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Data models & databases
Computations over static models
Qualitative to quantitative
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What can we do computationally?

Generate / gather data

Construct networks (various types)
— Static

— Dynamic

Create databases of network data
Display (visualise) network

Analyse static network properties
— Global, local, motifs, ...

Navigate the networks
— Data queries e.g. pathfinding

Simulate dynamic behaviour
Compare networks (static, dynamic properties)
Analyse dynamic properties
Predict effects of interventions / re-engineering




Terminology: Pathways or Networks?

Pathways implies ‘paths’ - sequences of objects
— An ordered sequence of proteins and substrates

— A series of biochemical reactions

— An evolutionary product

— A biological system (living cell)

Networks - more complex connectivity

Both are represented by graphs

Networks: generic; Pathways: specific (?)
— ‘Metabolic networks’

8 — ‘The glycolytic pathway’
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Metabolic pathways vs Signalling Pathways

Metabolic | |
(initial substrate) Signalling cascade
S Input Signal
X
F—| |
S’ S1 > pq
£ —| |
S2 > P2
|
E3 — \
S3 > p3
S” Output

(final product)

Classical enzyme-product pathway Product become enzyme at next stage
Enzymes are in RED




Database models

* Aim to represent data

— to store them

— to take advantage of the DBMS’s data storage,
management, and retrieval facilities

» Often unsuitable to analyse the structure of
biochemical networks

Y. Deville, D. Gilbert, J. van Helden & S. Wodak. An Overview of Data Models for the Analysis of Biochemical Pathways,
Briefings in Bioinformatics, 2003 4:3, 246-259




Graph-based data models for
pathways

« Compound graph
* Reaction graph

« Bipartite graph

Hypergraph

* Object-oriented models

Y. Deville, D. Gilbert, J. van Helden & S. Wodak. An Overview of Data Models for the Analysis of Biochemical Pathways,
Briefings in Bioinformatics, 2003 4:3, 246-259
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Graph = (V,A) V = set of vertices (nodes)

Graphs

A = set of arcs

A graph is either directed or not
If directed then A - arcs. If undirected then A - edges

admires

cat

fears

mouse

fears

chases

cat

rat

©

dog
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G = (V,A)
V={1,2,34,5}
A={1-2 23, 32, 31, 14 , 11}

Paths (some)
P1=(2-3,3—1)
P1=(2—3,3—1, 1—4)
P3 = (2—3,3—1, 1—=1)

Circuits
C1=(1-2,2-=3,3—=1) length =3
C2=(1—=1) length = 1

Optionally label vertices & arcs
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Compound graph

» To model (bio-)chemical reactions
* Nodes are (bio-)chemical compounds

* Directed edges connect compound A to compound B if Ais a substrate
and B is a product in the same reaction

glutamate + ATP > y-glutamyl phosphate + ADP

«Catalysed by y-glutamyl kinase (EC 2.7.2.11)

glutamate v-glutamyl phosphate

ATP ADP
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Compound graph - problems

» Can be used to represent metabolic or regulatory pathways
» Can not be used to combine them

— Would require different nodes for compound or genes

— Different edges for chemical reactions or regulatory events

» Don’t contain information about the enzymes catalysing the reactions
* Ambiguous: different reactions can lead to the same graph

A B

A C D
D B >‘[R’I . '[R3—'O
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Reaction graph

* Nodes are (bio-)chemical reactions

« Edges are between nodes if there is a compound which is the
product of one reaction and the substrate of a second

« Edges can be directed or undirected (if reactions are reversible)
 Similar limitations to compound graphs
« Ambiguous:

R
B R2

C
]
C
R3 A R D
R3 ——O
E

R1 R2

—
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Why compound and reaction
graphs?

Simple

Sufficient for some analysis such as
topological or statistical properties

Discovery of basic patterns

Useful in specific applications
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Bipartite graphs

» Two classes of nodes, compounds and reactions
» Edges can not relate nodes from the same set
— Edges occur between a compound and a reaction

» Edges can be directed or undirected

* Directed edge from compound to reaction denotes a substrate of the
reaction and vice versa

* No ambiguity

glutamate v-glutamyl phosphate
EC 2.7.2.11
ATP ADP
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Reactions and compounds as directed bipartate graph

[ ]
]
]
[ ]
[ ]
[ ]
]
[ ]
|
[ ]
]
]
compounds
reactions

substrate — reaction

I

reaction — product
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Hypergraphs

* Like bipartite graphs
* Hyperedge relates a set of substrates to a set of
products

« Can be converted to bipartite graph or vice versa

glutamate >_< vy-glutamyl phosphate
ATP ADP




Bipartite graphs and hypergraphs
- limitations

Control mechanisms of reactions can not be explicitly
represented

— e.g. catalysis, inhibition, activation, etc.
Limited to reactions and compounds

However, this is sufficient for:
— Analysis of topological properties
— Path finding

— Pathway reconstruction/synthesis
— Pathway prediction
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Object models

Required if regulatory information is to be included

Generalisation of bipartite graphs

Nodes are typed, permit more detailed description
Allow inheritance

Reaction

substrate

Compound

product

Catalysis

Enzyme




Object models - example

« The reaction catalysed by y-glutamyl kinase

glutamate + ATP

> y-glutamyl phosphate + ADP

glutamate

ATP

substrate

product y-glutamyl phosphate

EC 2.7.2.11

substrate

\ product ADP

catalysis

S

vy-glutamyl kinase




= J van Helden, A Naim, R Mancuso, M Eldridge, L Wernisch, D Gilbert, and S
M e t a b Ol I C S te p J. Wodak, Representing and analysing molecular and cellular function in the
computer, J] Biological Chemistry, 381 (9-10):921-35, 2000.

(O glutamate
O ATP
proB gamma-glutamyl kinase Substrate
JE— Substrate
§ lexpression H@_ catalyses ——» 2.7.2.11
Produces
Produces
inhibits
O ADP
(O gamma-glutamyl phosphate

O

proline
§ gene
—1{ == Negative interaction
Biochersical Entity — 1> Positive interaction
ﬁ Protein
-0 [Inhibits] -> 1.5.1.2 EC (reaction) number
Reaction Catalysis (O  compound

J. van Helden



Metabolic Pathway: Proline Biosynthesis

proB gamma-glutamyl kinasel |

(O glutamate

§ —» — —»| 27211

O ATP

v

proA gamma-glutamylphosphate reductase

\‘O ADP

(O gamma-glutamyl phosphate

__—( NADPH; H+

§— Copevio] —»T 33— —»[ 12141

v

\‘O NADP: Pi

glutamate gamma-semialdehyde

spontaneous

l

proC 1-pyrroline-5-carboxylate reductase

§— Coppevio] —»T3— —> | 1512

J. van Helden

O H20

O 1-pyrroline-carboxylate

__O NADPH

\‘O NADP

(O proline



Transcriptional Regulation

Homoserine-0O-

Transcriptional repression metA succinyltransferase
down-regulation
( J ) S — |expression —P@
. D - '
Protein own -reqgulation
-0 [down-regulates] -> '
excpression Methionine

Holorepressor

Transcriptional activation
(up-regulation) PHO5 Pho5p

§—— expression —Pﬁ
?

up-regulation

Protein |
-0 [up-regulates] -> (i
. Pho4dp
expression
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Methionine Biosynthesis in E.coli

L-aspartate

Q<€—— " aspartate biosynth.
O ATP
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Methionine Biosynthesis in S.cerevisiae

