A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

Rainer Breitling3, David Gilbert1, Monika Heiner2, Robin Donaldson1

(1) Bioinformatics Research Centre University of Glasgow, Glasgow, UK
(2) Computer Science Department, Brandenburg University of Technology, Cottbus, Germany
(3) Groningen Bioinformatics Centre, University of Groningen, Groningen, Netherlands.

www.brc.dcs.gla.ac.uk/~drg/workshops/ismb08
Tutorial outline

I. Biological introduction
 Rainer Breitling

II. Petri net introduction
 Monika Heiner

III. Biological applications
 David Gilbert

IV. Model checking
 Robin Donaldson

(each 50 min + 10 min break/discussion)
A structured approach …

Part I

Biology

Rainer Breitling

Groningen Bioinformatics Centre, University of Groningen, Groningen, Netherlands.
Outline

• Part 1: Why modelling?
• Part 2: The statistical physics of modelling: $A \rightarrow B$
 (where do differential equations come from?)
• Part 3: Translating biology to mathematics
 (finding the right differential equations)
Biology = Concentrations
Humans think small-scale...
(the “7 items” rule)

- phone number length
 (memory constraint)
- optimal team size
 (manipulation constraint)
- maximum complexity for rational decision making

...but biological systems contain (at least) dozens of relevant interacting components!
Humans think linear...

...but biological systems contain:

• non-linear interaction between components
• positive and negative feedback loops
• complex cross-talk phenomena
Biochemical Pathway Simulation

- What is the best formalism?
- How to deal with lack of information?
- Predictions on what?
- How to collect quantitative measurements in vivo?
- How to manipulate regulatory mechanisms?
The simplest chemical reaction

\[A \rightarrow B \]

- irreversible, one-molecule reaction
- examples: all sorts of decay processes, e.g. radioactive, fluorescence, activated receptor returning to inactive state
- any metabolic pathway can be described by a combination of processes of this type (including reversible reactions and, in some respects, multi-molecule reactions)
The simplest chemical reaction

A \rightarrow B

various levels of description:

- homogeneous system, large numbers of molecules = ordinary differential equations, **kinetics**
- small numbers of molecules = probabilistic equations, **stochastics**
- spatial heterogeneity = partial differential equations, **diffusion**
- small number of heterogeneously distributed molecules = single-molecule tracking (e.g. cytoskeleton modelling)
Kinetics Description

Main idea: Molecules don’t talk

- Imagine a box containing N molecules.
 How many will decay during time t? kN
- Imagine two boxes containing $N/2$ molecules each.
 How many decay? kN
- Imagine two boxes containing N molecules each.
 How many decay? $2kN$
- In general:

\[
- \frac{dn(t)}{dt} = \lambda n(t) \quad \Leftrightarrow \quad n(t) = N_0 e^{-\lambda t}
\]

differential equation (ordinary, linear, first-order)

exact solution (in more complex cases replaced by a numerical approximation)
Kinetics Description

If you know the concentration at one time, you can calculate it for any other time! (and this really works)
Probabilistic Description

Main idea: Molecules are isolated entities without memory

Probability of decay of a single molecule in some small time interval:

\[p_1 = \lambda \Delta t \]

Probability of survival in \(\Delta t \):

\[p_2 = 1 - p_1 = 1 - \lambda \Delta t \]

Probability of survival for some time \(t \):

\[p = \lim_{x \to \infty} (1 - \lambda \frac{t}{x})^x = e^{-\lambda t} \]

Transition to large number of molecules:

\[n(t) = N_0 e^{-\lambda t} \quad \text{or} \]

\[\frac{dn(t)}{dt} = -\lambda N_0 e^{-\lambda t} = -\lambda n(t) \]
Probabilistic Description – 2

Probability of survival of a single molecule for some time t:

$$p = \lim_{x \to \infty} (1 - \lambda \frac{t}{x})^x = e^{-\lambda t}$$

Probability that exactly x molecules survive for some time t:

$$p_x = (e^{-\lambda t})^x (1 - e^{-\lambda t})^{N_0 - x} \binom{N_0}{x}$$

Most likely number to survive to time t:

$$\max(x \mid p_x) = N_0 e^{-\lambda t}$$
Probabilistic Description – 3

Markov Model (pure death!)

