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Outline 

•  Data models & databases 
•    
•  Computations over static models 

•  Qualitative to quantitative 

•  Simulation 

•  Analysis 

•  Model checking 



Metabolic Pathways 

http://ca.expasy.org/tools/pathways/ 



What can we do computationally? 
•  Generate / gather data 
•  Construct networks (various types) 

–  Static 
–  Dynamic  

•  Create databases of network data 
•  Display (visualise) network 
•  Analyse static network properties 

–  Global, local, motifs, … 
•  Navigate the networks 

–  Data queries e.g. pathfinding 
•  Simulate dynamic behaviour 
•  Compare networks (static, dynamic properties) 
•  Analyse dynamic properties 
•  Predict effects of interventions / re-engineering 



Terminology: Pathways or Networks? 
•  Pathways implies ‘paths’ - sequences of objects 

–  An ordered sequence of proteins and substrates 
–  A series of biochemical reactions 
–  An evolutionary product 
–  A biological system (living cell) 

•  Networks - more complex connectivity 

•  Both are represented by graphs 

•  Networks: generic; Pathways: specific (?) 
–  ‘Metabolic networks’ 
–  ‘The glycolytic pathway’ 



Metabolic pathways vs Signalling Pathways 
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Database models 

•  Aim to represent data 
–  to store them 
–  to take advantage of the DBMS’s data storage, 

management, and retrieval facilities 

•  Often unsuitable to analyse the structure of 
biochemical networks 

Y. Deville, D. Gilbert, J. van Helden & S. Wodak. An Overview of Data Models for the Analysis of Biochemical Pathways, 
Briefings in Bioinformatics, 2003 4:3, 246-259 



Graph-based data models for 
pathways 

•  Compound graph 

•  Reaction graph 

•  Bipartite graph 

•  Hypergraph 

•  Object-oriented models 
Y. Deville, D. Gilbert, J. van Helden & S. Wodak. An Overview of Data Models for the Analysis of Biochemical Pathways, 
Briefings in Bioinformatics, 2003 4:3, 246-259 



Graphs 
Graph = (V,A) V = set of vertices (nodes) A = set of arcs 

A graph is either directed or not 
If directed then A - arcs.  If undirected then A - edges 

Optionally label vertices & arcs 

1

5

4

2
3

cat 

dog 

cat mouse 

rat 

fears 

loves 

admires 

chases 

fears 

fears 

G = (V,A) 
V = { 1 , 2 , 3, 4 , 5 }  
A = {1→2, 2→3, 3→2, 3→1, 1→4 , 1→1} 

Circuits 
C1 = (1→2, 2→3, 3→1)  length = 3 
C2 = (1→1)   length = 1 

Paths  (some) 
P1 = (2→3, 3→1) 
P1 = (2→3, 3→1, 1→4) 
P3 = (2→3, 3→1, 1→1) 



Compound graph 

•  To model (bio-)chemical reactions 
•  Nodes are (bio-)chemical compounds 
•  Directed edges connect compound A to compound B if A is a substrate 
and B is a product in the same reaction 

• Catalysed by γ-glutamyl kinase (EC 2.7.2.11) 

glutamate + ATP γ-glutamyl phosphate + ADP 

glutamate 

ATP 

γ-glutamyl phosphate 

ADP 



Compound graph - problems 

•  Can be used to represent metabolic or regulatory pathways 
•  Can not be used to combine them 

–  Would require different nodes for compound or genes 
–  Different edges for chemical reactions or regulatory events 

•  Don’t contain information about the enzymes catalysing the reactions 
•  Ambiguous: different reactions can lead to the same graph 
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Reaction graph 

•  Nodes are (bio-)chemical reactions 
•  Edges are between nodes if there is a compound which is the 
product of one reaction and the substrate of a second 
•  Edges can be directed or undirected (if reactions are reversible) 
•  Similar limitations to compound graphs 
•  Ambiguous: 

R1 R2 

R3 

A 

B 

C D R1 

R2 
R3 

A 

B 

C 
D R1 
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Why compound and reaction 
graphs? 

•  Simple 

•  Sufficient for some analysis such as 
topological or statistical properties 

•  Discovery of basic patterns 

•  Useful in specific applications 



Bipartite graphs 

•  Two classes of nodes, compounds and reactions 
•  Edges can not relate nodes from the same set 

–  Edges occur between a compound and a reaction 
•  Edges can be directed or undirected 
•  Directed edge from compound to reaction denotes a substrate of the 
reaction and vice versa 
•  No ambiguity 

glutamate 

ATP 

γ-glutamyl phosphate 

ADP 
EC 2.7.2.11 



Reactions and compounds as directed bipartate graph 

compounds 
reactions 
substrate → reaction 
reaction → product 



Hypergraphs 

•  Like bipartite graphs 
•  Hyperedge relates a set of substrates to a set of 

products 
•  Can be converted to bipartite graph or vice versa 

glutamate 

ATP 

γ-glutamyl phosphate 

ADP 



Bipartite graphs and hypergraphs 
- limitations 

•  Control mechanisms of reactions can not be explicitly 
represented 
–  e.g. catalysis, inhibition, activation, etc. 