Aspartate
biosynthesis

» L-Aspartate

|
AP {2724} —catl—

ADP

L-aspartyl-4-P

I
NADPH
NADP+: pie—T120 41 }—Tcat}-

L-aspartic semialdehyde

NADPH |
NADP+>—| 1.1i1.3+-—|cat|———
L-Homoserine
|
Acet'ygoc’: {23431 }—Tcar}—

O-acetyl-homoserine

Threonine
biosynthesis

Sulfur 1, suifide

assimilation \_l 12 9|9 10— oot —

Homocysteine

Cysteine biosynthesis

5-methyltetrahydropteroyltri-L-glutamate

{2118 —ca—
v

5-tetrahydropteroyltri-L-glutamate

L-Methionine

H,0; ATP
Pi, PPi

HOM3

HOM2

HOM6
MET31
MET32

MET2

— e MET17 l

MET28
‘—E CBF1
p

«—exo}— METS +<— GCN4

SAM1 “— MET30
SAM2

S-Adenosyl-L-Methionine
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Alternative methionine pathways

L-Aspartate

[ " "
S.cerevisiae E.coli

L-aspartyl-4-P
L-aspartic semialdehyde
L-Homoserine

Alpha-succinyl-L-Homoserine

A

O-acetyl-homoserine
4.2.99.9

Cystathionine

|4.2.99.10| |4.4.1.8|

Homocysteine
L-Methionine

S-Adenosyl-L-Methionine
J. van Helden



Shortcut Representation

L-aspartate
O |4'aspartate biosynthesis

|
I —] vy
v

O L-Aspartate-4-P
1

.
L-Aspartate semialdehyde
O >

|
— [

' L-H i
-Homoserine
O — [~ threonine biosynthesis|

1
| indirect effect | ————|_2.3.146 |}
Holorepressor /_ \ ,- 
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s (i ——

1
/ indirect effect 42.99.9
:
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& e R vy
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| indirect effect |—|| 2.1.1.14 |$ﬁ|"serine biosynthesis |

| ﬁ
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§

metJ  L-Methionine
\
S

J. van Helden L-Adenosyl-L-Methionine



High-level Abstraction

aspartate

O

L-aspartic semialdehyde O

v |

\
@

\v

O

methionine

J. van Helden

valine leucine
N lysine pyruvate /O —»0
homoserine O > /\ O
. threonine isoleucine
cystelneO
\



Other Important Issues

* Partial information (indirect interactions), and
subsequent filling of the missing steps.

* Negative results (elements that have been
shown not to interact, enzymes missing in an
organism).

* Putative interactions resulting from
computational analyses
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Requirements: Network navigation

How many pathways & how many steps within each pathway, from compound A to
compound B

Give all the pathways that contain or lack specified compounds or processes

Highlight pathways/networks: level of certainty of the information, eliminating trivial
pathways (e.g. production consumption of water); rank according to fitness of match

Which paths / pathways may be affected when gene/proteins turned off / missing.

Compare biochemical pathways: from different organisms and tissues; highlight
common features and differences; predict missing elements ('reconstruction’)

Represent pathways at different resolution levels
Compile repertoires of recurrent network motifs at different resolution levels

|dentify all positive/negative regulatory cycles in a pathway graph.

Jacques van Helden, Lorenz Wernisch, David Gilbert, and Shoshana Wodak. "Graph-based analysis of metabolic networks".
in Ernst Schering Research Foundation Workshop Volume 38: Bioinformatics and Genome Analysis. Springer-Verlag, 2002

UNIVERSITY [
o v IR

1
=

GLASGOW Ny



i Metabolic pathway: Query on EC numbers:
Metabolic Graph Layout E.coli, methionine biosynthesis

Query
list of step identifiers [sc ]
(gene or reaction) [
[} (e
[4-Phospho-L-aspartate |
ASD {pASO 1.2.1.11
e Urthophosphate
[L-Aspartate d-semialdehyde | [NADP+ |
For each step :
collect step elements —
[FETa]
. |D—Succinyl—L—homoserine
[ Connect Successive Steps ]
[T} EEE
Cystathionine
& ]
[ AUtomatic Graph LayOUt ] e |S-Hethyl::Z:::;:roFolate|
(] (]
L-Methionine
[METK ] {METK | .
P ophosphate
[ Display ] Pyrophosphate
[5-Adenosyl-L-methionine |




* «  DNA ch|p

s experlment

/"/ Transcription profiles/

Visualizationl Clustering
/ Clusters of
 co-regulated genes
| |
[Mechanism of co-regulation ?] [Functional meaning ?]
Pattern discovery Pathway extraction
in regulatory regions in metabolic reaction graph

Putative Putative
regulatory sites metabolic pathways

1

Matching against Matching against
transcription factor metabolic pathway
database database

/ Sltes for / Novel / / Known // Novel /
known factor: sites pathways pathways

J van Helden, D Gilbert, L Wernisch, M Schroeder, and S Wodak, Application of Regulatory Sequence Analysis and Metabolic
gap@ Network Analysis to the Interpretation of Gene Expression Data, in Computational Biology (Olivier Gascuel and Marie-France -

Sagot, Eds), LNCS 2006, 147-163, 2001 of s
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Queries - subgraph extraction

A. Seed reactions B. Reaction linking

® Compound
3 Reaction
B Sced Reaction

—®—> Direct link
B [ntercalated reaction

C. Subgraph extraction D. Linear Path Enumeration

IR R
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Maximal Pathway extracted from a cluster of cell-cycle regulated genes

Pathway
Genes Enzymes extracted
Sulfate
Sulfate adenylyl l _— ATP
MET3 transferase —~—PPi 2.7.74
Adenylyl sulfate (APS)
Adenylyl sulfate l L ATP
MET14 kinase ~—ADP :2-7-1-25|
3'-phosphoadenylyisulfate (PAPS)
MET16 —— 3 -Phosphoadenylylsulfate I _—NADPH TYTY
reductase NADP+; AMFI; 3'-phosphate (PAP); H+ :0.99.
sulfite
_— Putative l
METS Sulfite reductase 3 NADPH; 5H(; 1812
Sulfite reductase ’
MET10
(NADPH) sulfide

. d-acetxl‘homoserine
O-acetylhomoserine

MET17 (thiol)-lyase 1 {4.2.99.10 |
Homocysteine

Methionine synthase 5-methyltetrahlydrop’@e'yltri-L-glutamate
(vit B12-independent) 5-tetrah[/dropte}1yltri-L-gIutamate 2.1.1.14

MET6

L-Methionine

Matching
pathways

uoljejiwisse Jnj|ns

Iy3a N

sisayjulhsoiq
auluol
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Databases & systems available

Enzyme function and metabolic pathways :
— KEGG

— BioCyc: EcoCyc (E.Coli), MetaCyc (900 organisms); +368 predicted
(PathoLogic program)

— AMAZE (metabolic, regulatory and signal transduction pathways)
— BRENDA - enzyme function only.

Querying facilities - various levels of complexity. Simple browsing & basic
queries (string search on the values of selected fields), to pathway analysis.

Some path-finding tools, which find all paths between two specified elements,
or from a specified element to any other.

Results display: colouring paths found on pre-drawn static maps (KEGG), or
on a dynamically generated diagram
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KEGG Query & result

METHIONINE METABOLISM

Glyeine, serine and
thre onine metabolism

O-Suceinyl- '
L-homoserine

O-Acetyl-

L-homoserine

3-D-Ribosyl-
L-homocysteine

Sulfur
Homocystine me tabolism

m%‘ I( —————— _go (33.11]

L-methionine 23481

Ayninoacyl-
L-methionine 04—| 341312 }

N-Formylme thionyl-

{RNA L-Methionyl-tRNA

00271 424193

L-Homoc ysteine O
L o
D-Ribose 8-adenosyl-
L-homocysteine
2115 |[2.1.1.10
2.1.113[[2.1.1.14
2516 S-Adergos;{l-
L-Methionine 36.1.25 L-methionine
A — L-Methionine
{1845} O ooxide

\_ M == 4-Methyl thio-
O 2129 O 6.1.1.10 1 1432 [ L ®) 2-oxobutanoate
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map(00271
Methionine
metabolism
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E. coli Metabolic Overview
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system specification

.