Decay rate:
Probability of decay:
Probability distribution of n surviving molecules at time t:

\[\Lambda(n, t) = n\lambda \]
\[p = \Lambda(n, t)dt \]
\[P(n, t) \]

Description:

Time: \(t \rightarrow \text{wait } dt \rightarrow t+dt \)
Molecules:
\(n \rightarrow \text{no decay } \rightarrow n \)
\(n+1 \rightarrow \text{one decay } \rightarrow n \)

\[P(n, t + dt) = \]
\[P(n + 1, t)\Lambda(n + 1, t)dt \]
\[+ P(n, t)[1 - \Lambda(n, t)dt] \]

Final Result (after some calculating): The same as in the previous probabilistic description
Spatial heterogeneity

- concentrations are different in different places, \(n = f(t,x,y,z) \)
- diffusion superimposed on chemical reactions:

\[
\frac{\partial n(t)}{\partial t}_{xyz} = -\lambda n(t)_{xyz} \pm \text{diffusion}
\]

- partial differential equation
Spatial heterogeneity

• one-dimensional case (diffusion only, and conservation of mass)

\[\frac{\partial n(t, x)}{\partial t} \Delta x = \text{inflow} - \text{outflow} \]

\[\text{outflow} = -K \frac{\partial n(t, x + \Delta x)}{\partial x} \]

\[\text{inflow} = -K \frac{\partial n(t, x)}{\partial x} \]
Spatial heterogeneity – 2

\[\frac{\partial n(t, x)}{\partial t} \frac{\Delta x}{\partial x} = K \frac{\partial n(t, x + \Delta x)}{\partial x} - K \frac{\partial n(t, x)}{\partial x} \]

Transition to differential equation to get diffusion equation:

\[\frac{\partial n(t, x)}{\partial t} = K \frac{\partial^2 n(t, x)}{\partial x^2} \]

Shorthand for three dimensions:

\[\frac{\partial n(t, x, y, z)}{\partial t} = K \nabla^2 n(t, x, y, z) \]

Combination with chemical reaction:

\[\frac{\partial n(t)}{\partial t} = -\lambda n(t) + K \nabla^2 n(t) \]
Summary of Physical Chemistry

- Simple reactions are easy to model accurately
- Kinetic, probabilistic, Markovian approaches lead to the same basic description

\[
\frac{dn(t)}{dt} = -\lambda n(t) \iff n(t) = N_0 e^{-\lambda t}
\]

- Diffusion leads only to slightly more complexity
- Next step: Everything is decay...
Some (Bio)Chemical Conventions

Concentration of Molecule A = \([A]\), usually in units mol/litre (molar)
Rate constant = \(k\), with indices indicating constants for various reactions (\(k_1, k_2\ldots\))

Therefore:

\[A \rightarrow B \]

\[
\frac{d[A]}{dt} = -\frac{d[B]}{dt} = -k_1[A]
\]
Reversible, Single-Molecule Reaction

A \leftrightarrow B, or A \rightarrow B $\|$ B \rightarrow A, or

Differential equations:

$$\frac{d[A]}{dt} = -k_1[A] + k_2[B]$$

$$\frac{d[B]}{dt} = k_1[A] - k_2[B]$$

Main principle: Partial reactions are independent!
Reversible, single-molecule reaction

Differential Equation:
\[
\frac{d[A]}{dt} = -k_1[A] + k_2[B]
\]
\[
\frac{d[B]}{dt} = k_1[A] - k_2[B]
\]

Equilibrium (=steady-state):
\[
\frac{d[A]_{equi}}{dt} = \frac{d[B]_{equi}}{dt} = 0
\]
\[-k_1[A]_{equi} + k_2[B]_{equi} = 0\]
\[
\frac{[A]_{equi}}{[B]_{equi}} = \frac{k_2}{k_1} = K_{equi}
\]
Irreversible, two-molecule reaction

A + B → C

Differential equations:

\[
\frac{d[A]}{dt} = \frac{d[B]}{dt} = -\frac{d[C]}{dt}
\]

\[
\frac{d[A]}{dt} = -k[A][B] \quad \text{Non-linear!}
\]

Underlying idea: Reaction probability = Combined probability that both [A] and [B] are in a “reactive mood”:

\[
p(AB) = p(A)p(B) = k_1^*[A]k_2^*[B] = k[A][B]
\]
A simple metabolic pathway

$A \rightarrow B \leftrightarrow C + D$

Differential equations:

