalanced
methods plus a benchmark of a null imbalanced
method making a total of 17 approaches which
are combined with 7 examples of the main types
of classifiers and 7 classes of input metric, yields
27x7x7x17 = 22491 results.

2) Our experiment is conducted using 27 data sets all
in the public domain. This enables us to thoroughly
explore impact of imbalance ratio of defect data
upon prediction capability and how it can be re-
mediated.

3) We generate a number of practical or actionable
findings. These include that we show that im-
balanced data is a challenge for software defect
prediction. Our findings suggest that imbalanced
learners should be deployed if the imbalance ratio
exceeds four. We show that the blind application of
imbalanced learners may not be successful but that
particular combinations of imbalance learner and
classifier can yield very practical improvements in
prediction.

4) Finally, we demonstrate that typical classification
performance measures (e.g., F-measure and AUC)
are unsound and demonstrate a practical alterna-
tive in the form of the Matthews correlation coef-
ficient (MCC). We also focus on effect size namely
dominance rather than p-values.

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to imbalanced
learning methods and summarizes how these ideas have
been applied in software defect prediction research. It
then shows that many results are inconsistent. Section
3 sets out the details of our experimental design and
the data used. Next, Section 4 presents and discusses
our experimental results. Section 5 considers potential
threats to validity and our mitigating actions; Section 6
draws our study conclusions.

2 RELATED WORK
2.1

A good deal of work have been carried out by the ma-
chine learning community—although less so in empirical
software engineering—to solve the problem of learning
from imbalanced data. Imbalanced learning algorithms
can be grouped into four categories:

Imbalanced Learning

o Sub-Sampling

o Cost-Sensitive Learning

o Ensemble Learning

o Imbalanced Ensemble Learning

We briefly review these. For more detailed accounts
see [9], [18].

Sub-sampling is a data-level strategy in which the
data distribution is re-balanced prior to the model con-
struction so that the built classifiers can perform in a
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similar way to standard classification [19], [17]. Within
sub-sampling there are four main approaches. 1) Under-
sampling extracts a subset of the original data by the
random elimination of majority class instances, but the
major drawback is that it can discard potentially useful
data. 2) Over-sampling creates a superset of the original
data through the random replication of some minority
class instances, however, this may increase the likelihood
of overfitting [18]. 3) SMOTE [17] is a special over-
sampling method that seeks to avoid overfitting by
synthetically creating new minority class instances via
interpolation between near neighbours . 4) Hybrid meth-
ods combine more than one sub-sampling technique [20].

Cost-sensitive learning can be naturally applied to
address imbalanced learning problems [21]. In the con-
text of defect prediction, false negatives are likely to be
considerably more costly than false positives. Instead of
balancing data distributions through sub-sampling, cost-
sensitive learning optimizes training data with a cost
matrix that defines the different misclassification costs
for each class. A number of cost-sensitive learning meth-
ods have been developed by using cost matrices, such
as cost-sensitive K-nearest neighbors [22], cost-sensitive
decision trees [23], cost-sensitive neural networks [24],
and cost-sensitive support vector machines [25]. Unfor-
tunately misclassification costs are seldom available?.

Ensemble learning is the basis of generalizability
enhancement; each classifier is known to make errors,
but different classifiers have been trained on different
data, so the corresponding misclassified instances are not
necessarily the same [27]. The most widely used methods
are Bagging [15] and Boosting [16] whose applications
in several classification problems have led to significant
improvements [28]. Bagging consists of building differ-
ent classifiers with bootstrapped replicas of the original
training data. Boosting serially trains each classifier with
the data obtained by weighted sampling original data,
which focus on difficult instances. AdaBoost [16] is the
most commonly used boosting method, and was identi-
fied as one of the top ten most influential data mining
algorithms [29].

Imbalanced ensemble learning combined ensemble
learning with the aforementioned sub-sampling tech-
niques to address the problems of imbalanced data
classification. Here the idea is straightforward: embed a
data preprocessing technique into an ensemble learning
method to create an imbalanced ensemble learner. For
instance, if under-sampling, over-sampling, underover-
sampling, and SMOTE rather than the standard random
sampling that used by Bagging were carried out before
training each classifier this leads to UnderBagging [13],
OverBagging [30], UnderOverBagging [13], and SMOTE-
Bagging [13]. In the same way, by integrating under-
sampling and SMOTE with Boosting we obtain RUS-

2. Misclassification costs could be given by domain experts, or can
be learned via other approaches [26], but do not naturally exist.
Typically, the cost of misclassifying minority instances is higher than
the opposite, which biases classifiers toward the minority class.

Boost [31] and SMOTEBoost [32]. In instead of sampling,
EM1v1 [33] handles the imbalanced data by splitting and
coding techniques.

2.2 Software Defect Prediction

As discussed, researchers are actively seeking means of
predicting the defect-prone components within a soft-
ware system. The majority of approaches use historical
data to induce prediction systems, typically dichotomous
classifiers where the classes are defect or not defect-
prone. Unfortunately software defect data are highly
prone to the class-imbalance problem [35], yet “many
studies [still] seem to lack awareness of the need to
account for data imbalance” [1]. Fortunately there have
been a number of recent experiments that explicitly
address this problem for software defect prediction.

Table 1 summarizes this existing research. Defect pre-
diction methods can be viewed as a combination of clas-
sification algorithm, imbalanced learning method and
class of input metric. We highlight seven different classi-
fier types (C4.5, ..., NB) in conjunction with 16 different
imbalanced learners (Bag, ..., SBst) together with the
option of no‘imbalanced learning yielding 17 possibil-
ities. Method labels are constructed as <classifier> +
<imbalanced learner> for instance NB+SMOTE denotes
Naive Bayes coupled with SMOTE. Next there are four®
classes of metric (code, ... code+network+process) yield-
ing 7x17 x4 = 476 combinations displayed and a further
357 implicit combinations.

Each cell in Table 1 denotes published experiments
that have explored a particular interaction. Note that
the matrix is relatively sparse with only 54 cells covered
(54/833 ~ 6%) indicating most combinations have yet
to be explored. This is important because it is quite
possible that there are interactions between the imbal-
anced learner, classifier and input metrics such that it
may be unwise to claim that a particular imbalanced
learner has superior performance, when it has only been
evaluated on a few classifiers. Indeed some types of
input metric e.g., code + network metrics have yet to be
explored in terms of unbalanced learning. By contrast,
five independent studies have explored the classifier
C4.5 with under-sampling.

In addition, some of these experiments report con-
flicting results. The underlying reasons include differing
data sets, experimental design and performance mea-
sures along with differing parameterization approaches
for the classifiers [10]. This makes it very hard to
determine what to conclude and what advice to give
practitioners seeking to predict defect-prone software
components. We give three examples of conflicting re-
sults.

3. Strictly speaking there are seven combinations of metric class
however, Network, Process and Network+Process are all empty i.e.,
thus far unexplored, so for reasons of space they are excluded from
Table 1.
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Metrics Metrics Metrics
Code Code Code
Method Code Code Code +Network Method Code Code Code +Network Method Code Code Code +Network
+Network | +Process +Network | +Process +Network | +Process
+Process +Process +Process
C45 [34][33][351[361(371[381[39] [4]40](39] SVM+Bst IBk+OBag
RF 133][7]137] SVM+US 1Bk+UOBag
SVM [37] SVM+0OS IBk+SBag
Ripper [33][37] SVM+UOS IBk+UBst
Tbk [37] SVM+SMOTE IBK+OBst
LR [41][37] [4] SVM+COS IBk+UOBst
NB [33][71[361[371(39] [4]139] SVM+EM1vl IBk+SBst
C4.5+Bag 3] \ SVM+UBag LR+Bag
C4.5+Bst 171[34]133] [40] SVM+OBag LR+Bst
C4.5+US [34][33][7][36](37] SVM+UOBag LR+US [41][37]
C4.5+0S [34][33][36][37] SVM+5Bag LR+0S [41][37]
C4.5+U0S SVM+UBst LR+UOS
C4.5+SMOTE [33][37][38] SVM+OBst LR+SMOTE [41][37]
C4.5+COS [33][7] [4][40] SVM+UOBst LR+COS
C4.5+EM1vl [33] ‘ SVM+SBst LR+EM1vl
C4.5+UBag [39] [39] Ripper+Bag LR+UBag
C4.5+OBag Ripper+Bst LR+OBag
C4.5+UOBag Ripper+US [33](37] LR+UOBag
C4.5+5Bag Ripper+OS [33](37] LR+5Bag
C4.5+UBst Ripper+UOS LR+UBst
C4.5+OBst Ripper+SMOTE | [33][37] LR+OBst
C4.5+UOBst Ripper+COS LR+UOBst
C4.5+SBst [7] Ripper+EM1v1 LR+5Bst
RF+Bag [33] Ripper+UBag NB+Bag [33]
RF+Bst [33] Ripper+OBag NB+Bst [33]
RF+US 1331371 Ripper+UOBag NB+US 33][36][37]
RF+0S [33][37] Ripper+5Bag NB+OS [33][36][37]
RF+UOS Ripper+UBst NB+UOS
RF+SMOTE [33][37] Ripper+OBst NB+SMOTE [33][37]
RF+COS [33] Ripper+UOBst NB+COS [33]
RF+EM1v1 3] Ripper-SBst NB+EMIv1 33]
RF+UBag IBk+Bag NB+UBag [39] [39]
RF+OBag IBk+Bst NB+OBag
RF+UOBag 1Bk+US NB+UOBag
RF+SBag IBk+OS NB+SBag
RF+UBst IBk+UOS NB+UBst
RF+OBst IBk+SMOTE NB+OBst
RF+UOBst IBk+COS NB+UOBst
RF+SBst IBk+EM1v1 NB+SBst
SVM+Bag IBk+UBag -

Note: Please see Section 4.2 for the interpretation of abbreviations for the defect prediction methods.