: : verification
Construction l technical « > requirement
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system \
unknown

behaviour properties

. prediction
ﬁ

validation
known
Understandingl biological / properties
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Slide from
Richard Orton

BIR!('Z

Analysis

Sensitivity
FBA, MCA
Model checking
Knockouts..

Trypanothione Metabolism
o— mar =
H o
OW O m O e = )L
nnnnnnn oFHO S
= o— | oc [gammaces)
jo—[sawoc. \
v £ _
v (e

Which pathway? =N e
What bio question?

Identification

Yes

Validation Definition

Simplify!

[A]
X—-
max [A]+ K,

Simulation

BioNessie

Aan,

- - MATLAB
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Molecules/Levels

Qualitative

|

|

CTL, LTL I

|

|

|

. |

Time-free &:.\\o‘i‘ :
=~ Timed "~~~ "% - m==-

Quantitative

|
l
|
l
Approximation I
by Hazard :
Molecules/Levels Jfunction :
Stochastic rates StOCh aStiC T >
csL el g
Approximation
by Hazard
functions
PR Liokemidts Sgepirati
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Continuous

s)

|
!
]
I
I
I
|
|
i
|

D Gilbert, M Heiner and S Lehrack (2007). A
Unifying Framework for Modelling and
Analysing Biochemical Pathways Using Petri
Nets. Proc CMSB 2007 LNCS/LNBI 4695, pp.
200-216

Concentrations
Deterministic
rates

LTLc

Continuous State Space
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Hazard functions

| ho=c -] ("® )
Hazard function type1 t t L\ f(ph)
(tokens as molecules) i
c, transition specific stochastic rate constant

m(p) current number of tokens on pre-place p of transition t

binomial coefficient number of non-ordered combinations of the f(p,t)
molecules, required for the reaction, out of the m(p) available ones.

m
Hazard function type2 h =k N - H (p)

(tokens as concentrations) P N
k; transition deterministic rate constant

N number of levels
Levels: Calder et al, Trans Comp Sys Bio VI, LNBI 4220, 2006

UNIVERSITY [
o v IR

s

GLASGOW Ny



Dynamic behaviour - modelling

http://bib.oxfordjournals.org - Brief Bioinform -- Gilbert et al. 7 (4): 339 Table 2

Table 2: Comparison of methods for description, simulation and analysis of biochemical systems

Method Depiction/model Simulation Analysis
Pathway chart Biochemical reactions/no formal model None None
Ordinary differential Mathematical equations Deterministic numerical solution: time-discretisation Symbolic and numerical analysis (e.g.
equations (ODEs) bifurcation analysis)
Partial differential equations = Mathematical equations Deterministic numerical solution: space-time-discretisation Symbolic and numerical analysis
(PDEs)
Stochastic differential Mathematical equations with random terms Stochastic numerical simulation: time-discretisation Symbolic and numeric analysis
equations
Discrete Petri nets Graph, labelled transition system Animation via tokens Qualitative: structural analysis and
temporal logic
Continuous Petri nets Graph, labelled transition system, rate information Via ODEs See ODEs
SBML.-based graphical Graph, rate information Various (e.g. ODEs, Gillespie) Various, tool-dependent
formalisms
Stochastic =-calculus Algebraic formulae Stochastic numerical simulation via Gillespie algorithm None
Process algebra (PEPA) Algebraic terms, stochastic temporal logic Stochastic numerical simulation via Gillespie algorithm; simulation Quantitative, via temporal logic over
from logical analysis models
Cellular automata Spatiotemporal explicit model based on state and simple  Step-wise application of rules to discrete space state Analysis of emergent properties
rules
Agents Spatiotemporal explicit model based on autonomous Representation of object(s) behaviour determined by history of Analysis of emergent properties
intelligent object behaviour encounters with environment

Done

Gilbert, D. et al. Brief Bioinform 2006 7:339-353; doi:10.1093/bib/bbl043

Briefings in

?"@ Bioinformatics vy
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Biochemical networks

We can describe the general topology and single biochemical steps.

deltal-Piperdeine- 2-Crxo-6- 2-0u0-Gracet preopT Ho-Acetyl-Ha-
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-Oxoadipate adipate ¥

Ca—{26.1 39 —WO+—{12131 }—O+— 1513
L-z-Aminoadipate
&-semialie e

Hacc haropine

waine .
4—_—".5.1.1.5 {3 D-Lysine

Li
_—— Lwsine binsvnthesis

) M-Acetyllveine

B-Clutaryl-
dihydralipoamide

!
|
|
L

Crotonovl-
Cos, Q132371

(- 3-Hadroxw- .
tanovl-Cods ¢ B-Acetarmido-

Z-oxohexanoate

¥ c-smino-
pentanamide

35130

Glutarate
semialde hde

S-Aming
pentanoate

S-Acetamidoperntanoate

Acetyl-Coa O

| Protein- Prowin-N- Neé-Hydroxy- O Clyeine 4-Trimethyl
| Protein- 22 L8 e -ysine Lm0 2119 wimethyl lysine et Isine 572 1215 | emmeniobutanoate
T O—— 2 1.1 59| —wo—z 1155 —wO—z 1155 —wO{34- - -+O{Ld11a]| O - - O—{ 114111 =0 Carmitine
y Z1160 2160 e D Trimethyl- 412~ |4 Trimethyl- [ 1 2147
e2-lysing Iysine arnmoninbutanal

(O 5-Phosphomoox y-1vsing 114111

O 5-Calactosyloxy-Lysing > W h at h a p p e n Ss-ﬂehgdmxy

Hdroxvlveine carnitine

»>Why does it happen ?
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Glasgow iGEM team

- Simplifying a Model

ey

» Merge transcription and translation
[ mRNf‘ TF ] * Merge phzM with phzS (Parsons 2007)

TF+S — TF|IS

—>

TF|S
TF: Dntr or Xyir
_ [ MRNA PhzM ] [ MRNA PhzS ]
S: signal I I
TF|S: complex PhzM PhzS
PCA Intermediate

compound
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Glasgow iGEM team

Simplifying a Model

4@  Merge transcription and translation
* Merge phzM with phzS (Parsons 2007)

v

TF+S — TF|S

TF[S
TF: Dntr or Xyir
S: signal
TF|S: complex PhzMS
PCA < >
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BIR!C

.....Bipartite graphs!

» Two classes of nodes, compounds and reactions
» Edges can not relate nodes from the same set
— Edges occur between a compound and a reaction

» Edges can be directed or undirected

* Directed edge from compound to reaction denotes a substrate of the reaction and
vice versa

* No ambiguity

glutamate v-glutamyl phosphate
EC 2.7.2.11
ATP ADP
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Petri-net analysis

* Place invariants (P-invariants) - sets of places where
the sum of tokens remains constant over any firing.

* Transition invariants (T-invariants) - sets of transitions
which have a zero effect on the marking of the
system.

* |f the T-Invariants cover the entire Petri net, it shows

that the system can have cyclic behaviour, while
Incorporating all system parts, which suggests that
the system might have been modelled correctly.




Glasgow 1IGEM team

e Eche: Qualitative Petri-Net

Modelling & Analysis

TF production TF TF degradation

a0 [ J
b AN
4 N

.\...

TFS complex formation TFS complex disassociation

X

TFs (——=J] TFS degradation

PhzMS production

PhzMS PhzMS degradation

PYQ production

1 P-invariant, 5 T-invariants

PYQO PYQ degradation

BIR!G

Graphical representation--
Snoopy

Qualitative analysis

Charlie

— T invariants (cyclic
behavior in pink)

— P invariants

— (constant amount of
output)

Quantitative Analysis by

continuous Petri Net

— ODE Simulation

UNIVERSITY [ein
of 1R

1
=

GLASGOW Ny



Petri net analysis

PUR - The Petri net is not pure, i.e. there are pairs of nodes, connected in both directions. This structure
corresponds to read arcs. There are two (three) read arcs in the given net.

