Modelling the kinetic behaviour of the MAPK cascade: A case study

David Gilbert

Bioinformatics Research Centre, University of Glasgow

Overview

- Synthetic Biology should be undertaken within the framework of a sound engineering approach
- Systems Biology will play a major role in providing such a framework.
 - To what extent can Systems Biology be regarded as a rigorous discipline incorporating sound analytical principles?
 - Explore how analytical methods from other disciplines can be adapted to the context of Systems Biology.
- Illustration: MAPK (ERK) signalling pathway SysBio project
 - Hypothesis: feedback amplifier
 - "Similarity" to electronic circuit theory
 - Continuous cross check between modelling and real experimental data obtained from in-vivo experiments
 - Prediction: perturbation by pharmacological intervention should be less effective within the feedback - amplifier module than outside of it.

Biochemical Pathway Simulation (BPS)- project:

Dynamic behaviour - Modelling

- Stochastic process algebras
- Petri nets
- Ordinary Differential Equations

Kinetics and differential equations

Concentration of Molecule A = [A], usually in units mol/litre (molar) Rate constant = k, with indices indicating constants for various reactions (k₁, k₂...)

Reversible, Single-Molecule Reaction

The Ras - Raf - MEK - ERK Signalling pathway

MAPK Pathway

- Responds to wide range of stimuli: cytokines, growth factors, neurotransmitters, cellular stress and cell adherence,...
- Pivotal role in many key cellular processes:
 - growth control in all its variations,
 - cell differentiation and survival
 - cellular adaptation to chemical and physical stress.
- Deregulated in various diseases: cancer; immunological, inflammatory and degenerative syndromes,
- Represents an important drug target.

Mass action for enzymatic reaction - phosphorylation

- R: substrate,
- R_p: product (phosphorylated R)
- S₁: enzyme (kinase)
- R|S₁ substrate-enzyme complex

Phosphorylation - dephosphorylation loop Mass action model 1

- R: unphosphorylated form
- R_p: phosphorylated form
- S₁: kinase
- S₂: phosphotase
- R|S₁ unphosphorylated+kinase complex
- R|S₂ unphosphorylated+phosphotase complex

$$R+S_2 \xleftarrow{k_3'} R_p \mid S_2 \xleftarrow{k_1'} R_p + S_2$$

 R_{p}

R

Phosphorylation - dephosphorylation loop Mass action model 1

$$R+S_2 \xleftarrow{k_3'} R_p \mid S_2 \xleftarrow{k_1'} R_p + S_2$$

Phosphorylation - dephosphorylation loop Mass action model 3 (all singing/dancing)

BRC

Michaelis-Menten equation

$$E + S_{\underset{k_2}{\underbrace{k_2}}} E \mid S \xrightarrow{k_3} E + P$$

- E: enzyme, S: substrate, E|S: enzyme-substrate complexP: product
- Assumptions:
 - 1. No product reverts to initial substrate
 - 2. MM Equation holds at initial stage of reaction before concentration of product is appreciable
 - 3. [E] << [S]
- K_m is [S] at which the reaction rate is half its maximum value

$$V = V_{\max} \times \frac{[S]}{[S] + K_m}$$

Michaelis-Menten equation for phosphorylation-dephosphorylation

$$\frac{dR_p}{dt} = \frac{k_3 \times S_1 \times R}{K_{m1} + R} - \frac{k_3' \times R_p}{K_{m2} + R_p}$$

- $dR_p/dt ==$ reaction rate V
- $k_3 \ge S_1 == V_{max}$ for the forward reaction
- $k_3' == V_{max}$ for the reverse reaction (S₂ is ignored)
- $K_{m1} == (k_2 + k_3)/k_1$ (k's from mass-action 1)