TABLE 1: Summary of Previous Experiments on Imbalanced Learners, Classification Methods and Input Metrics

for Software Defect Prediction

First, Menzies et al. [36] conducted an experiment
based on twelve PROMISE data sets. Their results
showed that sub-sampling offers no improvement over
unsampled Naive Bayes which does outperform sub-
sampling C4.5. This is confirmed by Sun et al. [33].
However, Menzies et al. also found that under-sampling
beat over-sampling for both Naive Bayes and C4.5, but
Sun et al.’s work indicates this is only true for C4.5.

Second, Seiffert et al. [37] conducted a further study on
class imbalance coupled with noise for different classi-
fiers and data sub-sampling techniques. They found that
only some classifiers benefitted from the application of
sub-sampling techniques in line with Menzies et al. [36]
and Sun et al. [33]. However, they also reported conflicts
in terms of the performance of random over-sampling
methods outperform other sub-sampling methods at
different levels of noise and imbalance.

A third example, again from Seiffert et al. [34] is where
they compared sub-sampling methods with Boosting for
improving the performance of decision tree model built
for identifying the defective modules. Their results show

that Boosting outperform even the best sub-sampling
methods. In contrast, Khoshgoftaar et al. [40] built
software quality models by using Boosting and cost-
sensitive Boosting where C4.5 and decision stumps were
used as the base classifiers, respectively. They found that
Boosting and cost-sensitive Boosting do not enhance the
performance of individual pruned C4.5 decision tree.

Therefore, our study focuses on an exhaustive com-
parison of 16 * 7 = 112 different popular imbalanced
learning methods with seven representative and widely
used standard machine learning methods on static code,
process, and network metrics in terms of five perfor-
mance measures in the same experimental context for
the purpose of software defect prediction.

3 METHOD

Our goal is to conduct a large scale comprehensive ex-
periment to study the effect of imbalanced learning and
its complex interactions between the type of classifier,
data set characteristics and input metrics in order to im-
prove the practice of software defect prediction. We first
discuss our choice of MCC as the performance measure
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and then describe the experimental design including
algorithm evaluation, statistical methods and defect data
sets.

3.1 Classification Performance Measures

Since predictive performance is the response variable
for our experiments, the choice is important. Although
the F-measure and AUC are widely used, we see them
as problematic due to bias particularly in the presence
of unbiased data sets which is of course precisely the
scenario we are interested in studying. Consequently, we
use the Matthews correlation coefficient MCC [42] as our
measure of predictive performance.

The starting point for most classification measures is
the confusion matrix. This represents the four possible
outcomes when using a dichotomous classifier to make
a prediction (see Table 2)*.

Actually +ve | Actually -ve
Predict Positive TP FP
FN TN

Predict Negative

TABLE 2: Confusion Matrix

F; is the most commonly used derivative of the F-measure
family and is defined by Eqn. 1.

2.-TP 1
~ 2-TP+FP+FN’ @
However, it excludes True Negatives (TN) in its calcu-
lation which is potentially problematic. The reason is
that it originated from the information retrieval domain
where typically the number of true negatives; e.g., irrele-
vant web pages that are correctly not returned is neither
knowable nor interesting. However unlike recommend-
ing task®, this is not so for defect prediction because test
managers would be happy to know if components are
truly non-defective.

Let us compare F; with the Matthews correlation
coefficient (MCC, also known as ¢ - see [45]). MCC is
the geometric mean of the regression coefficients of the
problem and its dual [46] and is defined as:

F,

TP x TN — FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

@

As a correlation coefficient it measures the relationship
between the predicted class and actual class, MCC is on
a scale [-1,1] where 1 is a perfect positive correlation
(also perfect prediction), zero no association and -1 a
perfect negative correlation. In contrast, we illustrate the
problematic nature of F; with a simple example and
compare it with MCC.
Suppose our defect classifier predicts as following:

4. Note that, in the context of software defect prediction, the positive
class and negative class denote defective and non-defective respec-
tively.

5. Recommending is in the information retrieval domain, such as
bug triage [43] or recommending code snippets [44].

Actually +ve | Actually -ve
Predict Positive 5 45
Predict Negative 5 45

We can see the proportion of cases correctly classified is
0.5 i.e,, TP+TN/n = 5+45/100. This yields an F; of 0.17
on a scale [0,1] which is somewhat difficult to interpret.
Let us compare F; with MCC. In this case, MCC=0 which
is intuitively reasonable since there is no association
between predicted and actual.

Actually +ve | Actually -ve
Predict Positive 5 45
Predict Negative 5 0

Now suppose the True Negatives are removed so
n=55. F; remains unchanged at 0.17 whilst MCC=-
0.67 signifying substantially worse than random per-
formance. The proportion of correctly classified cases
is now 5/55 = 0.09, clearly a. great deal worse than
guessing and so we have a perverse classifier. However,
F, cannot differentiate between the two situations. This
means experimental analysis based upon F; would be
indifferent to the two outcomes.

This example illustrates not only the drawback of Fy,
but also the weakness of all derivative measures from
Recall and. Precision as they ignore TNs. Measures such
as Accuracy and the F-measure are also known to be
biased as they are sensitive to data distributions and the
prevalence of the positive class [47]. Thus, we seek a
measure that satisfies the following requirements:

1) A single metric to cover the whole confusion ma-
trix because one can always be optimized at the
expense of the other we seek a single metric to
compare classifiers;

2) Easy to interpret so in our case aligned from plus
unity for a perfect classifier, through zero for no as-
sociation, i.e., random performance to minus unity
for a perfectly perverse classifier;

3) Properly takes into account the underlying fre-
quencies of true and negative cases;

4) Evaluates a specific classifier, as opposed to a fam-
ily of classifiers such as is the case for the Area
Under the Curve (AUC) measure [48]

The fourth requirement needs further discussion in
that AUC—another commonly used measure for eval-
uating classifiers—is also problematic. AUC calculates
the area under an ROC curve which depicts relative
trade-offs between TPR (true positive rate which is
TP/(TP+EN)) and FPR (false positive rate which is
FP(FP+TN)) of classification for every possible threshold.
One classifier can only be preferred to another if it
strictly dominates i.e., every point on the ROC curve of
this classifier is above the other curve. Otherwise, we
cannot definitively determine which classifier is to be
preferred since it will depend upon the relative costs of
FPs and FNs.
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TABLE 3: Points on the A and
B ROC curves

Fig. 1: ROC curves of Classifier
A (the solid curve) and Classifier
B (the dotdash curve)

Consider the example in Fig. 1 that shows ROC curves
for two classifiers (Classifier Family A and Classifier
Family B) derived from the values of some points on
these curves (Table 3). We can observe that B is better
than A when FPR is less than 0.4, but this reverses
when FPR is greater than 0.4. Without knowing the
relative costs of FP and FN we cannot determine which
classifier is to be preferred. As a compromise, the area
under the curve can be calculated to quantify the overall
performance of classifier families, i.e. the AUC of A is
0.725 which is greater than the AUC of B (0.704). The
AUC values indicate A is better than B, but this still
doesn’t help us determine which specific classifier we
should actually choose.

Moreover, AUC is incoherent in that it is calculated on
different misclassification cost distributions for different
classifiers [49], since various thresholds relate to varying
misclassification costs. Hence we conclude AUC is un-
suitable for our purposes. Consequently, we select MCC
as our performance measure.