ORD - The Petri net is ordinary, i.e. all arc weights are equal to 1. This includes homogeneity (see the
next bullet) and non-blocking multiplicity (see the next but one bullet).

HOM - The Petri net is homogeneous, i.e. all outgoing arcs of a given place have the same multiplicity.

NBM - The Petri net has the non-blocking multiplicity property, which is of importance in combination with
the deadlock trap property (DTP)

CSV - The Petri net is not conservative, i.e. there are transitions which do not preserve the total token
amount by their firing, i.e. they increase or decrease the total token amount when firing. Obviously,
this applies to the input and output transitions.

SCF - The Petri net is not free of static conflicts, i.e. there are transi- tions sharing a pre-place. This
structural property holds e.g. for the two transitions T F degradation and T F S complex production,
sharing the pre-place T F , which means that a token on the place T F can either be broken down or
follow the way of TFS complex production.

CON - The Petri net is connected, i.e. it holds for all pairs of nodes a and b that there is an undirected
path from ato b.

SC - The Petri net is not strongly connected, i.e. it does not hold for all pairs of nodes a and b that there
is a directed path from a to b. For example, there is no path from the transition called P Y O
degradation back to the transition called T F generation.

FTO, TFO - The Petri net has input transitions and ouput transitions, i.e. it is an open system. Input

transitions are always enabled, therefore they are able to fire arbitrarily often, making the Petri net
unbounded.

FPO, PFO - There are neither input places nor output places.
NC - The Petri net belongs to the structural net class Extended Simple

UNIVERSITY  [fie
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Petri net analysis

DTP - The Petri net has the deadlock trap property, The DTP involves liveness for
ordinary ES nets. Because the net is live, there are no dead transitions and no dead
states.
CPI - The Petri net is not covered by P-invariants. Actually, there is only one minimal P-
invariant, which comprises merely the place s. This means that the token number on this
place never changes under any firing. Therefore, this place requires at least one token
in the initial marking to allow its post-transition to fire sometimes. Contrary, all other
places are unbounded, i.e. the token amount may amount up to infinity.

CTI - The Petri net is covered by T-invariants. There are the following minimal T-
invariants for the Petri net without the positive feedback:

— y1 ={T F generation, T F degradation},

— y2 ={T F S complex production, T F S complex disassociation},

— y3 ={T F generation, T F S complex production, T F S degradation},

— vy4 ={P hz M S production, P hz M S degradation},

— y5={P Y O production, P Y O degradation} .

The Petri net with the positive feedback has additionally the following two T-invariants:
— y6 ={pf b, T F degradation},
— y7 ={pfb, TF S complex production, T F S degradation, } .

SCTI - The Petri net is not strongly covered by T-invariants, i.e. by non- trivial T-
invariants only.
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A single enzyme-catalysed reaction in various modelling representations

Michaelis—Menten approximations

Mass-action kinetics

A

E

|

S—>P

¢ dIP]_ kedEIS]

dt K,+[S]

K- ky+ko
k3

kcat= k3

O—1 =0

S P

D

Ky Ky

E+S «———~ES—> E+P

ds] _

d[ES]

dt
d[E]

diP]

dt

ko

— ky[S][E]+k,[ES]
ky[SI[E]+ko[ES]-A5[ES]
—k4[SIE]+ko[ES]+A5[ES]

ks[ES]

ol

—0

P

ES

Gilbert, D. et al. Brief Bioinform 2006 7:339-353; doi:10.1093/bib/bbl043

pyright restrictions may apply.

Briefings in
Bioinformatics

(A, B) Conventional notation of the
chemical reactions and Kinetic
constants.

(C, D) A possible ODE
representation.

The differential equations
mathematically describe the temporal
change of each molecular species.

(E, F) Discrete Petri net
description.

Circular nodes - biochemical entities
and boxes represent reactions.
Enzymatic catalysis in E is
represented using a special read arc
(circled end). The marking of circular
nodes with tokens indicates whether
the biochemical entity is present in
the state of the model. Reactions may
occur if their preceding biochemical
entities are marked.
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Methodology

Bionetworks

knowledge

|

qualitative
modelling

!

qualitative
models

quantitative
modelling

!

quantitative
models

D Gilbert and M Heiner, (2006). From Petri Nets to Differential Equations - an
Integrative Approach for Biochemical Network Analysis, Proc ATPN06, LNCS
4024 /2006, pp. 181-2

/ understanding Petri net theory
animation / (invariants)

analysis —> model validation

Model checking

1 qualitative
behaviour prediction

quantitative
parameters

understanding Reachability graph
_)L animation / Linear unequations
analysis / simulation ————> model validation Linear programming
quantitative OQMEWY =

behaviour prediction crascow G



From Petri Nets to Differential Equations - an Integrative Approach
David Gilbert & Monika Heiner

Spaciss SIS SIS S S ST S 8 S0 S SI2oSB
Stated Raf1* 1001 111100 1 1 1
RKIP 1000000100 1 0 0
T T T T J J T T Raf1* 010000001 1 0 0 0
Raf I*/RKIP/ERIGPP 0 0 1 0 0 0 0 0 0 0 0 0 0
ERK 0001001110 0 0 0
RKIP-P 0001 100000 0 0 1
- - VEK-PP 111100111 0 0 1 1
LIEK-PP BRI 0000110001 1 0 0
ERI-PP 1100000000 0 1 1
P 1111 1001 1 1 1 0 1
] | RIIP-P/RP 000001 1000 0 L 0
Initial 13 *good” stats confirgurations
0.7 b
o Raf-1Star
2 ———RKIP
> 06! | | — Raf-1Star_RKIP
.% [ — Raf-1Star_RKIP_ERK-PP
T — ERK
< 05f . - RKIP-P
: |l — MEK-PP
=
£ .l ——— MEK-PP_ERK
C .
g 047 ——— ERK-PP
g ———RP
Q N S _
oalll \ / ] RKIP-P_RP

ERK-PP

o
N
I

0.1 \ \ 4
NG

0 SN ] | |

|
0 10 20 30 40 50 60 70 80 9 100
Time (sec)
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Stochastic representations of the single enzyme-catalysed reaction

(A): Stochastic process algebra description in PEPA

A. PEPA

*The upper part defines the biochemical components, where the concentrations
Ep=(ry.ky).E; of each one can be either high or low (e.g. for the substrate either SH or SL). The
E| = (rp,ko).Epy+ (13,1).Epy reactions are referred to by the labels r1,r2,r3 and k1,k2,k3 represent the rates.
Sy=(r.ky).S; _ .
S = (tnko).S *The last line describes how the components are composed together to form the

Lo model.

SE} = (rp,ky).SE +(13,ks).SE,
By =\ink)e2y *Simulations are via ODEs or the Gillespie algorithm and queries about the
P =(r3,k3)-Py model can be made with the PRISM model checker.

Py = (stop,1).Py

S, (SE, X1 E,) >4 P,
{ryro} Arprarst {13}

(B): Stochastic mt-calculus description

B. Stochastic n-calculus
A *The first two lines are rules describing the behaviours of the enzyme and
El(ky)=vko VKK (Ko, kg).(?ko- E(Ky) + k3. E(4)) substrate respectively.

A
S(ky)=?Kq (Kp, k). (kn- KKy ) +!k3. P() , .
R *The product is also defined in the second rule.

run 100 of E(a) | S(a) *The third line is the instruction to simulate the model with 100 molecules each
of the enzyme and substrate using the Gillespie algorithm.