•  Limited to reactions and compounds 

•  However, this is sufficient for: 
–  Analysis of topological properties 
–  Path finding 
–  Pathway reconstruction/synthesis 
–  Pathway prediction 



Object models 
•  Required if regulatory information is to be included 
•  Generalisation of bipartite graphs 
•  Nodes are typed, permit more detailed description 
•  Allow inheritance 

Reaction Compound 

Catalysis Enzyme 

substrate 

product 

* 

* * 

* 

* 1 



Object models - example 

•  The reaction catalysed by γ-glutamyl kinase 
glutamate + ATP γ-glutamyl phosphate + ADP 

glutamate 

ATP 

γ-glutamyl phosphate 

ADP 
EC 2.7.2.11 

catalysis 

γ-glutamyl kinase 

substrate 

substrate 

product 

product 



Metabolic Step 
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2.7.2.11
2.7.2.11
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Reaction Catalysis 
J. van Helden 

J van Helden, A Naim, R Mancuso, M Eldridge, L Wernisch, D Gilbert, and S 
J. Wodak, Representing and analysing molecular and cellular function in the 
computer, J  Biological Chemistry, 381 (9-10):921-35, 2000.  



Metabolic Pathway: Proline Biosynthesis 
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J. van Helden 



Transcriptional Regulation 

metA

Homoserine-O- 

succinyltransferase

expression


Down -regulation
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J. van Helden 



Methionine Biosynthesis in E.coli 

L-aspartate


L-Aspartate-4-P

2.7.2.4


1.2.1.11


L-Homoserine


L-Aspartate semialdehyde

1.1.1.3
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aspartate biosynth.
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J. van Helden 



Methionine Biosynthesis in S.cerevisiae 

MET31 
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J. van Helden 



Alternative methionine  pathways 

O-acetyl-homoserine 

L-aspartyl-4-P 

L-Aspartate 

L-Homoserine 

Homocysteine 

L-Methionine 

S-Adenosyl-L-Methionine 
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J. van Helden 



Shortcut Representation 
L-aspartate L-aspartate 

L-Aspartate-4-P L-Aspartate-4-P 

2.7.2.4 2.7.2.4 

1.2.1.11 1.2.1.11 

L-Homoserine L-Homoserine 

L-Aspartate semialdehyde L-Aspartate semialdehyde 

1.1.1.3 1.1.1.3 

aspartate biosynthesis aspartate biosynthesis 

aplha-succinyl-L-Homoserine aplha-succinyl-L-Homoserine 

2.3.1.46 2.3.1.46 

4.2.99.9 4.2.99.9 

Homocysteine Homocysteine 

Cystathionine Cystathionine 
4.4.1.8 4.4.1.8 

L-Methionine L-Methionine 

2.1.1.13 2.1.1.13 

2.5.1.6 2.5.1.6 

L-Adenosyl-L-Methionine L-Adenosyl-L-Methionine 

2.1.1.14 2.1.1.14 

Holorepressor Holorepressor 

indirect effect indirect effect 

indirect effect indirect effect 

indirect effect indirect effect 

is part of is part of 

indirect effect indirect effect 

indirect effect indirect effect 

indirect effect indirect effect 
indirect effect indirect effect 

inhibits inhibits 

inhibits inhibits 

lysine biosynthesis lysine biosynthesis 

threonine biosynthesis threonine biosynthesis 

serine biosynthesis serine biosynthesis 

Aporepressor Aporepressor 

metJ metJ 

codes for codes for 

is part of is part of 

represses represses 

J. van Helden 



High-level Abstraction 

methionine
methionine


threonine
threonine
 isoleucine
isoleucine


lysine
lysine

L-aspartic semialdehyde
L-aspartic semialdehyde


homoserine
homoserine


cysteine
cysteine


pyruvate
pyruvate
 valine
valine
 leucine
leucine


aspartate
aspartate


J. van Helden 



•  Partial information (indirect interactions), and 
subsequent filling of the missing steps. 

•  Negative results (elements that have been 
shown not to interact, enzymes missing in an 
organism). 