3.2 Algorithm Evaluation

In order to be as comprehensive as possible, we apply
a total of 17 different imbalanced learning methods (16
plus a null method - see Table 4) to seven standard
classifiers chosen to be representative of commonly used
approaches [1] (see Table 5). We then use seven classes
of input metric (see Table 6). Since the design is factorial
this yields 833 combinations which are evaluated across
27 different data sets as a repeated measure design as this
enables us to compare performance between approaches
for a given data set.

Then for each combination we use MxN-way cross-
validation to estimate the performance of each classifier,
that is, each data set is first divided into N bins, and
after that a predictor is learned on (N-1) bins, and then
tested on the remaining bin. This is repeated for the N
folds so that each bin is used for training and testing
while minimizing the sampling bias. Moreover, each
holdout experiment is also repeated M times and in

Method Type Abbr Method Name Ref
us Under-Sampling [17]
Sub-sampling (O] Over-Sampling [17]
methods uos Underover-Sampling | [17]
SMOTE SMOTE [17]

Cost-sensitive Cos Cost-sensitive
methods learning [50]
Ensemble Bag Bagging [15]
methods Bst Boosting [16]
EMivl EM1vl [33]
UBag UnderBagging [13]
OBag OverBagging [30]
Imbalanced UOBag | UnderoverBagging | [13]
ensemble SBag SMOTEBagging [13]
methods UBst UnderBoosting [31]

OBst OverBoosting

UOBst" | UnderoverBoosting

SBst SMOTEBoosting [32]

TABLE 4: Summary of imbalanced learning methods

Abbr Classification Algorithm Ref
LR Logistic Regression [6], [51]
NB Naive Bayes [52]
C4.5 Decision tree [4]
1Bk Instance based kNN [53]

Ripper Rule based Ripper [54]

SVM | Support vector machine (SMO) [55]

RF Random Forest [7]

TABLE 5: Summary of classifiers

each repetition the data sets are randomized. In our case
M =10 and N = 10 so overall, 100 models are built and
100 results obtained for each data set.

To summarize, the experimental process is shown
by the following pseudo-code. Notice that attribute
selection is applied to the training data of each base
learner, see Lines 14 and 22.

3.3 Statistical Methods

Given the performance estimates of each classifier on
every dataset, how to determinate which classifier is

Input Metrics Metrics Type Ref

CK Source Code metrics | [56]

NET Network metrics [57]
PROC Process metrics [4]
CK+NET Combined metrics -
CK+PROC Combined metrics -
NET+PROC Combined metrics -
CK+NET+PROC Combined metrics -

TABLE 6: Input metric classes used in our experiment
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Procedure Experimental Process

1 M« 10; /+the number of repetitionsx/
2 N «+ 10; /*the number of foldsx*/
3 DATA < {D:, Ds,...,D,} /+software data setsx/
4
5

Learners < {C4.5, RE, SVM, Ripper, IBk, LR, NB};
ImbalancedMethods <— {Bag, Bst, US, OS, UOS, SMOTE, COS, EM1v1,
UBag, UOBag, OBag, SBag, UBst, OBst, UOBst, SBst};

6 for each data € DATA do

7 for each times € [1,M] do /+M times N-fold
cross-validation*/
8 data’ <+ randomize instance-order for data;
9 binData < generate N bins from data’;
10 for each fold € [1,N] do
1 testData <— binData[fold];
12 trainingData < data’ - testData;
13 for each learner € Learners do
/*evaluate standard learning */
14 trainingData’ < attributeSelect(trainingData);
15 classifier < learner(trainingData’);
16 learnerPerformance <— evaluate classifier on testData;
17 for each imbMethod € ImbalancedMethods do
18 T <« iteration number of imbMethod;
/*build classifiers from each standard
learner */
19 for each learner € Learners do
20 for each t € [1,T] do
21 Dy < generateData(t, trainingData,
imbMethod);
2 D} <+ attributeSelect(D;);
23 Cy < learner(Dy);
24 imbClassifier < ensembleClassifier({C},
t = 1..T}, imbMethod);
/+evaluate imbalanced learning */
25 imbPerformance <— evaluate imbClassifier on
testData;
better?

First we need to examine whether or not the per-
formance difference between two predictors could be
caused by chance. We use a Wilcoxon signed-rank test
(a non-parametric statistical hypothesis test used when
comparing paired data) to compare pairs of classifiers.
Like the sign test, it is based on difference scores, but
in addition to analyzing the signs of the differences, it
also takes into account the magnitude of the observed
differences. The procedure is non-parametric so no as-
sumptions are made about the probability distributions,
which is important since a normal distribution is not
always guaranteed. We correct for multiple tests by us-
ing the Benjamini-Yekutieli step-up procedure to control
the false discovery rate [58]. Then the Win/Draw/Loss
record is used to summarise each comparison by pre-
senting three values, i:e., the numbers of data sets for
which Classifier Cd; obtains better, equal, and worse
performance than Classifier C'ds.

Next, effect size is computed since it emphasises the
size of the difference rather than confounding this with
sample size [59]. The effect statistics of difference (av-
erage improvement) and dominance (Cliff’s ) are both
reported. Cliff’s ¢ is a non-parametric robust indicator
which measure the magnitude of dominance as the
difference between two groups [60]. It estimates the
likelihood of how often Predictor Cd; is better than
Predictor C'd,. We use the paired version since our data
are correlated [61], [62]. By convention, the magnitude

of the difference is considered trivial (|§| < 0.147), small
(0.147 <= |8] < 0.33), moderate (0.33 <= |d| < 0.474), or
large (|6] >= 0.474) as suggested by Romano et al. [63].

3.4 Software Metrics

As indicated, we are interested in three classes of metric
based upon static code analysis, network analysis and
process. These choices are made because static code
metrics are most frequently used in software defect
prediction [64], network metrics may have a stronger
association with defects [57] and process metrics reflect
the changes to software systems over time. We also
consider combinations of these metrics yielding a total
of seven possibilities (Table 6). The details are as follows:

(1) Source code metrics measure the ‘complexity” of
source code and assume that the more complex the
source code is, the more likely defects are to appear.
The most popular source code metrics suite is the
Chidamber-Kemerer (CK) metrics [56] which are de-
tailed in Appendix A.1. All six CK metrics and LOC
(lines of code) were chosen as code metrics in this paper
and marked as CK.

(2) Network metrics are actually social network analy-
sis (SNA) metrics calculated on the dependency graph of
a software system. These metrics quantify the topological
structure of each node of the dependency graph in a
certain sense, and have been found as effective indicators
for software defect prediction [57]. In this study, the
networks are call graphs of software systems, where the
nodes are the components of a software and the edges
are the call dependencies among these components. The
DependencyFinder® tool was used to extract the call
relations. Once networks are built, the UCINET tool was
employed to calculate three kinds of network (NET) met-
rics of dependency networks, i.e., Ego network metrics,
structural metrics and centrality metrics. The details of
25 types of SNA metrics are given in the Appendix A.2.

(3) Process metrics represent development changes
on software projects. We extracted 11 process (PROC)
metrics, which were proposed by Moser et al. [4] from
the CVS/SVN repository of each specific open source
project (see Appendix A.3).

3.5 Data Sets

The PROMISE repository [65] includes many software
defect prediction data sets that are publicly available
and widely used by many researchers from which we
selected 22 data sets. To this we added a further 5 from
D’Ambros et al.’s defect prediction benchmark data sets
[66]. Thus we use a total of 27 data sets derived from
13 distinct software projects, since there are multiple
releases for many of these projects (e.g., ant has releases
1.3 to 1.6 see Table 7). From these data sets we extract the
necessary metrics and also calculate the imbalance ratio

6. http:/ /depfind.sourceforge.net/
7. http:/ /www.analytictech.com/ucinet/
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(IR®). These show considerable diversity ranging from
1.51 to 43.73.

Note that although the NASA MDP data sets have
been widely used in developing defect prediction mod-
els we do not use them because “although the repository
holds many metrics and is publicly available, it does
have limitations. It is not possible to explore the source
code and the contextual data are not comprehensive
(e.g., no data on maturity are available). It is also not
always possible to identify if any changes have been
made to the extraction and computation mechanisms
over time. In addition, the data may suffer from impor-
tant anomalies.” [1].

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first look at the basic characteristics

of imbalanced learning problem on software defect pre-

diction by investigating:

RQ1) How does the level of predictive performance
vary?

RQ2) How does the standard learning perform under
imbalance?

RQ3) How does the imbalanced learning perform com-
pare with standard learning?

RQ4) What is the relationship between the imbalance
ratio (IR) and the effect of imbalanced learning?

Then we explore the effect of imbalanced learning and its
complex interactions with our three experimental factors
by answering the following questions:

RQ5) How do classifiers matter?
RQ6) How do input metrics matter?
RQ7) How do imbalanced learning methods matter?