Gilbert, D. et al. Brief Bioinform 2006 7:339-353; do0i:10.1093/bib/bbl043

get Briefings in
BIRE - - -
apyright restrictions may apply. Bioinformatics




Glasgow iGEM team

Advantages and disadvantages of
stochastic modelling

* Living systems are intrinsically stochastic due
to low numbers of molecules that participate
In reactions

* Gives a better prediction of the model on a
cellular level

* Allows random variation in one or more inputs
over time

 Slow simulation time

<BIR!€




Glasgow 1IGEM team

Chemical Master Equations

A set of linear, autonomous ODE’s, one ODE for each possible state of the system. The
system may be written:

- ®->TF - production of TF

e TF->® - degradation of TF
 TF+S —» TFS - association of TFS
 TFS —» TF+S - dissociation of TFS

e TFS-> O - degradation of TFS
« ® — PhzMS - production of PhzMS
 PhzMS - ©® - degradation of PhzMS
* PhzMS — PYO - production of pyocyanin
- PYO—-O - degradation of pyocyanin reaction rate constant | propensity function
¢ —>TF g=y(1) a(l) =¢(1)
«  Propensity functions: IF—=¢ orp = c(2) | a(2) =c(2) « X{1)
TF+S > TFS | K1+ S=¢(3) | a(3) = c(3) * X(1)
TFS - TF+S| Kml=c(4) | a(4) =c(4) x X(2)
TFS =6 | orps=c(5) | a(5) =c(5) * X (2)
o — P3 S = (6 a(6) = ¢(6)
P3— ¢ Sps = c(7) | a(7) = e(7) * X (3)
P3 — P4 ay = ¢(8) a(8) = ¢(8) x X(3)
P1— ¢ ops=c(9) | a(9) =¢(9) «* X(4)

BR€ i
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output of pyo over time (1 cell) output of pyocyanin over time (10 cells)

Glas gow 250 r : i . 2500 . - - -
1GEM team
200 2000
150} 2 1500
—_ a
2 -~—
T 2
E 2
100} | 3 1000
soHf 500
0 . . . .
0 2 4 6 8 10
output of pyo x10° time x10°
x 10° output of pyocyanin over time (100 cells) x10° output of pyocyanin over time
2 2 . - - :

1.8 1.8

-

=)
-
)

o~
-
~

n
N

output of pyo
output of pyo

0.8 0.8 R

0.6 0.6 R

04 04 R

0.2 0.2 J

0 . 1 I . 0 I L L L
0 2 4 6 8 10 0 2 4 6 8 10

time x10° time x10°
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Robin Donaldson

Probabilistic temporal logic
next
finally
globally
until

.} filter (check property from when
property becomes true)

probability

T C O TX

T

P_, [ ([ProteinX] = L) U ([ProteinX] > L) {[ProteinX] = L}]

What is the probability of the concentration of ProteinX

Increasing, when starting in a state where the level is
already at K?

Can also query about oscillations
{ F( d[ProtX]>0 A F( d[ProtX]<0 A F( d[ProtX]>0 A...))) .. e




Robin Donaldson MOdeI Checking

Two reactions:

b (1) A->B
At what DN (2)C->D
concentration?
A
Property: P=2[ ([A] = X) { [A]=[D] } - -
Assessing [X] at which reactant [A] equals "5 * % | K
prOdUCt [D] ° _(I) 20IOO | 60I00 | 10(I)00 g _(I) 20I00 | 60I00 | 10(I)OO
Results using 10, 100, 1000, 10000
levels. } i
1000 levels: peaks at 837, .e. 8.37 < &
the most probable concentration 3§ 2 - 5 .
when [A] = [D] < 8 £
ODE Slmu/atlon" [A] — [D] at 0 2000 Levé;(I)OO 10000 0 2000 Le\:JOO 10000

concentration ~8.35

BRC UNIVERSITY [l
of J;

GLASGOW Ny




Robin Donaldson

SGTP

« Property S1: What is the probability of the Egvdyve
concentration of RafP increasing, when starting -2
in a state where the level is already atK?  ~ Pt

ppp

B2 K51k

P_, [ (RafP] = L) U ([RafP] > L) {[RafP] = L}] el

04 4 level version 8 level version o _|
level4 'evel8 =
level 7 0325
§ | N © |
© level 3 e 0.250 ©
£ level 5 = o2z
D 02 —— 0.200 |~
§ level 2 level 4 o]
0.150 ©
© o L ~ level 3 i Z ©° |
el level 2 oo e S N 3
eve level 1 0.025 B RS SOS—— 09_ < u
B 25 s0 75 100 125 150 175 200 225 o |
[ Raf —MEK — RafP  Ras_GTP
N
» Stochastic: 4 (red), 40 (green) °©
400 (blue), 4000 (yellow) levels .
. o 7
«  Extensible to thousands I | r . .
. L . 0 1000 2000 3000 4000
«  Approximates to deterministic behaviour
Level
(black) 0.1182... | | o e
BRC M. Calder, V. Vyshemirsky, D. Gilbert and R. Orton. (2006). Analysis of Signalling
Pathways using Continuous Time Markov Chains, Trans.on Computat. Syst. Biol. VI, Tl

of
4220 pp 44-67 Springer Verlag GLASGOW



Robin Donaldson

Probabilistic model checking

* Property S2: What is the probability RafP being the first
species to react?

P_, [ (([MEKPP] = 0) A ( [ERKPP] =0)) U ( [RafP]> L)
{(IMEKPPI = 0) r ([ERKPP] =0) 1 ([RafP] = 0)}

0.12 . —

)
D
»
(0]
—
3
1

RafP
01l MERaE ,
7 ERKPP
0.08 | ] @
0.06 V
0.04 | s
0.02 < |
06 50100150 200 250 300 350
 Stochastic: 4 (red), 40 (green) =
400 (blue), 4000 (yellow) levels S -

« Extensible to thousands 0 1000 2000 3000 4000

BIR!G Level




Lecture notes by Eran Eden

Flux balance analysis

boundary

Vertex - substrate/metabolite
concentration.

Edge - flux (conversion mediated by
enzymes of one substrate into the
%&pther)




Lecture notes by Eran Eden

Flux cone and metabolic capabilities

The number of reactions considerably exceeds the
O — S 'V number of metabolites

0 %0 o
{0][ 10 100 } vl The S matrix will have more columns than rows
0

(o] 17 —1 —1 —1 1
b '
S bs

. The null space of viable solutions to our linear set of
equations contains an infinite number of solutions.

What about the constraints?

“The solution space for any system of linear
homogeneous equations and inequalities is a convex
polyhedral cone.” - Schilling 2000

Our flux cone contains all the points of the null space
VA with non negative coordinates (besides exchange fluxes
f\ that are constrained to be negative or unconstrained)  v~ves™ B8

1
=
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Lecture notes by Eran Eden

BiR!('Z

Flux cone and metabolic capabilities

What is the significance of the
flux cone?

oIt defines what the network can do
and cannot do!

eEach point in this cone represents a flux
distribution in which the system can
operate at steady state.

eThe answers to the following questions
(and many more) are found within this
cone:

ewhat are the building blocks that the network can manufacture?
ehow efficient is energy conversion?
eWhere is the critical links in the system?

UNIVERSITY (e
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Metabolic control analysis

« Quantitative sensitivity analysis of fluxes and
metabolite concentrations.

* In MCA one studies the relative control exerted by
each step (enzyme) on the system's variables (fluxes
and metabolite concentrations).

* This control is measured by applying a perturbation to
the step being studied and measuring the effect on
the variable of interest after the system has settled to
a new steady state.




