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Tutorial outline 
I.  Biological introduction  Rainer Breitling 

II.  Petri net introduction    Monika Heiner 

III. Biological applications   David Gilbert 

IV. Model checking    Robin Donaldson 

(each 50 min + 10 min break/discussion) 
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A structured approach … 
Part I 

Biology 

Rainer Breitling 

Groningen Bioinformatics Centre, University of Groningen, Groningen, Netherlands.  

Biology 



R.Breitling@rug.nl 4 

Outline 
•  Part 1: Why modelling? 
•  Part 2: The statistical physics of modelling: 

 A  B 
 (where do differential equations come from?) 

•  Part 3: Translating biology to mathematics 
 (finding the right differential equations) 

Biology 
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Biology = Concentrations 
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Humans think small-scale... 
(the “7 items” rule) 

...but biological systems contain (at least) dozens of 
relevant interacting components! 

• phone number length 
(memory constraint) 

• optimal team size 
(manipulation constraint) 

• maximum complexity for 
rational decision making 

Biology 
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Humans think linear... 

...but biological systems contain: 

•  non-linear interaction between components 

•  positive and negative feedback loops 

•  complex cross-talk phenomena 

Biology 
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Biochemical Pathway Simulation 

Wet lab experiments 

Prediction 

Computational 
 Simulation 

Validation 

  What is the best formalism? 
  How to deal with 

      lack of information? 

  Predictions on what? 

  How to collect quantitative 
measurements in vivo? 

  How to manipulate 

      regulatory mechanisms? 

Biology 
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The simplest chemical reaction 
A  B 

•  irreversible, one-molecule reaction 
•  examples: all sorts of decay processes, e.g. radioactive, fluorescence, 

activated receptor returning to inactive state 
•  any metabolic pathway can be described by a combination of 

processes of this type (including reversible reactions and, in some 
respects, multi-molecule reactions) 

Biology 
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The simplest chemical reaction 
A  B 

various levels of description: 
•  homogeneous system, large numbers of molecules = 

ordinary differential equations, kinetics 
•  small numbers of molecules = probabilistic equations, 

stochastics 
•  spatial heterogeneity = partial differential equations, 

diffusion 
•  small number of heterogeneously distributed molecules = 

single-molecule tracking (e.g. cytoskeleton modelling) 

Biology 
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Kinetics Description 

•  Imagine a box containing N molecules. 
How many will decay during time t? k*N 

•  Imagine two boxes containing N/2 molecules each.  
How many decay? k*N 

•  Imagine two boxes containing N molecules each. 
How many decay? 2k*N 

•  In general: 

Main idea: Molecules don’t talk 

differential equation (ordinary, 
linear, first-order) 

exact solution (in more 
complex cases replaced by a 
numerical approximation) 
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Kinetics Description 

If you know the concentration 
at one time, you can calculate it 
for any other time! (and this 
really works) 
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Probabilistic Description 
Probability of decay of a 

single molecule in some 
small time interval: 

Probability of survival in Δt: 

Probability of survival for 
some time t: 

Transition to large number of 
molecules: or 

Main idea: Molecules are isolated entities without memory 

Biology 
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Probabilistic Description – 2 
Probability of survival of a 

single molecule for some 
time t: 

Probability that exactly x 
molecules survive for some 
time t: 

Most likely number to survive 
to time t: 

Biology 
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Probabilistic Description – 3 
Markov Model (pure death!) 

Decay rate:  
Probability of decay: 
Probability distribution of n surviving 

molecules at time t: 
Description: 
Time: t -> wait dt -> t+dt 
Molecules:  
n -> no decay -> n 

n+1 -> one decay -> n 

Final Result (after some calculating): The same as in the previous probabilistic description 

Biology 
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Spatial heterogeneity 
•  concentrations are different in different places, n 

= f(t,x,y,z) 
•  diffusion superimposed on chemical reactions: 

•  partial differential equation 

Biology 
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Spatial heterogeneity 
•  one-dimensional case 

(diffusion only, and 
conservation of mass) 

∆x

inflow outflow
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Spatial heterogeneity – 2 
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Summary of Physical Chemistry 
•  Simple reactions are easy to model accurately 
•  Kinetic, probabilistic, Markovian approaches lead to the same 

basic description 

•  Diffusion leads only to slightly more complexity 
•  Next step: Everything is decay... 