41

As we discussed in Section 3.1 our choice of a measure
of predictive performance (i.e., our response variable)
is MCC. It is unbiased and is easy to interpret as a
correlation coefficient (+1 denotes perfect classification,
0 no association between predicted and actual and -1 a
perfectly perverse classification).

Table 8 provides some basic summary statistics for our
response variable. First, we observe considerable spread
from a maximum of 0.679 to a disappointing -0.112. Note
that negative values indicate perverse performance and
an immediate improvement could be achieved by doing
the opposite of what the classifier predicts! Next it can
be seen that there is negative skewness and the median
exceeds the mean. The kurtosis is 2.67 which suggests
rather fat tails, again confirmed by visual inspection of
the histogram and also of the qqplot in Fig. 2 where
we see the tails deviating from the expected normal
distribution shown as a red line. This suggests the need
for non-parametric and robust statistical techniques [79]

Variation in predictive performance

8. IR is defined as the ratio of the number of the majority class
instances to the number of the minority class instances [67]

Normal Q-Q Plot

MCC
0.4

0.2

0.0

norm quantiles

Fig. 2: QQplot of predictive performance (MCC)

MCC
02 03 04 05 06 07

00 0.1

Imbalance Ratio

Fig. 3: Performance of predictive performance (MCC)
without imbalanced learning

So the answer for RQ1 is that the distribution of
predictive performance (MCC) departs from normality
at a level that cannot be ignored. This would indicate
that parametric techniques should be used with caution
and robust statistics are to be preferred.

4.2 Performance of Standard Learning

To understand what happens if we only employ stan-
dard learning, we show the relationship between the
imbalance ratio and the predictive performance (MCC)
without imbalanced learning (see Fig. 3 ). The red line is
drawn by a non-parameter smoother (loess smoothing)
and the dotted lines indicate £+ one standard deviation.
From this enhanced scatter plot we observe that im-
balance ratio has a negative impact upon classification
performance; broadly speaking the more imbalanced the
data set the worse the prediction. Although most obser-
vations are located in the range [1,10] of IR (excepting
the observations from two extremely imbalanced data
sets), the smoothed line reduces rapidly. It can be seen
that even a small increase in the imbalance ratio can
potentially cause a substantial reduction in predictive
performance even the imbalance ratio is not high.
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Defective Defective

Data Modules Modules IR References Data Modules Modules IR References

ant-1.3 125 20 525 | [68], [69] log4j-1.0 135 34 297 | [70], [71]

ant-1.4 178 40 3.45 [68], [69] poi-2.0 314 37 7.49 | [68], [69]

ant-1.5 293 32 8.16 | [68], [69] synapse-1.0 157 16 8.81 | [68], [69]

ant-1.6 351 92 2.82 [68], [69] synapse-1.1 222 60 2.7 [68], [69]

camel-1.0 339 13 25.08 | [68], [69] synapse-1.2 256 86 1.98 | [68], [72], [69]

camel-1.2 608 216 1.81 [68], [69] velocity-1.6 229 78 1.94 | [68], [72], [69]

camel-1.4 872 145 501 | [68], [73], [69] || xerces-1.2 440 71 520 | [68], [69], [74]

[68], [73], [69] [68], [69], [74]

camel-1.6 965 188 4.13 (701, [71] xerces-1.3 453 69 5.57 (70, [71]

ivy-2.0 352 40 7.8 | [68], [72], [69] }Elnglpézre_ a4 997 206 3.84 | [66], [75], [74]

jedit-3.2 272 90 2.02 {?i} [69], [76] Egg’ﬁa 1 1497 209 6.16 | [66], [751,[71]

L. [78], [68], [69] Equinox

jedit-4.0 306 75 3.08 76l 771, 170] || frameworkea.4 324 129 1.51 | [66], [75],[71]
[66], [68], [75]

jedit-4.1 312 79 295 | [78],[76], [77] || Lucene-2.4.0 691 64 9.80 | [73], [69], [72]
[74], [70],[71]

jedit-4.2 367 48 6.65 | [78], [76], [77] || Mylyn-3.1 1862 245 6.6 | [66][71]

1
jedit-4.3 492 11 43.73 gi}' (72, [76] Mean 496.63 88.63 6.91
TABLE 7: Description of the 27 Data Sets
Statistic | Value Statistic Value
Min 0112 Max 0.679 Histogram of Difference
Mean 0.319 Median 0.335 i
sd 0.137 || Trimmed (0.2) sd | 0.140 3 u
Skewness | -0.271 Kurtosis 2.672 &

TABLE 8: Summary statistics for predictive performance
(MCQ)

The robust percentage bend correlation coefficient [79]
is -0.524 with p < 0.0001. This indicates a moderate
negative correlation between the performance and IR
which confirms the smoothing line. Therefore, the an-
swer to RQ2 is that the performance of standard learning
is highly threatened by the imbalance of defect data. It is
clear that any means of addressing imbalance in the data
is potentially important for software defect prediction.

4.3 Does imbalanced learning help defect predic-
tion?
Our next research question explores whether there is
an effect on defect prediction through applying imbal-
anced learning algorithms. An effect means a non-zero
difference between imbalanced learning and standard
learning and of course we are most interested in positive
effects, i.e., a greater correlation. The data are correlated
or paired as a result of the repeated measure design
of the experiment thus we can compute the difference
between predicting defects with and without an imbal-
anced learner for each data set.

Fig. 4 shows the distribution of the effect (difference)
as a histogram. The shaded bars in the histogram indi-

Frequency
1500
1

500

[ T T 1
-0.2 0.0 0.2 0.4

Difference on MCC

Fig. 4: Histogram of differences in predictive perfor-
mance (MCC) with and without imbalanced learning

Statistic | Value Statistic Value
Min -0.258 Max 0.504
Mean 0.050 Trimmed mean 0.033
sd 0.092 || Trimmed (0.2) sd | 0.069
Skewness | 1.246 Kurtosis 5.041

TABLE 9: Summary statistics for differences in perfor-
mance (MCC) with and without imbalanced learning

cate negative effects, i.e., the imbalanced learning makes
the predictive performance worse. Overall, this happens
in about 29% of the cases. Careful examination of these
negative cases suggests that imbalanced learning can be
counter-productive due to the lack of structure to learn
from for challenging datasets.
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Fig. 5: Boxplot for differences in performance with and
without imbalanced learning on 5 imbalance levels

Table 9 provides summary statistics of the differences.
We see that the standard deviation (sd) and trimmed sd
are both larger than mean or median. This indicates that
there is a good deal of variability in impact and that the
possibility of negative effects from imbalanced learning
cannot be ignored. The kurtosis is considerably greater
than 3 which implies a very heavy tailed distribution.
This all indicates that our analysis needs robust statistics.
Therefore using the percentile bootstrap method [79]
we can estimate the 95% confidence limits around the
trimmed mean 0.033 as being (0.032, 0.034). We can
be confident the average difference between using an
imbalanced learner and not is a small positive effect
on the ability to predict defect prone software. So the
answer for RQ3 is that overall the effect is small but
positive, however, there is a great deal of variance must
not be ignored.

Interestingly these results are not limited to software
defects. Lopez et al. [67] identify a number of intrinsic
data set characteristics that have a strong influence on
imbalanced classification, namely, small disjuncts, lack
of density, lack of class separability, noisy data and
dataset shift. They also pointed out that a reduction of
performance could happen across the range of imbalance
ratios. This means imbalanced learning is not a simple
panacea for all situations. It must be carefully chosen and
applied on software defect prediction. In the following
sections we report Cliff’s § and drill deeper to better
understand factors that are conducive to successful use
of imbalanced learning.

4.4 Effect of the Imbalance Ratio

Next, we present in Fig. 5 the distributions of effect (dif-
ference) as boxplots grouped into five bins ranging from
extremely imbalanced to almost balanced (the rationale
for the bins is given in Fig. 6). The notches show the
95% confidence intervals around the median (shown as
a thick bar).

40-

30-

IR

20-

10-
- sBEERE ’_ﬂ_ﬂﬂl_m m
142 244 4'8 8~16

Imbalance Levels

16~64
Fig. 6: Data sets’ IR in 5 imbalance levels

We observe IR impacts the predictive difference of
performance such that the benefits of using an imbal-
anced learner are greatest when the Imbalance Ratio is
most extreme. This is to be expected since the standard
learning is predicated on learning from an imbalanced
distribution. For each bin, Table 11 presents the effect
size as both average improvement (difference in MCC)
and dominance statistics which show the stochastic like-
lihood that imbalanced learning is better than nothing.
As shown in' the table the higher IR is, the greater
improvement the imbalanced learning can gain, which
confirms Fig. 5. Also we are confident that the im-
provement is-larger than 0.046 when IR>4 with a non-
small Cliff’s ¢ that could interpret a good change to
get improved by imbalanced learning, which is the case
imbalanced learning should be considered.