Glasgow iGEM team

Model Parameter Refinement

* Modified MPSA

BRC

Caorrelation Coefficient = 0.979
Area between curves = 1.2217
Std of dacceptable/drange = 0.027697

1 —
-
A/'/
P
05 T
-
~
ol <= -
0 2 4 B 8 10
Correlation Coefficient = 0.99422
Area between curves = 2.1707e-005
Std of dacceptable/drange = 371.2007
1
05 o
e
,,.~/
"
0 & "
2 3 4 5 B 7
-4
%1
Correlation Coefficient = 0.99603
Area between curves = 0.0028603
Std of dacceptable/drange = 2.2557
1
g
o
05F g
/"'/--/
..-/---;
e
D - 1 1 1 n
0.05 0.06 0.07 0.08 0.09 0.1

Caorrelation Coefficient = 0.96826
Area between curves = 0.0080601
Std of dacceptable/drange = 5.8342

1 —
.—/-_/
T
7
o
0.5 o
- "
1/
~
U 1 1 1 1
0.05 0.06 0.07 0.08 0.09 0.1
Caorrelation Coefficient = 0.98386
Area between curves = 0.0057233
Std of dacceptable/drange = 4.2409
1 =
o
P
0s ) e
T
.»—/"/--’-
D = 1 1 n 1
0.05 0.06 0.07 0.08 0.09 0.1
Correlation Coefficient = 0.99989
Area between curves = 0.076552
Std of dacceptable/drange = 0.0039023
0s
ol :
0 2 4 B g 10

Caorrelation Coefficient = 0.99736
Area between curves = 1.5147e-005
Std of dacceptable/drange = 291.0357

1
0s
0
2 5} 7
x10*
Correlation Coefficient = 0.8023
Area between curves = 3.839
Std of dacceptable/drange = 0.069208
1 -
i
//
0s pd
T
_
_/'/---
D — 1 1
0 2 4 B g 10
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Fitting and optimization

« Genetic Algorithms

« Simulated Annealing




BiR!('Z

Dynamic behaviour analysis

 Bifurcation analysis (to discover oscillations)




Databases & tools

Databases

Name
TRANSPATH [62]
aMAZE [63]
KEGG [64]

BRENDA [65]

KDBI [66]

BioModels [69]

DOQCS [70]

CelIML model repository [67]

Tools

Name

MATLAB, with SimBiology Toolbox [71]

Content
Signalling pathways

Annotated protein interactions

Annotated metabolic and
signalling pathways

Enzyme function and kinetic data

Kinetic data

Dynamic model repository
Dynamic model repository
Dynamic model repository

Category
Continuous and stochastic

Website

http://www biobase.de/pages/index.php?id=3
http://www.amaze.ulb.ac.be/

www.genome.ad.jp/kegg

www brenda.uni-koeln.de

xin.cz3 .nus.edu.sg/group/kdbi/kdbi.asp

www ebi.ac.uk/biomodels

dogcs.ncbs res.in
www cellml.org/models

Model Representation
Mathematical (e.g. ODE)

Function
General-purpose mathematical environment,
simulation and analysis

URL

www.mathworks.com

XPPAut Continuous and stochastic ODE General purpose; simulation, analysis www.math.pitt.edu/~bard/xpp/xpp.html

Copasi [73] Continuous and stochastic ODE Simulation and analysis WWW.COpasi.org

Virtual Cell [75] Continuous and stochastic ODE-based, PDE Simulation and parameter sensitivity analysis www.nrcam.uchc.edu

Systems Biology Workbench [76], including Discrete, continuous and ODE/SBML Data-exchange framework for modelling, sbw kgi.edu

Jarnac and JDesigner stochastic simulation and analysis

Narrator [15] Continuous and stochastic Graphical, ODE-based Modelling and simulation WWW .narrator-tool.org

STOCHSIM [78] Stochastic Probabilistic General-purpose biochemical simulator www .pdn.cam.ac.uk/groups/comp-cell/StochSim.html

E-CELL [77] Continuous Object-oriented Modelling and simulation www e-cell.org

SPiM [83] Stochastic TI-calculus Simulation http://www .doc.ic.ac.uk/~anp/spim/

BioSigNet [85] Discrete Graphical Reasoning, hypothesis testing http://www .public.asu.edu/~cbaral/biosignet

BIOCHAM [84] Discrete and continuous Logical + kinetic models Simulation and analysis contraintes.inria fyBIOCHAM

PRISM [24] Discrete Stochastic process algebra General purpose; Analysis (model checking) http://www .cs.bham.ac.uk/~dxp/prism

PEPA Workbench [20] Discrete Stochastic process algebra General purpose; Analysis www dcs.ed.ac.uk/pepa/tools 1
Done ;
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Example - SyTryp project

~¢
-
Chez la Réduve Chez [Homme £
Figire de la réduwve ) . ) 3
{Passage des trypomastigates e, Le:s Erﬁ,q:n:-masng-:ntes me:tacy'chques
métacycliques dans les féces de 'animal) penetrent dans IF‘fS ?1ffe rentes c.ellules
au niveau de la pigdre. & lntérieur,

ilz s& transfarment &n amastigotes

Trypomastigotes metacycliques
danz I' 1nte57

@ :LEﬁT;.SfZE::iS 9 Lez amastigotes se
dEut res cellules et se "?”'T‘F'""'!“ F-ar

fizzion binaire dans

transforment en lez cellules des tissus

Multiplication dans

\I estomac

) ) e [ingestion de
Epimastigote dans trypomastigotes)

ﬁ\ 5 v
7 @
! 15; Les amastigotes intracellulaires
z& transforment en trypomastigotes

A= Déhut de Hnfection puis s-:nrtgnt de.la cellule .et entrent
dans la circulation sanguine

ﬂ= Diagnoztic pozszible

amastigotes 1ntrace:l|ula1res infactés
dans les nouwveaus sites

d'infection.

Les signes cliniques

peuvent résulter

de ce cycle infectieux

Figire d'une réduwe

l'eztomac

U.Glasgow, U.Strathclyde

INRA, INRIA, Bordeaux
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From connectivities to dynamic graphs (1)

»  Start with metabolite relation networks generated by inference techniques

* Focus on selected modules of interest which have been identified by clustering and confirmed, using
visualization proposed to be of potential interest by the biologists.

. Transform these into reaction networks

— manually mapping metabolite relationships onto known metabolic networks from databases for model
organisms such as E.coli using data from MetaCyc and Kegg,

— automated using Bayesian networks (see review Werhli et al, Bioinformatics, 2006).
*  Reaction networks: bipartite graphs (Petri nets),

— metabolites are represented by one type of vertex,

— reactions & the enzymes catalyzing the reaction by another vertex type.

— edges decorated with stoichiometric information derived from the databases.

— Default: reactions as reversible, unless sufficient information.
« Validate qualitative reaction networks using Petri net analysis techniques & tools

— consistency check of elementary graph properties

— identification of mass-conserving and state-reproducing subnetworks

— identification of smallest possible functional units

— model checking of expected qualitative behavioural properties (e.g flux balance and elementary
mode analysis).
»  Derive meaningful initial markings (hence initial concentrations for the quantitative models)
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From ab-initio & correlations to
reactions...

® & O—® ® ®

X

©—@ o @

@, ®
X- éX@ ® ®
©7 @ @ @ O

Prune edges using Directionality by o
bayesian approach? (Muggleton) mapping onto existing Bipartite graph
gﬂ’é reaction databases?