Phosphorylation cascade: 3-stage, Mass-Action model 1


```
dvdt = [-k1*S1*R + k2*RS1 + k3*RS1]
                                                                   % S1
    -k1*S1*R + k2*RS1 + k3dash*RpS2
                                                                   8 R
    +k1*S1*R - k2*RS1 - k3*RS1
                                                                   8 RS1
     -k1dash*S2*Rp + k2dash*RpS2 + k3*RS1 - kk1*Rp*RR + kk2*RRSS1 + kk3*RRSS1
                                                                   % Rp = SS1
    -k1dash*S2*Rp + k2dash*RpS2 + k3dash*RpS2
                                                                   % S2
    +k1*Rp*S2 - k2dash*RpS2 - k3dash*RpS2
                                                                   % RpS2
    -kk1*SS1*RR + kk2*RRSS1 + kk3*RRSS1
                                                                  % SS1 ignored dummy
     -kk1*SS1*RR + kk2*RRSS1 + kk3dash*RRpSS2
                                                                   % RR
     +kk1*SS1*RR - kk2*RRSS1 - kk3*RRSS1
                                                                   % RRSS1
     -kkldash*SS2*RRp + kk2dash*RRpSS2 + kk3*RRSS1 - kkk1*SSS1*RRR + kkk2*RRRSSS1 +
                                                                   % RRp=SSS1
kkk3*RRRSSS1
     -kkldash*SS2*RRp + kk2dash*RRpSS2 + kk3dash*RRpSS2
                                                                  % SS2
    +kk1*RRp*SS2 - kk2dash*RRpSS2 - kk3dash*RRpSS2
                                                                   % RRpSS2
                                                                 % SSS1 ignored dummy
     -kkk1*SSS1*RRR + kkk2*RRRSSS1 + kkk3*RRRSSS1
     -kkk1*SSS1*RRR + kkk2*RRRSSS1 + kkk3dash*RRRpSSS2
                                                                 % RRR
    +kkk1*SSS1*RRR - kkk2*RRRSSS1 - kkk3*RRRSSS1
                                                                   % RRRSSS1
     -kkkldash*SSS2*RRRp + kkk2dash*RRRpSSS2 + kkk3*RRRSSS1
                                                                  % RRRp
     -kkk1dash*SSS2*RRRp + kkk2dash*RRRpSSS2 + kkk3dash*RRRpSSS2
                                                                 % SSS2
    +kkk1*RRRp*SSS2 - kkk2dash*RRRpSSS2 - kkk3dash*RRRpSSS2 ];
                                                                 % RRRpSSS2
```


ERK Cascade

Amplification

- ERK cascade well known biological amplifier -- amplifies the original signal to create effective cellular responses.
- 1:3:5 are the approximate ratios of Raf-1, MEK and ERK in fibroblasts.

Negative Feedback

- Well known negative feedback loop: phosphorylation of SOS by ERK-PP (via MAPKAP1) resulting in the dissociation of the Grb2/SOS complex.
- New negative feedback loop: ERK-PP phosphorylates Raf-1 resulting in a hyper-phosphorylated inactive form of Raf (Dougherty *et al.* 2005)

Dougherty et al. (2005), Regulation of Raf-1 by Direct Feedback Phosphorylation, Molecular Cell 17 215-224

Is the ERK pathway a negative feedback amplifier?

Sauro HM, Kholodenko BN. Quantitative analysis of signaling networks. Prog Biophys Mol Biol. 2004 Sep;86(1):5-43.

Negative Feedback Amplifier

- A negative feedback amplifier stems from the field of electronics and consists of an amplifier with a negative feedback loop from the output of the amplifier to its input.
- The negative feedback loop results in a system that is much more robust to disturbances in the amplifier.
- The negative feedback amplifier was invented in 1927 by Harold Black of Western Electric and was originally used for reducing distortion in long distance telephone lines.
- The negative feedback amplifier is now a key electrical component used in a wide variety of applications

Negative Feedback Amplifier

BRC

The negative feedback imparts signalling robustness

A large change in amplifier gain leads to a small change in output (y)

Feedback

The negative feedback imparts signalling robustness

BRC

Negative Feedback Amplifier

y=A*u/(1+A*F)

UNIVERSITY of GLASGOW

10

Application to Biology

- The ERK cascade is a well known biological amplifier and contains numerous negative feedback loops.
- At first sight, it has the correct structure to be a negative feedback amplifier.
- If the ERK cascade is a negative feedback amplifier it should be robust to disturbances within the cascade.
- From a biological point of view, these disturbances could be caused by drugs, such as U0126, aimed at decreasing the activity of the ERK cascade.
- This suggests that these drugs will be relatively ineffective.
- In fact, current drugs aimed at decreasing the activity of the MAPK pathway have proved less efficient in *in vivo* applications than anticipated from *in vitro* inhibition assays.