IR Average Improvement Cliff’s ¢
1~2 0.013 (0.011, 0.014) +S (+S +S)
2~4 0.022 (0.020, 0.023) +M (+S +M)
48 0.048 (0.046, 0.050) +L (4L +L)
8~16 | 0.053 (0.048, 0.058) | +M (+M +M)

16~64 | 0.076 (0.070,0.082) | +L (+M +L)

TABLE 10: Effect size (and confidence interval) by imbal-
ance ratio bin. Direction is denoted by + or -. For Cliff’s
Jd, size is denoted as follows: N=negligible, S=small,
M=medium, L=large

The overall, robust correlation coefficient’ is
(0.216,p < 0.0001) which indicates non-zero but
weak association between IR and improvement as the
answer for RQ4.

4.5 Effect of Classifier Type

In our experiment we investigate seven different types of
classifier (listed in Table 5). Fig. 7 shows the difference
i.e., the effect achieved by introducing an imbalanced
learning algorithm as boxplots organised by classifier
type. Support vector machines (SVM) consistently ben-
efit from imbalanced learning. This is in line with

9. We use the percentage bend correlation coefficient from pbcor in
the WRS2 R package.
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Fig. 7: Boxplot of differences in performance (MCC) with
and without imbalanced learning by classifiers

Batuwita and Palade [80] who report that “The sepa-
rating hyperplane of an SVM model developed with an
imbalanced dataset can be skewed towards the minority
class, and this skewness can degrade the performance
of that model with respect to the minority class”. Oth-
erwise, there is little evidence of any consistent positive
effect, particularly for Naive Bayes (NB) classifiers which
do not appear sensitive to imbalance. In all cases, there
are long whiskers suggesting high variability of perfor-
mance and in all cases the whiskers extend below_zero
suggesting the possibility (though falling outside the
95% confidence limits given in Table 11) of a deleterious
or negative effect. Therefore we provide both the average
improvement and the probability to gain improvement.

Classifier | Average Improvement Cliff’s 0
SVM 0.145 (0.140 0.151) +L (+L +L)
C4.5 0.042 (0.040, 0.045) +M (+M +L)

LR 0.038 (0.036, 0.040) +L(+L +L)
Ripper 0.028 (0.026, 0.031) +S (+S +M)
1Bk 0.023 (0.021, 0.025) +S (+S +M)
RF 0.018 (0.017, 0.020) +M (+S +M)
NB 0.006 (0.004, 0.007) +N (+N +S)

TABLE 11: Effect size compared with no imbalanced
learning by algorithm

Table 11 presents the effect size of both two statistics
for each type of classifier in the decreasing order of the
average improvement. As we can see the large positive
effect for SVM confirms that there are opportunities to
improve SVM by imbalanced learning. The effect size
also reflects the sensitivity of each type of the classifiers
to the IR. Naive Bayes is insensitive to imbalanced
distribution therefore the effect size on NB is very small.
So as for RQ5, classifiers’ sensitivity to imbalance largely
influence the effect size.

4.6 Effect of Input Metrics

The next factor in our experiment is the type of input
metric. Seven different classes are summarized in Table

0.50-

0.25-

s —L =1 S o s o [ s

Differenc on MCC

-0.25-

RS
< o© oC ??\O
ok & o° NG o o AR
= & o o & d\x\%
Input Metrics

Fig. 8: Boxplot of differences in performance (MCC) with
and without imbalanced learning by metrics

6 and the distributions of the difference on predictive
performance through imbalanced learning shown as
boxplots grouped by Metrics in Fig. 8. The red dotted
line shows zero difference or no'effect. Overall we see a
high level of similarity between the boxplots and also the
effect size of each type of input metric is not significantly
different (see Table 12). This indicates little difference in
responsiveness to imbalanced learning by type of input
metric, which is the answer for RQ6.

Input Metrics Average Improvement Cliff’s §
CK 0.043 (0.039, 0.046) +M (+M +L)
NET 0.035 (0.033, 0.038) +M (+M +M)
PROC 0.036 (0.033, 0.039) +M (+M +M)
CK+NET 0.035 (0.033, 0.038) +M (+M +L)
CK+PROC 0.027 (0.024, 0.030) | +M (+M +M)
NET+PROC 0.030 (0.027, 0.032) +M (+M +M)
CK+NET+PROC |  0.029 (0.027 0.032) | +M (+M +M)

TABLE 12: Effect size compared with no imbalanced
learning by input metrics

However, in passing we do note that there is consid-
erable difference in overall predictive performance de-
pending upon the class of input metric (see Fig. 9. Here
there is evidence of much more of an effect between the
different input metrics with the best performance from
the widest range of input metrics (CK+NET+PROC).

4.7 Detailed comparisons of imbalanced learner al-
gorithms

Next we review the impact by specific, imbalanced learn-
ing algorithm. Fig. 10 shows side by side boxplots for the
difference each algorithm makes over no algorithm. The
red dashed line shows zero difference. It can be seen that
all types of imbalanced methods are capable of produc-
ing negative impacts upon the predictive capability of
a classifier. In such case, dominance statistics are useful
to quantify the likelihood that one is better than another
(see Table 13).
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Fig. 10: Boxplot of differences in performance (MCC)
with and without imbalanced learning by imbalanced
learner

Additionally, Table 13 shows the average improve-
ment. The values in parentheses give the lower and
upper bounds of 95% confidence limits. The algorithms
are organised in decreasing order of improvement rang-
ing from 0.069 to 0.008. The five types of imbalanced
methods that show the largest positive effect in both
improvement and Cliff’s § are UOBag, UBag, SBag, OBag
and EM1v1.

Combining all the previous analyses Table 14 sum-
marises the results broken down by imbalanced learning
algorithm, classifier and input metrics as win/draw /loss
counts from the 27 data sets in our experiment. We then
use the Benjamini-Yekutieli step-up procedure [58] to
determine significance!’. This is indicated by the graying
out of the non-significant cells.

Table 14 summarizes the Win/Draw/Loss (W/D/L)
records of comparisons between imbalanced learners in
the first row and standard learners in the first column
over the seven different types of metric data shown
in the second column. Each cell contains three counts
W/D/L for the imbalanced learner against no learning.

10. We need a correction procedure such as Benjamini-Yekutieli since
we are carrying out a large (784 to be exact) number of significance
tests. We prefer a more modern approach based on a false discovery
rate than other more conservative corrections such as Bonferroni.

Classifier Improvement Cliff’s 0
UOBag | 0.069 (0.065, 0.074) | +L (+L+L)
UBag | 0.067 (0.063, 0.072) | +L (+L +L)
SBag | 0.058 (0.054, 0.062) | +L (+L+L)
OBag | 0.049 (0.045, 0.054) | +L (+L,+L)
EMIvl | 0.047 (0.043,0.052) | +L (+L+L)
UBst | 0.039 (0.035, 0.044) | +M (+M,+L)
SMOTE | 0.034 (0.030, 0.039) | +M (+M,+M)
COS | 0.030 (0.027, 0.033) | +L (+M,+L)
SBst | 0.030 (0.026, 0.034) | +M (+S,+M)
0S 0.023 (0.019, 0.027) | +S (+S,+9)
OBst | 0.022 (0.018, 0.026) | +S (+5,+S)
UOBst 0.022 (0.018, 0.026) +S (+S,+S)
uUs 0.017 (0.012, 0.021) | +N (+N,+S)
Bag 0.013(0.011, 0.015) | +M (+S,+M)
Uos 0.013 (0.008, 0.018) | +N (+N,+N)
Bst 0.008 (0.005, 0.011) | +N (+N,+S)

TABLE 13: Effect size compared with no imbalanced
learning by imbalanced method

iM uses standard learner S as its base learner obtained
better, equal, or worse performance outcomes than S
using MCC (the performance measure introduced in
Section 4). If tM wins S more than loses, a Wilcoxon
test is used to verify the assumption ¢M is better than S.
A table cell is shaded if iM does not win S more than
lose or iM is not significantly better than S.

So from Table 14 we focus on the white areas as
these represent statistically significant results and show
the intersection of Imbalanced Learning algorithm, base
classifier and type of metric. From this we derive five
findings.

1) There is greater variability in the performance of
the imbalanced learning algorithms compared with
standard learner. Yet again this reveals that not
all imbalanced learning algorithms can improve
the performance of every classifier and indeed no
algorithm is always statistically significantly better.