•  Putative interactions resulting from 
computational analyses 

Other Important Issues 



Requirements: Network navigation 
•  How many pathways & how many steps within each pathway, from compound A to 

compound B 

•  Give all the pathways that contain or lack specified compounds or processes 

•  Highlight pathways/networks: level of certainty of the information, eliminating trivial 
pathways (e.g. production consumption of water); rank according to fitness of match 

•  Which paths / pathways may be affected when gene/proteins turned off / missing. 

•  Compare biochemical pathways: from different organisms and tissues; highlight 
common features and differences; predict missing elements ('reconstruction') 

•  Represent pathways at different resolution levels 

•  Compile repertoires of recurrent network motifs at different resolution levels 

•  Identify all positive/negative regulatory cycles in a pathway graph. 

Jacques van Helden, Lorenz Wernisch, David Gilbert, and Shoshana Wodak. "Graph-based analysis of metabolic networks". 
in Ernst Schering Research Foundation Workshop Volume 38: Bioinformatics and Genome Analysis. Springer-Verlag, 2002 



Metabolic Graph Layout 

Query 
list of step identifiers 

(gene or reaction) 

For each step :  
collect step elements 

Connect Successive Steps 

Automatic Graph Layout 

Display 

Metabolic pathway: Query on EC numbers: 
E.coli, methionine biosynthesis 

substrates


Products


Reaction ID

enzyme


catalysis


inhibition


inhibitor


gene

expression


substrates


Products


Reaction ID

enzyme


catalysis


inhibition


inhibitor


gene

expression




DNA chip  
experiment 

Transcription profiles 

Clustering 
Clusters of  

co-regulated genes 

Mechanism of co-regulation ? 

Pattern discovery 
in regulatory regions 

Putative  
regulatory sites 

Matching against 
transcription factor  

database 

Sites for 
known factors 

Novel  
sites 

Functional meaning ? 

Pathway extraction 
in metabolic reaction graph 

Putative  
metabolic pathways 

Matching against 
metabolic pathway 

database 

Known  
pathways 

Novel  
pathways 

Visualization 

J van Helden, D Gilbert, L Wernisch, M Schroeder, and S Wodak, Application of Regulatory Sequence Analysis and Metabolic 
Network Analysis to the Interpretation of Gene Expression Data, in Computational Biology (Olivier Gascuel and Marie-France 
Sagot, Eds), LNCS 2006, 147-163, 2001 



Queries - subgraph extraction 
A. Seed reactions 

Compound

Reaction

Seed Reaction


B. Reaction linking 

C. Subgraph extraction 

Direct link

Intercalated reaction


D. Linear Path Enumeration 



M
ethionine 

biosynthesis 
Sulfur assim

ilation 

MET3 
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MET5 
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MET6 
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O-acetyl-homoserine 
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Sulfate adenylyl 
transferase 

Adenylyl sulfate 
kinase 
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Sulfite reductase 
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(vit B12-independent) 
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extracted Enzymes 

Matching  
pathways 

Maximal Pathway extracted from a cluster of cell-cycle regulated genes 



Databases & systems available 
•  Enzyme function and metabolic pathways :  

–  KEGG 
–  BioCyc: EcoCyc (E.Coli), MetaCyc (900 organisms); +368 predicted 

(PathoLogic program) 
–  AMAZE (metabolic, regulatory and signal transduction pathways) 

–  BRENDA - enzyme function only. 

•  Querying facilities - various levels of complexity. Simple browsing & basic 
queries (string search on the values of selected fields), to pathway analysis. 

•  Some path-finding tools, which find all paths between two specified elements, 
or from a specified element to any other.  

•  Results display: colouring paths found on pre-drawn static maps (KEGG), or 
on a dynamically generated diagram  



KEGG Query & result 

Query = 
2.7.2.4 
1.2.1.11 
1.1.1.3 
2.3.1.46 
4.2.99.9 
4.4.1.8 
2.1.1.13 
2.5.1.6 
map00271  
Methionine  
metabolism 



E.Coli whole 
cell metabolic 

overview 



System 

Model 

System 
Properties 

Model 
Properties 

Construction technical 
system 

requirement 
specification 

verification 



System 

Model 

System 
Properties 

Model 
Properties 

Understanding biological 
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known 
properties 

validation 

behaviour 
prediction 

unknown 
properties 



How to model 

Identification 

Simulation 

Definition Analysis Validation 
Yes No 

Slide from 
Richard Orton 

Which pathway? 
What bio question? 

€ 

V =Vmax ×
[A]

[A]+Km

Simplify! 

Sensitivity 
FBA, MCA 

Model checking 
Knockouts.. 