Biology 
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Some (Bio)Chemical Conventions 

Concentration of Molecule A = [A], usually in units 
mol/litre (molar) 

Rate constant = k, with indices indicating 
constants for various reactions (k1, k2...) 

Therefore: 
AB 

Biology 
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Reversible, Single-Molecule 
Reaction 

A  B, or A  B || B  A, or  
Differential equations: 

forward reverse 

Main principle: Partial reactions are independent! 

Biology 
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Reversible, single-molecule reaction 
– 2 

Differential Equation: 

Equilibrium (=steady-
state): 
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Irreversible, two-molecule reaction 

A+BC 
Differential equations: 

Underlying idea: Reaction probability = Combined probability that both 
[A] and [B] are in a “reactive mood”: 

The last piece of the puzzle 

Non-linear! 

Biology 
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A simple metabolic pathway 

ABC+D 
Differential equations: 
d/dt decay forward reverse 

[A]= -k1[A] 

[B]= +k1[A] -k2[B] +k3[C][D] 

[C]= +k2[B] -k3[C][D] 

[D]= +k2[B] -k3[C][D] 

Biology 
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Metabolic Networks as Bigraphs 
ABC+D 

d/dt decay forward reverse 

[A] -k1[A] 

[B] +k1[A] -k2[B] +k3[C][D] 

[C] +k2[B] -k3[C][D] 

[D] +k2[B] -k3[C][D] 

A B
C

D
k1 k2 k3

k1 k2 k3 

A -1 0 0 
B 1 -1 1 
C 0 1 -1 
D 0 1 -1 

Biology 
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Biological description  bigraph  
differential equations 

KEGG 
Biology 
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Biological description  bigraph  
ODEs 

EC 1.1.1.2
substance A substance B

A Bk1
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Biological description  bigraph  
ODEs 

EC 1.1.1.2
substance A substance B

A Bk

EA EBk*
k1 k2

E
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A special case: enzyme reactions 

In a quasi steady state, we can assume that [ES] is constant. Then: 

If we now define a new constant Km (Michaelis constant), we get: 
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A special case: enzyme reactions 
Substituting [E] (free enzyme) by the total enzyme concentration we get: 

Hence, the reaction rate is: 

Biology 
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A special case: enzyme reactions 
Underlying assumptions of the Michaelis-Menten approximation: 

•  Free diffusion, random collisions 

•  Irreversible reactions 

•  Quasi steady state 

In cell signaling pathways, all three assumptions will be frequently 
violated: 

•  Reactions happen at membranes and on scaffold structures 

•  Reactions happen close to equilibrium and both reactions have non-zero 
fluxes  

•  Enzymes are themselves substrates for other enzymes, concentrations 
change rapidly, d[ES]/dt ≈ d[P]/dt 
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Metabolic pathways vs Signalling Pathways 
(can you give the mass-action equations?) 

E1 

(initial substrate) 
S 

S’ 

E2 

E3 

S’’ 

S’’’ 
(final product) 

Metabolic 

S1 

Input Signal 
X 

P2 S2 

S3 P3 
Output 

Signalling cascade 

P1 

Product become enzyme at next stage Classical enzyme-product pathway 
Biology 
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Cell signaling pathways 

Biology 
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Cell signaling pathways 
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Cell signaling pathways 
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Cell signaling pathways 
• Common components: 

– Receptors binding to ligands 
• R(inactive) + L  RL(active)  

– Proteins forming complexes 
• P1 + P2  P1P2-complex  

– Proteins acting as enzymes on other proteins 
(e.g., phosphorylation by kinases) 
• P1 + K  P1* + K 

Biology 
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Cell signaling pathways 
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Cell signaling pathways 

Fig. courtesy of W. Kolch 
Biology 



R.Breitling@rug.nl 39 

Cell signaling pathways 

Fig. courtesy of W. Kolch 
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Cell signaling pathways 

Fig. courtesy of W. Kolch 
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