2) Approximately half of the table cells are unshaded.
This indicates if the imbalanced learning algorithm,
classifier and input metrics can be carefully chosen,
there are good opportunities to improve predictive
performance.

3) The choice of imbalanced learning algorithm
strongly depends upon the base classification al-
gorithm. For instance, all the table cells of SVM
are unshaded except five cells in the COS column.
This indicates that all 16 learner types, excluding
COS, can improve SVM for all input metrics. By
contrast, none of these algorithms can improve NB
as almost all table cells for the NB row are shaded.
This supports the idea that NB is insensitive to
imbalanced data distribution and therefore is hard
to be improve.
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Metrics Bag | Bt | US 0s UOos SMOTE COs EMIvl UBag OBag UOBag SBag UBst OBst UOBst SBst

CK 17/1/9  16/0/11  17/0/10 | 18/0/9 | 17/0/10 | 18/0/9 | 22/0/5 | 18/4/5 | 24/0/3 | 21/0/6 | 24/0/3 | 25/0/2 19/0/8 | 16/0/11 | 17/0/10 | 19/0/8

NET 21/0/6 | 19/0/8 18/0/9 | 17/0/10 | 16/0/11 | 24/0/3 | 26/0/1 | 20/4/3 | 26/0/1 | 25/0/2 | 27/0/0 | 26/0/1 | 21/0/6 | 21/0/6 | 18/0/9 | 19/0/8

PROC 17/0/10  15/0/12 | 19/0/8 | 15/0/12 | 16/0/11 | 19/0/8 | 24/0/3 | 18/4/5 | 23/0/4 | 21/0/6 | 21/0/6 | 22/1/4 | 21/0/6 | 16/0/11 | 16/0/11 | 18/0/9

cas CK+NET 23/0/4 | 22/0/5  16/0/11 | 19/0/8 | 15/0/12 | 21/0/6 | 27/0/0 | 21/2/4 | 27/0/0 | 27/0/0 | 27/0/0 | 27/0/0 | 21/0/6 | 22/0/5 | 22/0/5 | 22/0/5

CK+PROC 19/0/8 16/0/11 15/0/12 11/0/16 11/0/16 17/0/10 22/0/5 19/4/4 21/0/6 20/0/7 22/0/5 21/0/6 16/0/11 17/0/10 15/0/12 16/0/11

NET+PROC 23/0/4  20/0/7  14/0/13 | 11/0/16 | 8/0/19 | 16/0/11 | 21/0/6 | 18/4/5 | 25/0/2 | 22/0/5 | 26/0/1 | 24/0/3 | 17/0/10 | 19/0/8 | 19/0/8 | 20/0/7

CK+NET+PROC | 23/0/4 | 19/0/8  12/0/15 | 12/0/15 | 9/0/18 | 14/0/13 | 25/0/2 | 22/3/2 | 27/0/0 | 23/0/4 | 27/0/0 | 25/0/2 18/0/9 | 19/0/8 | 19/0/8 | 19/0/8

CK 19/0/8  13/0/14  12/0/15 | 16/0/11 | 13/0/14 | 18/0/9 | 22/0/5 | 21/0/6 | 25/0/2 | 20/0/7 | 25/0/2 | 23/0/4 19/0/8 | 16/0/11 | 15/0/12 | 19/0/8

NET 17/0/10  17/0/10  9/0/18 | 17/0/10 | 15/0/12 | 21/0/6 | 24/0/3 | 21/0/6 | 24/1/2 | 21/0/6 | 26/0/1 2/0/5 | 17/0/10 | 16/0/11 | 12/0/15 | 17/0/10

PROC 13/0/14  12/0/15  17/0/10 | 17/0/10 | 16/0/11 | 20/0/7 | 20/0/7 | 21/1/5 | 24/0/3 19/0/8 | 24/0/3 20/0/7 | 19/0/8 | 14/0/13 | 14/1/12 | 18/0/9

RF CK+NET 16/0/11  17/0/10  5/0/22 | 18/0/9 | 14/0/13 | 19/0/8 | 22/0/5 | 22/0/5 | 25/0/2 | 22/0/5 | 26/0/1 | 21/0/6 21/0/6 | 18/0/9 | 13/0/14 | 20/0/7

CK+PROC 21/0/6  17/0/10  7/0/20 | 12/0/15 | 11/0/16 | 19/0/8 | 23/0/4  20/0/7 | 26/0/1 | 25/0/2 | 26/0/1 | 24/0/3 18/0/9 | 19/0/8 | 12/0/15 | 17/0/10

NET+PROC 20/0/7  16/0/11  8/0/19 | 13/0/14 | 11/0/16 | 19/0/8 | 22/0/5 | 18/0/9 | 24/0/3 19/0/8 | 25/0/2 | 22/0/5 | 20/0/7 | 17/0/10 | 13/0/14 | 18/0/9

CK+NET+PROC | 18/0/9  21/0/6  5/0/22 | 15/0/12 | 10/0/17 | 16/1/10 | 21/0/6 | 19/0/8 | 24/0/3 19/0/8 | 26/0/1 | 21/0/6 | 21/0/6 22/0/5 | 15/0/12 | 17/0/10

CK 14/11/2 | 20/2/5 | 25/0/2 | 25/0/2 | 25/0/2 | 25/0/2 | 9/7/11 | 21/3/3 | 25/0/2 | 25/0/2 | 25/0/2 | 25/0/2 | 24/0/3 | 25/0/2 | 25/0/2 | 25/0/2

NET 17/4/6 | 22/0/5 | 23/1/3 | 25/1/1 | 23/0/4 | 24/1/2 16/2/9 | 23/1/3 | 25/1/1 | 25/1/1 | 25/1/1 | 25/1/1 | 22/0/5 | 25/0/2 | 24/0/3 | 24/0/3

PROC 11/9/7 | 20/4/3 | 27/0/0 | 25/0/2 | 27/0/0 | 25/0/2 7/7/13 | 26/0/1 | 27/0/0 | 25/0/2 | 26/0/1 | 25/0/2 | 27/0/0 | 27/0/0 | 26/0/1 | 26/0/1

SVM CK+NET 20/1/6 | 23/0/4 | 25/0/2 | 26/0/1 | 23/0/4 | 26/0/1 | 15/0/12 | 25/1/1 | 27/0/0 | 26/0/1 | 26/0/1 | 26/0/1 | 23/0/4 | 24/0/3 | 25/0/2 | 24/0/3
CK+PROC 17/5/5 | 24/0/3 | 25/0/2 | 24/0/3 | 26/0/1 | 26/0/1 | 10/2/15 | 22/1/4 | 26/0/1 | 24/0/3 | 26/0/1 | 26/0/1 | 26/0/1 | 25/0/2 | 26/0/1 | 26/0/1
NET+PROC 21/2/4 24/0/3 24/0/3 25/1/1 24/0/3 25/0/2 14/1/12 23/1/3 25/1/1 25/1/1 25/1/1 25/1/1 25/0/2 25/0/2 25/0/2 25/0/2
CK+NET+PROC 22/2/3 23/0/4 23/0/4 25/0/2 24/0/3 25/0/2 17/1/9 24/1/2 24/1/2 25/1/1 25/1/1 25/0/2 24/0/3 25/0/2 25/0/2 24/0/3

CK 13/0/14  10/0/17  16/0/11 | 17/0/10 | 15/0/12 | 17/0/10 | 23/0/4 | 17/0/10 | 20/0/7 | 21/0/6 | 22/0/5 | 24/1/2 20/0/7 | 13/0/14 | 16/0/11 | 15/0/12

NET 16/1/10  11/0/16  15/0/12 | 15/0/12 | 14/0/13 | 20/0/7 | 22/0/5 | 22/0/5 | 24/0/3 | 26/0/1 | 27/0/0 | 26/0/1 21/0/6 | 13/0/14 | 17/0/10 | 16/0/11

PROC 12/0/15  10/0/17  16/0/11 | 14/0/13 | 14/0/13 | 18/0/9 | 23/0/4 | 20/0/7 | 21/0/6 | 20/0/7 | 24/0/3 | 22/0/5 | 19/0/8 | 11/0/16 | 17/0/10 | 15/0/12

Ripper CK+NET 17/0/10  14/0/13  13/0/14 | 14/0/13 | 11/0/16 | 14/0/13 | 23/0/4 | 20/0/7 | 23/0/4 | 26/0/1 | 26/0/1 | 25/0/2 | 14/0/13 | 20/0/7 | 15/0/12 | 16/0/11

CK+PROC 17/0/10  10/0/17  15/0/12 | 13/0/14 | 12/0/15 | 16/0/11 | 22/0/5 | 20/0/7 | 22/0/5 | 22/0/5 | 23/0/4 | 22/0/5 | 16/0/11 | 11/0/16 | 11/0/16 | 12/0/15