Raf/MEK/ERK amplifies the signal

Cell line	Raf-1	MEK	ERK	Concentration per cell
COS1	3.6	10.6	21.2	femtomol
	1	2.9	5.9	ratio
NIH 3T3	10.9	7.1	98	femtomol
	1	0.7	9	ratio

How can we test if the ERK pathway is a NFA?

Hypothesis: Braking the feedback should sensitise the ERK pathway to MEKinhibitor

Feedback removed Feedback intact Ras-GTP Ras-GTP phospho-ERK Raf-1 Raf-1 **Negative Feedback MEK1/2 MEK1/2 MEK** inhibitor U0126 U0126 **ERK1/2 ERK1/2** UNIVERSITY GLASGOW

BRC

How can we test if the ERK pathway is a NFA?

In vivo system that allows us to compare feedback broken to feedback intact model. Computational Model of ERK pathway with/without feedback

Computational Modeling 1: Build the model

- Non-linear ordinary differential equations (ODE's).
- ODE's were solved using Math Lab and Gepasi.
- Models are based on the Schoeberl et al. (2002) model
- Mass Action Kinetics instead of Michaelis Menten
- Kinetic parameters are from literature, previous models and "guesstimates"

BRC

Schoeberl *et al.* (2002), Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors, Nature Biotechnology 20, 370-375

Computational Modeling 2: Results

Feedback broken

Feedback intact

Prediction: Braking the feedback modulates drug response

Computational Modeling 2: Results

Sensitivity of kinetic parameters is decreased due to Negative Feedback

The experimental systems

Breaking the ERK feedback with BXBER

BRC

Ablation of feedback by BXBER decreases robustness to MEK-inhibitor U0126

BRC

Ablation of feedback by BXBER decreases robustness to MEK-inhibitor U0126

Blue

Signal recovery after MEK inhibition

Simulation

0 10 20 40 80 min stimulation

A current dispute: Does ERK activation follow graded or hypersensitive kinetics?

Ferrell JE Jr, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998 May 8;280(5365):895-8

BRC

Mackeigan JP, Murphy LO, Dimitri CA, Blenis J. Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells. Mol Cell Biol. 2005 Jun;25(11):4676-82.

Whitehurst A, Cobb MH, White MA._Stimulus-coupled spatial restriction of extracellular signal-regulated kinase 1/2 activity contributes to the specificity of signal-response pathways. Mol Cell Biol. 2004 Dec: 24(23):10145-50.

Negative Feedback Amplifier could lead to a gradual activation instead of switching proof remains elusive..

Increasing stimulus ->

BRC

UNIVERSITY of GLASGOW

40

Increasing stimulus ->

Implications for drug targeting

- The aim of a drug is to cause a disruption to the network in such a way that it restores the network to its 'healthy' wild-type state.
- Targets must be susceptible to disruption for the drug to have any effect.
- The analysis of feedback suggests that targets inside the feedback loop will prove difficult drug targets because any attempt to disturb these targets will be resisted by the feedback loop.

Take home messages

- Modelling can be done using
 - Michaelis Menten
 - Mass Action
- Some difference in results using different models
- Wet-lab results show clear negative feedback
 amplifer characteristics

From Petri Nets to Differential Equations - an Integrative Approach David Gilbert & Monika Heiner

UNIVERSITY of GLASGOW

- We are developing a database to store a variety of data generated from the project
 - biochemical models complete with parameter data
 - wet lab modelling data
 - biochemical information on the pathways and proteins involved

- We are also developing a number of software tools to aid in the modelling process:
 - Database import/export
 - Model visualisation
 - Model conversion

The BPS Software Workbench

Xuan Liu, Vladislav Vyshemirsky and David Gilbert

BPS on the Grid

Model Comparison

Acknowledgements

DTI Beacon Project Biological Pathway Simulator and Analyser

David Gilbert **Walter Kolch** Xu Gu Muffy Calder **Richard Orton** Amelie Gormand Tamara Polajnar Vlad Vyshemirsky

Oliver Sturm Xuan Liu

Mark Girolami

University of Glasgow, UK

www.brc.dcs.gla.ac.uk

Joan Grindlay

BRC

Beatson Institute, Glasgow, UK

dti

Department of Trade & Industry Beacon Projects