Qualitative 

Stochastic Continuous 

Molecules/Levels 
CTL, LTL 

Molecules/Levels 
Stochastic rates 

CSL 

Concentrations 
Deterministic 
rates 
LTLc 

Approximation 
by Hazard 

function
s

, type1 (tokens as molecules)‏ 

Approximation  
by Hazard 
functions

,
 type2 (tokens as concentrations)‏ 

DiscreteState Space Continuous State Space 

Time-free 

Timed,  
Quantitative 

D Gilbert, M Heiner and S Lehrack (2007). A 
Unifying Framework for Modelling and 
Analysing Biochemical Pathways Using Petri 
Nets. Proc CMSB 2007 LNCS/LNBI 4695, pp. 
200-216 



Hazard functions 

•  Hazard function type1 
(tokens as molecules) 

•  ct transition specific stochastic rate constant 
•  m(p) current number of tokens on pre-place p of transition t 
•  binomial coefficient number of non-ordered combinations of the f(p,t) 

molecules, required for the reaction, out of the m(p) available ones. 

€ 

ht := ct ⋅
p∈• t
Π f ( p,t )

m( p)( )

€ 

ht := kt ⋅N ⋅
p∈• t
Π m(p)

N
 

 
 

 

 
 •  Hazard function type2  

(tokens as concentrations) 
•  kt transition deterministic rate constant 
•  N  number of levels 
•  Levels: Calder et al, Trans Comp Sys Bio VI, LNBI 4220, 2006 



Dynamic behaviour - modelling 

Gilbert, D. et al. Brief Bioinform 2006 7:339-353; doi:10.1093/bib/bbl043 



Biochemical networks  

 What happens? 
 Why does it happen ? 

We can describe the general topology and single biochemical steps. 
However, we do not understand the network function as a whole. 





Simplifying a Model 

PhzM PhzS 

PCA Intermediate 
compound 

 PYO  

TF + S TF|S 

tf 

phzM   phzS 
TF|S 

mRNA PhzM  mRNA PhzS 

mRNA TF •  Merge transcription and translation 
•  Merge phzM with phzS (Parsons 2007) 

TF: Dntr or Xylr 

S: signal 

TF|S: complex 

Glasgow iGEM team 



Simplifying a Model 

tf 

TF + S TF|S 

phzMS 

PhzMS 

PCA PYO 

TF|S 

PYO 

PYO 

TF: Dntr or Xylr 

S: signal 

TF|S: complex 

•  Merge transcription and translation 
•  Merge phzM with phzS (Parsons 2007) 

Glasgow iGEM team 



€ 

E +A
k2

←   

k1 →  E | A k3 →  E + B

€ 

E+A
k2

←   

k1 →  E | A k3 →  E | B
k 5←   

k4 →  E + B

€ 

E +A
k2

←   

k1 →  E | A
k6

←   

k3 →  E | B
k 5←   

k4 →  E + B

A B 

E 



…..Bipartite graphs! 

•  Two classes of nodes, compounds and reactions 
•  Edges can not relate nodes from the same set 

–  Edges occur between a compound and a reaction 
•  Edges can be directed or undirected 
•  Directed edge from compound to reaction denotes a substrate of the reaction and 
vice versa 
•  No ambiguity 

glutamate 

ATP 

γ-glutamyl phosphate 

ADP 
EC 2.7.2.11 



Petri-net analysis 

•  Place invariants (P-invariants) - sets of places where 
the sum of tokens remains constant over any firing.  

•  Transition invariants (T-invariants) - sets of transitions 
which have a zero effect on the marking of the 
system.  

•  If the T-Invariants cover the entire Petri net, it shows 
that the system can have cyclic behaviour, while 
incorporating all system parts, which suggests that 
the system might have been modelled correctly.  



Qualitative Petri-Net  
Modelling & Analysis 

•  Graphical representation--
Snoopy 

•  Qualitative analysis  
Charlie 
–  T invariants (cyclic 

behavior in pink) 
– P invariants  
–  (constant amount of 

output) 
•  Quantitative Analysis by 

continuous Petri Net 
– ODE Simulation  

Glasgow iGEM team 
& Monika Heiner 



Petri net analysis 
PUR - The Petri net is not pure, i.e. there are pairs of nodes, connected in both directions. This structure 

corresponds to read arcs. There are two (three) read arcs in the given net.

 ORD - The Petri net is ordinary, i.e. all arc weights are equal to 1. This includes homogeneity (see the 

next bullet) and non-blocking multiplicity (see the next but one bullet). 

 HOM - The Petri net is homogeneous, i.e. all outgoing arcs of a given place have the same multiplicity. 