NET+PROC 17/0/10  14/0/13  14/0/13 | 11/0/16 | 10/0/17 | 19/0/8 | 22/0/5 | 23/0/4 | 23/0/4 | 24/0/3 | 25/0/2 | 24/0/3 | 15/1/11 | 18/0/9 | 15/0/12 | 17/0/10

CK+NET+PROC | 21/0/6  16/0/11  12/0/15 | 13/0/14 | 8/0/19 | 16/0/11 | 21/0/6 | 22/0/5 | 25/0/2 | 25/0/2 | 27/0/0 | 26/0/1 19/0/8 | 17/0/10 | 16/0/11 | 18/0/9

CK 15/0/12  8/0/19  13/0/14 | 15/0/12 | 9/0/18 | 19/0/8 17/1/9 | 19/4/4 | 22/0/5 18/0/9 | 22/0/5 | 22/1/4 18/0/9 | 12/0/15 | 14/0/13 | 15/0/12

NET 21/0/6  17/0/10  13/0/14 | 18/0/9 | 7/0/20 | 19/0/8 | 21/0/6 | 21/4/2 | 22/0/5 | 23/0/4 | 24/0/3 | 25/0/2 | 22/0/5 19/0/8 | 19/0/8 | 18/0/9

PROC 12/0/15  9/0/18  18/0/9 | 18/0/9 | 15/0/12 | 21/0/6 | 23/0/4 | 20/4/3 | 25/0/2 20/0/7 | 24/0/3 | 21/0/6 | 21/0/6 | 15/0/12 | 16/0/11 | 16/1/10

1Bk CK+NET 20/0/7  14/0/13  10/0/17 | 13/0/14 | 8/0/19 | 17/0/10 | 20/0/7 | 17/4/6 | 21/0/6 | 21/0/6 | 23/0/4 | 25/0/2 | 19/0/8 | 14/0/13 | 14/0/13 | 20/0/7

CK+PROC 17/0/10  5/0/22  10/0/17 | 11/0/16 | 7/0/20 | 15/0/12 | 18/0/9 | 20/4/3 | 23/0/4 | 16/0/11 | 22/0/5 | 23/0/4 18/0/9 | 8/0/19 | 13/0/14 | 15/0/12

NET+PROC 18/0/9 16/0/11 12/0/15 14/0/13 6/0/21 19/0/8 22/0/5 21/4/2 22/0/5 22/0/5 24/0/3 27/0/0 22/0/5 14/0/13 15/0/12 19/0/8

CK+NET+PROC 18/0/9 15/0/12 10/0/17 11/0/16 6/0/21 15/0/12 20/0/7 19/4/4 22/0/5 20/0/7 25/0/2 27/0/0 22/0/5 13/0/14 15/0/12 17/0/10

CK 17/1/9  13/0/14 | 23/0/4 | 23/0/4 | 23/0/4 | 22/0/5 | 23/0/4 | 20/4/3 | 26/0/1 | 25/0/2 | 24/0/3 | 24/0/3 | 24/0/3 | 22/0/5 | 23/0/4 | 26/0/1

NET 18/1/8  13/0/14  16/0/11 | 18/0/9 | 16/0/11 | 18/0/9 | 21/0/6 | 21/4/2 | 22/0/5 | 24/0/3 | 23/0/4 | 23/1/3 | 21/0/6 | 17/0/10 | 17/0/10 | 21/0/6

PROC 13/0/14  15/0/12 | 21/0/6 | 22/0/5 | 20/0/7 | 20/0/7 | 21/0/6 | 19/4/4 | 23/0/4 | 21/1/5 | 24/0/3 | 24/0/3 | 23/0/4 | 22/0/5 | 21/0/6 | 23/0/4

LR CK+NET 19/0/8  14/0/13  17/0/10 | 24/0/3 | 16/0/11 | 20/0/7 | 23/0/4 | 22/4/1 | 26/0/1 | 27/0/0 | 27/0/0 |..25/0/2 | 22/0/5 18/0/9 | 16/0/11 | 23/0/4
CK+PROC 18/0/9  13/0/14  17/0/10 | 21/0/6 20/0/7 | 20/0/7 | 22/0/5 | 20/4/3 | 23/0/4 | 24/0/3 | 23/0/4 | 24/0/3 | 23/0/4 | 21/0/6 19/0/8 | 25/0/2
NET+PROC 22/0/5 15/0/12 15/0/12 19/0/8 14/0/13 18/0/9 23/0/4 19/4/4 24/0/3 21/0/6 23/0/4 23/0/4 20/0/7 16/0/11 16/0/11 20/0/7
CK+NET+PROC | 20/0/7  15/0/12  12/0/15 | 20/0/7 | 13/0/14 | 20/0/7 | 24/0/3 | 18/4/5 | 24/0/3 | 23/0/4 | 23/0/4 | 23/0/4 | 21/0/6 18/0/9 | 14/0/13 | 21/0/6

CK 2/0/5  16/0/11 | 22/0/5 | 24/0/3 | 23/0/4 19/1/7 | 21/0/6 | 20/4/3 | 24/0/3 | 23/0/4 | 23/0/4 | 22/0/5 | 23/0/4 | 21/0/6 | 22/0/5 | 17/0/10

NET 17/0/10  7/0/20  11/0/16 | 16/0/11 | 14/0/13 | 13/0/14 | 17/0/10  15/4/8 | 20/0/7 | 17/0/10 | 18/0/9 19/0/8 | 14/0/13 | 10/0/17 | 10/0/17 | 11/0/16

PROC 14/0/13  8/0/19  11/0/16 | 13/0/14 | 10/0/17 | 12/0/15 | 16/0/11  14/4/9 | 15/0/12 | 12/0/15 16/0/11  13/0/14 | 11/0/16 | 7/0/20 | 9/0/18 | 10/0/17

NB CK+NET 20/0/7  11/0/16  14/0/13 | 18/0/9 | 17/0/10 | 13/0/14 | 15/0/12  15/4/8 | 21/0/6 18/0/9 | 20/0/7 19/0/8 | 17/0/10 | 13/0/14 | 15/0/12 | 15/0/12

CK+PROC 17/0/10  10/0/17 ~ 10/0/17 | 15/0/12 | 14/0/13 | 15/0/12 | 15/0/12  16/4/7 | 19/0/8 | 15/0/12  19/0/8  18/0/9 | 15/0/12 | 12/0/15 | 12/0/15 | 15/0/12

NET+PROC 18/1/8  8/0/19  9/0/18 | 15/0/12 | 11/0/16 | 14/0/13 | 13/0/14  15/4/8 | 18/0/9 | 18/0/9  18/0/9  16/0/11 | 13/0/14 | 9/0/18 | 8/0/19 | 9/0/18

CK+NET+PROC 18/0/9 7/0/20 10/0/17 13/0/14 12/0/15 14/0/13 11/0/16 14/4/9 16/0/11 18/0/9 17/0/10 19/0/8 14/0/13 11/0/16 11/0/16 12/0/15

Note:

(1) Each cell contains the W/D/L counts of each dataset so W + D + L = 27.
(2) Shaded table cells imply a p-value greater than the threshold suggested by FDR-control procedure, i.e., the predictive performance
with imbalanced learning is not significantly better than the performance without imbalanced learning.

TABLE 14: W/D/L records of the comparison between predictive performance with and without imbalanced learning

4)

5)

The column of Bagging-based imbalanced ensem-
ble methods (UBag,” OBag, UOBag, SBag) and
Emlvl have the largest white area in Table 14
showing that they are clearly better than other
imbalanced learners for all rows of C4.5, RF, SVM,
Ripper, IBk and LR. We can see that UBag and
EM1v1 are the top two of the 16 imbalanced learner
types indicated by the largely white columns.
Therefore these imbalanced algorithms could be
recommended in most circumstances.

Bag is not as good as the Bagging-based imbal-
anced ensemble methods in that it contains more
shaded table cells in its column. Similarly Bst is
less effective than the Boosting-based imbalanced
ensemble methods. The reason behind this is that
ensemble learning methods Bagging and Boosting
aim to approximate a real target from different
directions; they are not inherently designed to deal
with imbalanced data. Sub-sampling methods fare
a little better. The underlying reason may relate
to the random error of sampling. But SMOTE
performed better probably because it brings novel
information by interpolating between existing ones

data points.

As Table 14 illustrates, we can answer RQ7 by noting
the 16 imbalanced learning methods vary a lot, how-
ever Bagging-based imbalanced ensemble methods and
EM1v1 appear to be the top methods.

5 THREATS TO VALIDITY

In this section, we identify factors that may threaten the
validity of our results and present the actions we have
taken to mitigate the risk.