Initial Petri net

A 4

SAMdc

i ~O

SAM:adomet
6.3.1.8

GspdSH: glutathionylspermidine

Adesam ExSubstrate: ATP -> ADP+Pi

6: Glutathionyl spermidine synthetase

GSH:glutathione

6.3.1.9
ExSubstrate: ATP -> ADP + Pi

panothione synthetase

Tox(red
[FA] not on the web page, still have to check Tpx(ox) Px(red)
ExSubstrate: NADPH -> NADP

8: trypanothione reductase

aqothione disulfide T[S]2 output

Glycine Source

Pefflux

Glu source Glu: L-Glutamate

9-Glu-Cys: L-Gamma-Glutamylcysteine

Gly: Glycine

6.3.2.2

$

4: g-glutamyl cysteine synthase

26.1.1

L-CysTeinyl-tRNA

3-Mercapto-pyruvate

2.8.1.2

pyruvate

26.1.1

3-Sulfino-L-alanine

3-Sulfino-Pyruvate

RC

specific_to_T_cruzi

dehydroascorbate

tryparedoxin peroxidase

ascorbate peroxidase

Fabian Jourdan &
Monika Heiner

02 source

H202 source

5: Glutathione syntethase

6.3.23

H20 output
P-invariant = {CoA, acCoA}
Therefore, an arbitrary place gets a token.
With this initial makring, DTP holds and
therefore there are no dead states.
[ ] [ | u
Rodriguez_Caso et al:
Modeling of Poly; in n
J. of Biological Chemistry 2006, Vol. 281, number 31, pp. 21799-21812
[ ] [ ] n

UNIVERSITY
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From connectivities to dynamic graphs (2)

« Transform validated qualitative model into quantitative models (stochastic & continuous Petri
nets) by retaining the structure and adding quantitative parameters.

« Rate parameters from public domain databases (e.g. MetaCyc, Kegg, Brenda), or literature (via
PubMed queries, or the text-mining).

« Estimate the remaining parameters for steady state behaviour, using previously generated
knowledge of state-reproducing subnetworks.
« Validate stochastic/continuous Petri nets using

— probabilistic/continuous model checking of the stochastic/continuous counterparts of the qualitative
behavioural properties

— simulation-based transient and steady-state analyses.
«  Sensitivity analysis
* Refine the rate parameters by scanning or fitting.

— Bayesian inference of model parameters from the experimental data, (Vyshemirsky & Girolami) -
families of behaviours, generating distributions over rate parameters. Also identification of the most
likely reaction network topologies from alternatives generated from the metabolite relation networks.

« The model-based design of knockout experiments will additionally help in
validating the developed quantitative models

I
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Initial kinetic model

O— MAT |
Y -
ornithine S
AdoMet| ‘7| (DFMO )
e O— | oDC
O— |SAMDC |
B A
| putrescme \
\ dAdoMetrep \ /_\
O— | SPDS |
| MTArep | _/,
| spermidine |
Xu Gu
Mike Barrett
Sylke Muller
" [o—— (serineo Horcapopyruate

S A
[ sulfide |
A

O———— CysteineSynthase | <

Y
Cysteine

o—o

7
|CystathionineGlyas| _< f ( yiase |

r
Cystathionine

>o‘ CystathionineBlyase

N oK
Homocysteine |
A

sulfate |

|CystathionineBsynthase

S

Cysteine Metabolism in Leishmania

| Methionine

graph

Trypanothione Metabolism

| Cys | | Gl |

|gammaGCS |

L

| GammaGIuCys | [ aly |

>|trypanothione| [ Napp

¥

Glutathionylspermidine

'multioxidases | O—— | TryReductase |

A\
TrypanothioneDisulfide|

| NADPH |
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Trypanothionine Initial ODE model (1)

Equations and parameters References
ODE
Vopc = Viai+[Omn] (11)
KQPe (1+ ;[rzrlﬂr)ﬂ()l‘n]
SAMdc
__Vaae [SAM] 11
Vsamae = ST " o KSpMe  [dSAM] 1
e Kspae (g fap o 22 ) L [SAM]
KM M P KOst
MAT
_ VAT 11
Varar = . ,‘-:‘\;Ar>* . [SAM]) (11)
[Met] RET Xu Gu
Spds®

Ve o= visnts [ASAMIA[P]
SpdS — 1
. ( [MTA]> ,‘.ﬁms*(uh’[g] ),,‘ (HL%L) [dSAM]; 1\3;"1*‘,*(1+%§%¥)*[P]+[dSAI\I]*[P]

iMTA iD

SpmS*
vz« [dSAM]«[D]

VS mS —
! KSTms (1+[I\\£;F‘é]> Kgrms (1+——5£§] )-H  SpmS (1+—g—5[ ] ) [dgAM]H\f{';;‘ﬁ*<1+——P[(HAM]) [D]+[dSAM]«[D]

iMTA b?”'_;:5
vGCS?
,,',S,F"X[Glu]*[Abd] [ATP]
Vices = et
) _[E‘lu] [/’\Uja] [éTP] . [(‘1‘11] [?ha} [(:%\11] [éTP] [Al,)\a] [ﬁ\TP] [thl]t[Abs]*[Ath]
Glu Aba ATP T*RGlu* B Aba *RGlu*haATP a*B Aba ATP a*rye RGlu* N Apa* N ATP
vGCS¢

— &1 GSH o1 D12
Viges =00+ g + TP * AR(cn)] T ATPFGI] T [GIu] <l<._q + 1\'.,,*[ATP]>
N [GSH]+s, . [Glu-Ala(CI)] . [ADP]¢,
[ATP]+k,,, (Glu] K id [ATP] K i [ATPJsK, s ppr

" [ADP ]+, |
[Ala(CT)] I\vADP [ATP]*I\, appsKanrp [ATP]*[Glu]*l",,m,,u\'u,\-,-,»K,\-,,G,,,

(2)

“The equation takes MTA into account, which behaves behaves as competitive inhibitor onto dAdoMet (dSAM)

*Only one Cys residue (Cys-319 in T.brucei 7GCS) is invariant. Mutation of Cys-319 to Ala in T. brucei YGCS renders the enzyme insensitive to

cystamine inactivation without significantly affecting the enzyme’s catalytic effciency, kinetic mechanisms or substrate affinities.

‘the equation includes the inhibitory terms resulting from the presence of glutathione (GSH) and all the inhibitor terms containing phosphate

concentration have been omitted due to the lack of phosphate binding to enzymes species.
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Trypanothionine Initial ODE model (2)

Equations and parameters References
GS(L
Vs = VGS asKns[YGluCys|+[yGluCys|” (5:; 7; 8)
ML\ qe(Kon) 2250 K[y GluCys]+[7GluCys]”

GS?
Ve — V&S, [yGluCys|*(Gly] (6; 3)

Gs 1 SS;H K5 K5t K5+ Gly|+ K55 «[yGluCys|+ [y GluCys[*[Gly]

1GSH

GspS©
e (D] (CSI]

GspS — .

: LH?; ‘P5<1 Lﬁg—lcil’);SH )*1\-2;;'7?<1+Jﬁﬁwlci’p§,,SH )+1\‘,(;'"” 5(1 ‘[ﬁﬁ_lG:pE},S H) G '5'(1 uﬁg_lep(dSH) [GSHJ*(D] Xu Gu

Trysd

Vi o — v.IivS [GSH]*[GspdSH]
s Kl K Gyt K 05+ GSH] 4k 2y« [GspdSH+ [GSH] ¥ [Gs pd SH]

Ts2S¢
yTs2s _ Vs [Tl" y S]

max ]\T*’q+ TSQS

TryR

TSH + NADP 7S], + NADPH

“As investigated in (5), GS catalyzes the formation of a y-glutamylcysteine phosphate-enzyme intermediate from ~-glutamyleysteine and ATP, then
this acyl-phosphate intermediate is attacked by glycine to form GSH. Also, there is not product inhibition in the presence of the enzyme deficiency.

PAs discussed in (6), the negative co-operativity observed for v-glutamyleysteine binding to the rate enzyme was not found for the parasite protein.
This may be due to the alteration of several amino acids in the 4-glutamyleysteine-binding site. GSH was dispalyed as uncompetitive inhibitor (10).