NBM - The Petri net has the non-blocking multiplicity property, which is of importance in combination with 

the deadlock trap property (DTP) 

 CSV - The Petri net is not conservative, i.e. there are transitions which do not preserve the total token 

amount by their firing, i.e. they increase or decrease the total token amount when firing. Obviously, 
this applies to the input and output transitions. 


SCF - The Petri net is not free of static conflicts, i.e. there are transi- tions sharing a pre-place. This 
structural property holds e.g. for the two transitions T F degradation and T F S complex production, 
sharing the pre-place T F , which means that a token on the place T F can either be broken down or 
follow the way of TFS complex production. 


 CON - The Petri net is connected, i.e. it holds for all pairs of nodes a and b that there is an undirected 
path from a to b. 


 SC - The Petri net is not strongly connected, i.e. it does not hold for all pairs of nodes a and b that there 
is a directed path from a to b. For example, there is no path from the transition called P Y O 
degradation back to the transition called T F generation.


 FT0, TF0 - The Petri net has input transitions and ouput transitions, i.e. it is an open system. Input 
transitions are always enabled, therefore they are able to fire arbitrarily often, making the Petri net 
unbounded. 


 FP0, PF0 - There are neither input places nor output places. 

 NC - The Petri net belongs to the structural net class Extended Simple 




Petri net analysis 
•  DTP - The Petri net has the deadlock trap property, The DTP involves liveness for 

ordinary ES nets. Because the net is live, there are no dead transitions and no dead 
states. 


•  CPI - The Petri net is not covered by P-invariants. Actually, there is only one minimal P-
invariant, which comprises merely the place s. This means that the token number on this 
place never changes under any firing. Therefore, this place requires at least one token 
in the initial marking to allow its post-transition to fire sometimes. Contrary, all other 
places are unbounded, i.e. the token amount may amount up to infinity. 


•   CTI - The Petri net is covered by T-invariants. There are the following minimal T-
invariants for the Petri net without the positive feedback: 


–  y1 = {T F generation, T F degradation}, 

–  y2 = {T F S complex production, T F S complex disassociation}, 

–  y3 = {T F generation, T F S complex production, T F S degradation}, 

–  y4 = {P hz M S production, P hz M S degradation}, 

–  y5 = {P Y O production, P Y O degradation} . 


•  The Petri net with the positive feedback has additionally the following two T-invariants: 

–  y6 = {pf b, T F degradation}, 

–  y7 = {pf b, T F S complex production, T F S degradation, } . 


•  SCTI - The Petri net is not strongly covered by T-invariants, i.e. by non- trivial T-
invariants only. 
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A single enzyme-catalysed reaction in various modelling representations 

(A, B) Conventional notation of the 
chemical reactions and kinetic 
constants.  

(C, D) A possible ODE 
representation.  
The differential equations 
mathematically describe the temporal 
change of each molecular species.  

(E, F) Discrete Petri net 
description.  
Circular nodes - biochemical entities 
and boxes represent reactions. 
Enzymatic catalysis in E is 
represented using a special read arc 
(circled end). The marking of circular 
nodes with tokens indicates whether 
the biochemical entity is present in 
the state of the model. Reactions may 
occur if their preceding biochemical 
entities are marked. 

Michaelis–Menten approximations Mass-action kinetics 



Methodology 

quantitative 
modelling 

quantitative 
models 

animation /  
analysis / simulation 

understanding


model validation


quantitative

behaviour prediction


}
ODEs


qualitative 
modelling 

qualitative 
models 

animation /  
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model validation
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behaviour prediction
}


Petri net theory 
(invariants)


Model checking


Reachability graph

Linear unequations

Linear programming


quantitative 
parameters 

Bionetworks 
knowledge D Gilbert and M Heiner, (2006). From Petri Nets to Differential Equations - an 

Integrative Approach for Biochemical Network Analysis, Proc ATPN06, LNCS 
4024 / 2006, pp. 181-2 



From Petri Nets to Differential Equations - an Integrative Approach 
David Gilbert & Monika Heiner 
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Stochastic representations of the single enzyme-catalysed reaction 

(A): Stochastic process algebra description in PEPA  

• The upper part defines the biochemical components, where the concentrations 
of each one can be either high or low (e.g. for the substrate either SH or SL). The 
reactions are referred to by the labels r1,r2,r3 and k1,k2,k3 represent the rates.  

• The last line describes how the components are composed together to form the 
model.  

• Simulations are via ODEs or the Gillespie algorithm and queries about the 
model can be made with the PRISM model checker.  

(B): Stochastic π-calculus description 

• The first two lines are rules describing the behaviours of the enzyme and 
substrate respectively.  

• The product is also defined in the second rule.  