The first possible source of bias is the data used. To
alleviate this potential threat, 27 defect data sets from
13 public domain software projects were selected. These
data sets are characterized by (i) they are drawn from
different types of publicly available software projects,
(ii) the data sets range considerably in size from 125
to 2196 modules and (iii) there are wide variations in
the imbalance ratio between 1.51 and 43.73. These data
sets are also widely used by many other researchers.
This enables potential replication and comparison with
findings from other experiments. Moreover, we have
made our raw results and scripts available!!. However,

11. https:/ / github.com/yuchen1990/ImbSDP
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to extend our findings it would be valuable to investigate
software defect data not drawn from the open software
community.

Stochastic data processing techniques, such as sam-
pling or dividing data into training sets and testing sets,
also can threaten validity. For this reason we have used
10 x 10-fold cross-validation in order to mitigate the
effects of variability due to the random allocation. This is
a well-established approach for comparing classification
methods in the fields of machine learning and data
mining.

Another possible source of bias are the choice of
classifiers explored by this study. There are many such
methods and any single study can only use a subset of
them. We have chosen representative methods from each
major type of standard machine learning methods. The
selected methods cover six out of seven of the categories
identified by the recent review from Malhotra [2]. Fur-
ther work might explore neural networks / evolutionary
algorithms which we excluded due to the complexities of
parameterization and execution time. Hence, we would
encourage other researchers to repeat our study with
other classifier learning methods.

6 CONCLUSIONS

In this paper, we have reported a comprehensive exper-
iment to explore the effect of using imbalanced learning
algorithms when seeking to predict defect-prone soft-
ware components. This has explored the complex in-
teractions between type of imbalanced learner, classifier
and input metrics over 27 software defect data sets from
the public domain.

Specifically, we have compared 16 different types of
imbalanced learning algorithm—along with the control
case of no imbalanced learning—with seven representa-
tive classifier learning methods (C4.5, RF, SVM, Ripper,
kNN, LR and NB) using seven different types of input
metric data over 27 data sets. Our factorial experimental
design yields 22491 combinations. Each combination was
evaluated by 10 x 10-fold cross validation.

We believe our results are valuable for the software
engineering practitioners for at least three reasons.

First, our experimental results show a clear, negative
relationship between the imbalance ratio and the perfor-
mance of standard learning. This means irrespective of
other factors, the more imbalanced your data the more
challenging it will be to achieve high quality predictions.

Second, imbalanced learning algorithms can amelio-
rate this effect, particularly if the imbalance ratio exceeds
four. However, the unthinking application of any imbal-
anced learner in any setting is likely to only yield a very
small, if any, positive effect. However, this can be con-
siderably optimized through the right choice of classifier
and imbalanced learning methods in the context. Our
study has highlighted some strong combinations which
are given in the summary table 14 in particular bagging-
based imbalanced ensemble methods and EM1v1.

Third, although different choices of input metric have
little impact upon the improvement that accrue from
imbalanced learning algorithms, we have observed they
have a very considerable effect upon overall perfor-
mance. Consequently we recommend, wherever possi-
ble, using a wide spectrum of input metrics derived
from static code analysis, network analysis and from the
development process.

We also believe there are also additional lessons for
researchers. First, a number of experimental studies have
reported encouraging results in terms of using machine
learning techniques to predict defect-prone software
units. However, this is tempered by the fact that there is
also a great deal of variability in results and often a lack
of consistency. Our experiment shows that a significant
contributing factor to this variability comes from the data
sets themselves in the form of the imbalance ratio.

Second, the choice of a predictive performance mea-
sure that enables comparisons between different clas-
sifiers is a surprisingly subtle problem. This is partic-
ularly acute when dealing with imbalanced data sets
which are the norm for software defects. Therefore we
have avoided some of the widely used classification
performance measures (such as Fi) because they are
prone to bias. We have chosen the unbiased performance
measure Matthews Correlation Coefficient. Although not
the main theme of this study we would encourage fellow
researchers to consider unbiased alternatives to the F
family of measures [46] or Area Under the Curve [49].

Third, comprehensive experiments tend to be both
large and complex which necessitate particular forms of
statistical analysis. We advocate use of False Discovery
Rate procedures [58] to militate against problems of
large numbers of significance tests. We also advocate
use of effect size measures [81], with associated confi-
dence limits rather than relying on significance values
alone since these may be inflated when the experimen-
tal design creates large numbers of observations. In
other words highly significant but vanishingly small real
world effects may not be that important to the software
engineering community.

Finally we make our data and program available to
other researchers and would encourage them to confirm
(or challenge) the strength of our findings so that we
are able to increase the confidence with which we make
recommendations to software engineering practitioners.

APPENDIX A
METRIC DEFINITIONS

A.1 CK Metrics

Chidamber-Kemerer (CK) metrics suite [56]:

o WMC: Weighted Methods Pr Class

o DIT: Depth of Inheritance Tree

NOC: Number of Children

CBO: Coupling between object classes
RFC: Response For a Class

o
o
o
o LCOM: Lack of Cohesion in Methods
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Fig. 11: Ego Network

A.2 Network Metrics
A.2.1

An ego network is a subgraph that consists of a node
(referred to as an “ego”) and its neighbours that have a
relationship represnted by an edge with the “ego” node).
This describes how a node is connected to its neighbours,
for example, in Fig. 11, node A is the “ego”, and the
nodes in the box consist A’s ego network.

Ego network metrics include:

o The size of the ego network (Size) is the number of nodes
connected to the ego network.

o Ties of ego network (Tie) are directed ties corresponding to
the number of edges.

o The number of ordered pairs (Pairs) is the maximal number
of directed ties, i.e., Sizex(Size - 1).

o Density of ego network (Density) is the percentage of possi-
ble ties that are actually present, i.e., Ties / Pairs.

o WeakComp is the number of weak components (= sets of
connected nodes) in neighborhood.

o nWeakComp is the number of weak components normal-
ized by size, i.e., WeakComp / Size.

o TwoStepReach is the percentage of nodes that are two steps
away.

o The ¥ reach  efficiency  (ReachEfficency) = normalizes
TwoStepReach by size, i.e., TwoStepReach / Size. High
reach efficiency indicates that egos” primary contacts are
influential in the network.

¢ Brokerage is the number of pairs not directly connected.
The higher this number, the more paths go through ego,
ie., ego acts as a broker in its network.

o nBrokerage is the Brokerage normalized by the number of
pairs, i.e., Brokerage / Pairs.

o EgoBetween is the percentage of shortestpaths between
neighbors that pass through ego.

o nEgoBetween is the Betweenness normalized by the size of
the ego network.

Ego network metrics

A.2.2 Structural metrics

Structural metrics describe the structure of the whole
dependency graph by extracting the feature of structural
holes, which are suggested by Ronald Burt [82].

o Effective size of network (EffSize) is the number of entities
that are connected to a module minus the average number
of ties between these entities.

o Efficiency normalizes the effective size of a network to the
total size of the network.

o Constraint measures how strongly a module is constrained
by its neighbors.

o Hierarchy measures how the constraint measure is dis-
tributed across neighbors.

A.2.3 Centrality Metrics

Centrality metrics measure position importance of a
node in the network.

o Degree is the number of edges that connect to a node,
which measure dependencies for a module.

o nDegree is Degree normalized by number of nodes.

o Closeness is sum of the lengths of the shortest paths from
a node from all other nodes.

o Reachability is the number nodes that can be reached from
a node.

o Eigenvector assigns relative scores to all nodes in the
dependency graphs.

o nEigenvector is Eigenvector normalized by number of
nodes.

o Information is Harmonic mean of the length of paths
ending at a node.

o Betweenness measures for a node on how many shortest
paths between other nodes it occurs.

o nBetweenness is Betweenness normalized by the number
of nodes.

A.3 Process Metrics

The extracted PROC metrics as suggested by Moser et
al. [4] are as follows:

o REVISIONS is the number of revisions of a file.

o AUTHORS is the number of distinct authors that checked
a file into the repository.

o LOC_ADDED is the sum over all revisions of the lines of
code added to a file.

o MAX_LOC_ADDED is the maximum number of lines of
code added for all revisions.

o AVE_LOC_ADDED is the average lines of code added per
revision.

o LOC_DELETED is the sum over all revisions of the lines
of code deleted from a file.

o MAX_LOC_DELETED is the maximum number of lines
of code deleted for all revisions.

o AVE_LOC_DELETED is the average lines of code deleted
per revision.

o CODECHURN is te sum of (added lines of code - deleted
lines of code) over all revisions.

o MAX_CODECHURN is the maximum CODECHURN for
all revisions.

o AVE_CODECHURN is the average CODECHURN per
revision.
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