¢As reported in (12), TSH did competitively inhibit catalysis of Gsp synthetase with 10mM GSH and 10mM spermidine. Also, as proved in (9),
GspS involves two catalytic activities, first is to catalyze the synthesis of GspdSH and the second is to hydrolyze the substance-enzyme compound.
Hence, GspdSH can be considered as competitive inhibitor as presented in (10)

4Assume there is no product inhibition back on the enzyme.

“in silico parameters?

Description Experimental measurements References

K, = 0.38£0.15

Vinaz = 38 (4pmol /min/mg)
[AdoMetDC],,, ;0 = 6nM
[AdoMet], ..., = 0.04mM

K, = 280 + 300 M

Kiprao = 220 £ 70puM

Vinaw = 2.7 % 10°nmolCOs/h/my
[Ornithine] = 50puM

s-adenosylmethionine decarboxylase (Willert et al., 2007)

Ornithine decarboxylase (Phillips et al., 1998)

initial
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Xu Gu

Kinetic data

Description Experimental measurements

References

K,, =038 +£0.15

Vinaz = 38~ (4dpmol /min/mg)
[AdoMetDC], ;i = 6nM
[AdoMet], ... = 0.04mM

s-adenosylmethionine decarboxylase

(Willert et al., 2007)

K,, = 280 = 30uM

IX’iDF;\I() = 220 £+ 70/1;\[

Vinar = 2.7 x 10°nmolC Oy /h/myg
[Ornithine] = 50uM

inatial "~

Ornithine decarboxylase

(Phillips et al., 1998)

A black art?
%ﬁ%@
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Parameter identification

Given network topology, reaction equations + observations
— Derive/refine kinetic parameters from observed data

Issue: Computational efficiency (time)

Challenges - Data:

— Partial (few time points, not all species)

— Sparse (few repeated observations)

— Noisy (experimental error, system variability)

Can return multiple solutions

Methods: multiple shooting, bayesian inference, ...

plus: sensitivity analysis, indentifiability of parameter dependence
Optimisation problem (global, local)

Model decomposition (helps with partial data)




PSwarm 7

PSwarm - global optimization solver for bound constrained
problems (author |.Vaz)

Combines pattern search & particle swarm.

PSO similar to evolutionary computation (e.g. GA)
— system initialized with population of random solutions

— searches for optima by updating generations.

— no evolution operators (crossover and mutation...)

— potential solutions (particles) fly through problem space by following
the current optimum particles.

— Faster convergence than GA

Disadvantages: initial population & control parameters
dependent; single solution.




Xu Gu

PSwarm+

* Apply root-finding method to constrain & fragment
initial search space
« Multiple inititial states (fragments) — multiple
solutions
« Computationally efficient
RKIP - signalling Isomerisation of a-pinene metabolic pathway
25 Tﬁ;‘e‘c’—’:*e—@—aqé._______ii :EE:::FY]:S;]ERM I A | il I
§ \-..\o \p\ [FK 1] %”
- \Q"”\\ b Q“-f.:,,rx :
g,m Time GA, PSwarm RF?IP;mSe‘:vI’:rxm UNWE;*SITY i
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Systems Biology Markup Language

Machine-readable format for representing computational models in SB
— Expressed in XML using an XML Schema
— Intended for software tools—not for humans

Tool-neutral exchange language for software applications in SB
— Simply an enabling technology

Used quite widely in biological modelling
It is supported by over 40 software systems including Gepasi
Good documentation, user community and publicly available tools

www.sbml.org

Also www.ebi.ac.uk/biomodels




ﬁé@

SBML Example Reaction

<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">
<model id="newModel">
<listOfCompartments>
<compartment id="compartment" size="1"/>
</listOfCompartments>
<listOfSpecies>

<species id="A" compartment="compartment" initialConcentration="5"/>

<species id="B" compartment="compartment" initialConcentration="1"/>

</1listOfSpecies>
<listOfParameters>
<parameter id="K1" value="1"/>
</listOfParameters>
<listOfReactions>
<reaction id="AklB" reversible="false">
<listOfReactants>
<speciesReference species="A"/>
</listOfReactants>
<listOfProducts>
<speciesReference species="B"/>
</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply>
<times/>
<ci> K1 </ci>
<ci> A </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>
</model>
</sbml>

UNIVERSITY
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Martin Goodfellow

Composition of SBML models

* Fusion: Merge N models into 1 model (lose sub-model identities)

» Hierarchical composition (collection of sub-models - SBML37?)

— Aggregation: defined interfaces to models

— Computation via parallel execution?

6.0

5.5

5.0

45

4.0

35 ‘
30{
251 /
201/
15
1.0
05
00

BIR!G
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35
3.0

25 /!

2.0
15

10

0.5

0.0
0
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A—B
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Related Efforts

« Some similarity to CellML (www.cellml.org)
— SBML is somewhat closer to rep. used in simulators
— CellML is somewhat more abstract and broader
— Both SBML and CellML teams are working together
« Committed to bringing them closer together
« SBML Level 2 adopted features from CellML
* BioPAX (www.biopax.orq)
— A common exchange format for databases of pathways
— SBML & BioPAX are complementary, not competing

— SBML and BioPAX teams working together to define linkages
between SBML and BioPAX representations




BioNessic

-

rm independent
Windows, Linux ( i386 or AMD64) and Mac Os with Intel i386.
Released on 5" October 2006 for internal use.
JAVA Web Start

BioNessie ODE workbench

—F

Multithreaded Parameter Scan

* Simulation Scanning Single-threaded Scanning
. . . . . process scanning Results
— Multithreaded: simulation of different models at the same time.
— User-friendly data viewer and printable data output
o
. SBML model construction
— Graphical tool supports creation & editing of SBML biochemical models
— Kinetic Law creation and management
* Grid ] .Receiving Results / l HSending Job
. Multithreading
. Parameter Scanning Results Collector  Grid Web Service
«  Sensitivity Analysis oM 2 HEREE
BNESC Elinburgh)_______— -
. Model Version Control System T -
. Model Development Management s s ety
«  Optimisation e ST L1
SC Dalesbine SRR GAT R
«  Model checking P AR
L e U
Birmingham @ £4SC Gambridge)
Grid Support e T
WeSC (Gami"in. Gtre MJ.'."ﬁfgdﬁ,"“"”
el 1656 (London)
S¢S (Southampton) 87 RN
Xuvan Liw (N e T
National e T = S
e-Science @ TTTTUT- . Grid Nodes
Centre Jipu Jiang i uNIversTY [
Femi Ajayi of e
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Sensitivity analysis

« Sensitivity analysis investigates the changes in the system outputs or behavior with respect
to the parameter variations. It is a general technique for establishing the contribution of
individual parameter values to the overall performance of a complex system.

«  Sensitivity analysis is an important tool in the studies of the dependence of a system on
external parameters, and sensitivity considerations often play an important role in the
design of control systems.

+ Parameter sensitivity analysis can also be utilised to validate a model’s response and
iteratively, to design experiments that support the estimation of parameters

xxxxxx

Sensitivity of species to the values of the “
parameter K6 for the timecourse of 200 T
timesteps of 200 time units. | =

Slide from Xuan Liu
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Other simulat

(& COPASI (4.0 Build 18) fUsers/.../gps/calcium_juergen.cps

ISR IR0

Copasi
»Model
»Tasks
»Multiple Task
»Output
- Functions

A

7,2.0,234 (R20063)
Tanary 27, 2006

MATLAE; CIET]

COPASI

Release 4.0.18

Mo U8 frd fo Rrwy Sestn Catn S e
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MathWorl

ors include...

Systems Biology

Workbench

E-CELL Development Overview

1 Pathi S
View.
=
database Session Manager
” Computing
Database oo Mo AIGOrtM. oy
enerator| Editor | Plug:in:
E-CELL E-CELL 3
Modeling EML Simulation

Environment Environment

E-CELL Syst
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