• The third line is the instruction to simulate the model with 100 molecules each 
of the enzyme and substrate using the Gillespie algorithm. 



Advantages and disadvantages of 
stochastic modelling 

•  Living systems are intrinsically stochastic due 
to low numbers of molecules that participate 
in reactions 

•  Gives a better prediction of the model on a 
cellular level 

•  Allows random variation in one or more inputs 
over time 

•  Slow simulation time 

Glasgow iGEM team 



Chemical Master Equations 
A set of linear, autonomous ODE’s, one ODE for each possible state of the system. The 

system may be written: 

•  Ф → TF               - production of TF 
•  TF → Ф               - degradation of TF 
•  TF+S → TFS       - association of  TFS 
•  TFS → TF+S       - dissociation of TFS 
•  TFS → Ф             - degradation of TFS 
•  Ф → PhzMS        - production of PhzMS 
•  PhzMS → Ф        - degradation of PhzMS 
•  PhzMS → PYO   - production of pyocyanin 
•  PYO → Ф            - degradation of pyocyanin 

•  Propensity functions: 

Glasgow iGEM team 



Glasgow 
iGEM team 



Probabilistic temporal logic 
 X   next 
 F  finally 
 G  globally 
 U  until 
 {…}  filter (check property from when  

   property becomes true) 
 P  probability 

P=? [ ([ProteinX] = L) U ([ProteinX] > L) {[ProteinX] = L}] 
What is the probability of the concentration of ProteinX 

increasing, when starting in a state where the level is 
already at K? 

 Can also query about oscillations 
F( d[ProtX]>0 ∧ F( d[ProtX]<0 ∧ F( d[ProtX]>0 ∧…))) 

Robin Donaldson 



A 

D 

Property:  P=?[ ([A] = X) { [A]=[D] } ] 

Assessing [X] at which reactant [A] equals 
product [D] 

Two reacBons: 
(1) A‐>B 
(2) C‐>D At what 

concentration? 

Results using 10, 100, 1000, 10000 
levels.  

1000 levels: peaks at 837, I.e. 8.37 
the most probable concentration 
when [A] = [D] 

ODE simulation;  [A] = [D] at 
concentration ~8.35 

Model checking Robin Donaldson 



Probabilistic model checking 

•  Property S1: What is the probability of the 
concentration of RafP increasing, when starting 
in a state where the level is already at K? 
P=? [ ([RafP] = L) U ([RafP] > L) {[RafP] = L}] 

•  Stochastic: 4 (red), 40 (green) 
400 (blue), 4000 (yellow) levels 

•  Extensible to thousands 
•  Approximates to deterministic behaviour 

(black) 0.1182... 
M. Calder, V. Vyshemirsky, D. Gilbert and R. Orton. (2006). Analysis of Signalling 
Pathways using Continuous Time Markov Chains, Trans.on Computat. Syst. Biol. VI, 
4220 pp 44-67 Springer Verlag 

Robin Donaldson 



•  Stochastic:  4 (red), 40 (green) 
400 (blue), 4000 (yellow) levels 

•  Extensible to thousands 

Probabilistic model checking 
•  Property S2: What is the probability RafP being the first 

species to react? 

P=? [ (( [MEKPP] = 0) ∧ ( [ERKPP] =0)) U  ( [RafP] > L)  
{( [MEKPP] = 0) ∧ ( [ERKPP] =0) ∧ ( [RafP] = 0)} 

Robin Donaldson 



Flux balance analysis 

Vertex - substrate/metabolite 
concentration. 

Edge - flux (conversion mediated by 
enzymes of one substrate into the 
other) 

Internal flux edge 

External flux edge 

Lecture notes by Eran Eden 



Flux cone and metabolic capabilities 

The number of reactions considerably exceeds the 
number of metabolites 0 S v= ⋅

0
0
0

 
 
 
 
 

The S matrix will have more columns than rows 

The null space of viable solutions to our linear set of 
equations contains an infinite number of solutions. 

“The solution space for any system of linear 
homogeneous equations and inequalities is a convex 
polyhedral cone.” - Schilling 2000 

C 

Our flux cone contains all the points of the null space 
with non negative coordinates (besides exchange fluxes 
that are constrained to be negative or unconstrained) 

What about the constraints? 

Lecture notes by Eran Eden 



Flux cone and metabolic capabilities 

What is the significance of the 
flux cone? 

• It defines what the network can do 
and cannot do! 

• Each point in this cone represents a flux 
distribution in which the system can 
operate at steady state. 

• The answers to the following questions  
(and many more) are found within this 
cone: 
• what are the building blocks that the network can manufacture?  
• how efficient is energy conversion? 
• Where is the critical links in the system? 