<table>
<thead>
<tr>
<th>d/dt</th>
<th>decay</th>
<th>forward</th>
<th>reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[A]=$</td>
<td>$-k_1 [A]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[B]=$</td>
<td>$+k_1 [A]$</td>
<td>$-k_2 [B]$</td>
<td>$+k_3 [C] [D]$</td>
</tr>
<tr>
<td>$[C]=$</td>
<td></td>
<td>$+k_2 [B]$</td>
<td>$-k_3 [C] [D]$</td>
</tr>
<tr>
<td>$[D]=$</td>
<td></td>
<td>$+k_2 [B]$</td>
<td>$-k_3 [C] [D]$</td>
</tr>
</tbody>
</table>
Metabolic Networks as Bigraphs

A → B ↔ C + D

\[
\begin{align*}
\text{d/dt} & \quad \text{decay} & \quad \text{forward} & \quad \text{reverse} \\
[A] & \quad -k_1 [A] & \quad & \\
[B] & \quad +k_1 [A] & \quad -k_2 [B] & \quad +k_3 [C] [D] \\
[C] & \quad & \quad +k_2 [B] & \quad -k_3 [C] [D] \\
[D] & \quad & \quad +k_2 [B] & \quad -k_3 [C] [D]
\end{align*}
\]
Biological description → bigraph → differential equations
Biological description → bigraph → ODEs

substance A

EC 1.1.1.2

substance B

A

k1

B
Biological description → bigraph → ODEs

substance A

EC 1.1.1.2

substance B

A → k → B

k1

k2

k*

A special case: enzyme reactions

\[\frac{k_1}{k_2} \quad E + S \xleftrightarrow{\kappa_1} ES \xrightarrow{k_2} E + P \]

In a quasi steady state, we can assume that [ES] is constant. Then:

\[[ES] = \frac{k_1[E][S]}{k_1 + k_2} \]

If we now define a new constant \(K_m \) (Michaelis constant), we get:

\[[ES] = \frac{[E][S]}{K_m} \]

\[K_m = \frac{k_1 + k_2}{k_1} \]
A special case: enzyme reactions

Substituting \([E]\) (free enzyme) by the total enzyme concentration we get:

\[
[ES] = \frac{([E_0] - [ES])[S]}{K_m}
\]

\[
[ES] = [E_0] \frac{1}{1 + \frac{K_m}{[S]}}
\]

Hence, the **reaction rate** is:

\[
V = \frac{d[P]}{dt} = k_2[ES]
\]

\[
\frac{d[P]}{dt} = k_2[E_0] \frac{[S]}{K_m + [S]} = V_{max} \frac{[S]}{K_m + [S]}
\]
A special case: enzyme reactions

Underlying assumptions of the Michaelis-Menten approximation:

• Free diffusion, random collisions
• Irreversible reactions
• Quasi steady state

In cell signaling pathways, all three assumptions will be frequently violated:

• Reactions happen at membranes and on scaffold structures
• Reactions happen close to equilibrium and both reactions have non-zero fluxes
• Enzymes are themselves substrates for other enzymes, concentrations change rapidly, \(\frac{d[ES]}{dt} \approx \frac{d[P]}{dt} \)
Metabolic pathways vs Signalling Pathways
(can you give the mass-action equations?)

Metabolic
(initial substrate)
S
E1 → S'
E2 → S''
E3 → S'''
(final product)

Signalling cascade
Input Signal
X
S1 → P1
S2 → P2
S3 → P3
Output

Classical enzyme-product pathway
Product become enzyme at next stage
Figure 1. Signal transduction pathways in *Paracoccidioides brasiliensis*. Cell adhesion (orange), pheromone response (green), calcium/calcmodulin (pink), cell integrity (blue), high osmotic growth stress response (brown), and TOR (purple) pathways are depicted.
Cell signaling pathways

Neurogenesis

Signaling Pathways: Notch | Shh | β-catenin
Cell signaling pathways
Cell signaling pathways

• Common components:
 – Receptors binding to ligands
 • R(inactive) + L \rightarrow RL(active)

 – Proteins forming complexes
 • P1 + P2 \rightarrow P1P2-complex

 – Proteins acting as enzymes on other proteins (e.g., phosphorylation by kinases)
 • P1 + K \rightarrow P1^* + K
Cell signaling pathways

Nature Reviews | Cancer
Cell signaling pathways

Fig. courtesy of W. Kolch
Cell signaling pathways

Fig. courtesy of W. Kolch
Cell signaling pathways

Fig. courtesy of W. Kolch