Lecture notes by Eran Eden 



Metabolic control analysis 

•  Quantitative sensitivity analysis of fluxes and 
metabolite concentrations.  

•  In MCA one studies the relative control exerted by 
each step (enzyme) on the system's variables (fluxes 
and metabolite concentrations).  

•  This control is measured by applying a perturbation to 
the step being studied and measuring the effect on 
the variable of interest after the system has settled to 
a new steady state.  



Model Parameter Refinement 

•  Modified MPSA 

Glasgow iGEM team 



Fitting and optimization 

•  Genetic Algorithms 

•  Simulated Annealing 



Dynamic behaviour analysis 

•  Bifurcation analysis (to discover oscillations) 



Databases & tools 



Example - SyTryp project 

U.Glasgow, U.Strathclyde 
INRA, INRIA, Bordeaux 



From connectivities to dynamic graphs (1) 
•  Start with metabolite relation networks generated by inference techniques  
•  Focus on selected modules of interest which have been identified by clustering and confirmed, using 

visualization proposed to be of potential interest by the biologists.   
•  Transform these into reaction networks 

–  manually mapping metabolite relationships onto known metabolic networks from databases for model 
organisms such as E.coli using data from MetaCyc and Kegg,  

–  automated using Bayesian networks (see review Werhli et al, Bioinformatics, 2006). 
•  Reaction networks:  bipartite graphs (Petri nets),  

–  metabolites are represented by one type of vertex,  
–  reactions & the enzymes catalyzing the reaction by another vertex type.   
–  edges decorated with stoichiometric information derived from the databases.   
–  Default: reactions as reversible, unless sufficient information. 

•  Validate qualitative reaction networks using Petri net analysis techniques & tools 
–   consistency check of elementary graph properties 
–  identification of mass-conserving and state-reproducing subnetworks 
–  identification of smallest possible functional units 
–  model checking of expected qualitative behavioural properties (e.g flux balance and elementary 

mode analysis).  
•  Derive meaningful initial markings (hence initial concentrations for the quantitative models) 



From ab-initio & correlations to 
reactions… 
a b 

c d 

a b 

c d 

a b 

c d 

Prune edges using  
bayesian approach? (Muggleton) 

a b 

c d 

Directionality by 
mapping onto existing 

reaction databases? 

a b 

c 

d 

e f 

a b 

c d 

EC 1.2.3.4 

Bipartite graph 



Initial Petri net  

Fabian Jourdan &  
Monika Heiner 



From connectivities to dynamic graphs (2) 
•  Transform validated qualitative model into quantitative models (stochastic & continuous Petri 

nets) by retaining the structure and adding quantitative parameters.  
•  Rate parameters from public domain databases (e.g. MetaCyc, Kegg, Brenda), or literature (via 

PubMed queries, or the text-mining).  
•  Estimate the remaining parameters for steady state behaviour, using previously generated 

knowledge of state-reproducing subnetworks.  
•  Validate stochastic/continuous Petri nets using  

–  probabilistic/continuous model checking of the stochastic/continuous counterparts of the qualitative 
behavioural properties  

–   simulation-based transient and steady-state analyses.  
•  Sensitivity analysis  
•  Refine the rate parameters by scanning or fitting.  

–  Bayesian inference of model parameters from the experimental data, (Vyshemirsky & Girolami) - 
families of behaviours, generating distributions over rate parameters.  Also identification of the most 
likely reaction network topologies from alternatives generated from the metabolite relation networks. 

•  The model-based design of knockout experiments will additionally help in 
validating the developed quantitative models  



Initial kinetic model (graph) 

Xu Gu 
Mike Barrett 
Sylke Muller 



Trypanothionine Initial ODE model (1) 

Xu Gu 



Trypanothionine Initial ODE model (2) 

Xu Gu 



Kinetic data 

A black art? 

Xu Gu 



Parameter identification 
•  Given network topology, reaction equations + observations 

–  Derive/refine kinetic parameters from observed data 

•  Issue: Computational efficiency (time) 

•  Challenges - Data:  
–  Partial (few time points, not all species) 
–  Sparse (few repeated observations) 
–  Noisy (experimental error, system variability) 

•  Can return multiple solutions 

•  Methods: multiple shooting, bayesian inference, … 
•  plus: sensitivity analysis, indentifiability of parameter dependence 
•  Optimisation problem (global, local) 
•  Model decomposition (helps with partial data) 



PSwarm 
•  PSwarm - global optimization solver for bound constrained 

problems (author I.Vaz) 

•  Combines pattern search & particle swarm. 

•  PSO similar to  evolutionary computation (e.g. GA)  
–  system initialized with population of random solutions 
–  searches for optima by updating generations.  
–  no evolution operators (crossover and mutation…) 
–  potential solutions (particles) fly through problem space by following 

the current optimum particles.  
–  Faster convergence than GA 

•  Disadvantages: initial population & control parameters 
dependent; single solution. 



PSwarm+ 
•  Apply root-finding method to constrain & fragment 

initial search space 
•  Multiple inititial states (fragments) → multiple 

solutions 
•  Computationally efficient   

Xu Gu 

Isomerisation of a-pinene metabolic pathway RKIP - signalling 

GA, PSwarm RF-PSwarm 



Systems Biology Markup Language 
•  Machine-readable format for representing computational models in SB 

–  Expressed in XML using an XML Schema 
–  Intended for software tools—not for humans 

•  Tool-neutral exchange language for software applications in SB 
–  Simply an enabling technology 

•  Used quite widely in biological modelling 

•  It is supported by over 40 software systems including Gepasi 

•  Good documentation, user community and publicly available tools  

•  www.sbml.org


•  Also www.ebi.ac.uk/biomodels 



SBML Example Reaction 
• <sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1"> 
•   <model id="newModel"> 
•     <listOfCompartments> 
•       <compartment id="compartment" size="1"/> 
•     </listOfCompartments> 
•     <listOfSpecies> 
•       <species id="A" compartment="compartment" initialConcentration="5"/> 
•       <species id="B" compartment="compartment" initialConcentration="1"/> 
•     </listOfSpecies> 
•     <listOfParameters> 
•       <parameter id="K1" value="1"/> 
•     </listOfParameters> 
•     <listOfReactions> 
•       <reaction id="Ak1B" reversible="false"> 
•         <listOfReactants> 
•           <speciesReference species="A"/> 
•         </listOfReactants> 
•         <listOfProducts> 
•           <speciesReference species="B"/> 
•         </listOfProducts> 
•         <kineticLaw> 
•           <math xmlns="http://www.w3.org/1998/Math/MathML"> 
•             <apply> 
•               <times/> 
•               <ci> K1 </ci> 
•               <ci> A </ci> 
•             </apply> 
•           </math> 
•         </kineticLaw> 
•       </reaction> 
•     </listOfReactions> 
•   </model> 
• </sbml> 

€ 

A→
k1
B



Composition of SBML models 
•  Fusion: Merge N models into 1 model (lose sub-model identities)  
•  Hierarchical composition (collection of sub-models - SBML3?) 

–  Aggregation: defined interfaces to models  
–  Computation via parallel execution? 

€ 

A→
k1
B

€ 

B→
k2
C

€ 

A→
k1
B→

k2
C

Martin Goodfellow 



Related Efforts 
•  Some similarity to CellML (www.cellml.org) 

–  SBML is somewhat closer to rep. used in simulators 
–  CellML is somewhat more abstract and broader 
–  Both SBML and CellML teams are working together 

•  Committed to bringing them closer together 
•  SBML Level 2 adopted features from CellML 

•  BioPAX (www.biopax.org) 
–  A common exchange format for databases of pathways 
–  SBML & BioPAX are complementary, not competing 
–  SBML and BioPAX teams working together to define linkages 

between SBML and BioPAX representations 



BioNessie ODE workbench  •  Platform independent 
–  Windows, Linux ( i386 or AMD64) and Mac Os with Intel i386. 
–  Released on 5th October 2006 for internal use. 
–  JAVA Web Start 

•  Simulation 
–  Multithreaded: simulation of different models at the same time. 
–  User-friendly data viewer and printable data output 

•  SBML model construction 
–  Graphical tool supports creation & editing of SBML biochemical models 
–  Kinetic Law creation and management 

•  Grid 
•  Multithreading 
•  Parameter Scanning 
•  Sensitivity Analysis 
•  Model Version Control System  
•  Model Development Management 
•  Optimisation  
•  Model checking 

Xuan Liu 
Jipu Jiang 
Femi Ajayi 



•  Sensitivity analysis investigates the changes in the system outputs or behavior with respect 
to the parameter variations. It is a general technique for establishing the contribution of 
individual parameter values to the overall performance of a complex system. 

•  Sensitivity analysis is an important tool in the studies of the dependence of a system on 
external parameters, and sensitivity considerations often play an important role in the 
design of control systems. 

•  Parameter sensitivity analysis can also be utilised to validate a model’s response and 
iteratively, to design experiments that  support the estimation of parameters 

Sensitivity analysis  

Slide from Xuan Liu 

Sensitivity of species to the values of the 
parameter K6 for the timecourse of 200 
timesteps of 200 time units. 



Other simulators include… 
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