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Subtext

 Can modelling ever be useful?
— For Pharmacology???

 What did a modelling activity tell us?

* (When) should we invest in modelling?



Systems Biology

systems biology: modelling as formal knowledge representation

wetlab formalizing

experiments observed understanding
/’ behaviour ﬂ

natural model
biosystem (knowledge)

L_ predicted

wetlab behaviour model-based

experiments experiment design



Biochemical networks

We can describe the general topology and single biochemical steps. However,
we do not understand the network function as a whole.

R t
AN o oM

cell membrane

transcription
factors

»What happens?
»Why does it happen ?
»How is specificity achieved?

nucleus



Molecules/Levels Qualitative

Approximation
Molecules/Levels Concentrations
Stochastic rates StOChaStIC > Conti NUOUS Deterministic rates
<
d[A]
o TR

Gilbert, Heiner and Lehrack. “"A Unifying Framework for Modelling and Analysing Biochemical
Pathways Using Petri Nets.” Proc CMSB 2007



What is a biochemical network model?

Raf-1* RKIP

Structure graph
QUALITATIVE
Kinetics (if you can) reaction rates
d[Raf1*]/dt = k1*m1*m2 + k2*m3 + k5*m4 QUANTITATIVE
k1=0.53; k2 =0.0072; k5 = 0.0315
Initial conditions marking , concentrations

[Raf1*],_,= 2 uMolar QUANTITATIVE



Mass action for enzymatic reaction -

phosphorylation
_klﬁ k
E+A ElA——F +B
k2
* A:substrate
e B: product (phosphorylated A) E
 E:enzyme (kinase)
 E|A substrate-enzyme complex
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Breitling, Gilbert, Heiner & Orton “A structured approach for the engineering of biochemical models, illustrated for signalling pathways”. Briefings in Bioinformatics, 2008



Differential equations

Enzymatic reaction

A+E _ "AIE—“>B +E

kp

d[A]

dr

d[AE]
dt

d[ B]
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dl E]

dr

Breitling, Gilbert, Heiner & Orton “A structured approach for the engineering of biochemical models, illustrated for signalling pathways”. Briefings in Bioinformatics, 2008
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Phosphorylation - dephosphorylation step
Mass action

* R:unphosphorylated form S
* R,:phosphorylated form
e S:kinase \

 P:phosphotase

* R|S unphosphorylated+kinase complex R /\ R
 R|P unphosphorylated+phosphotase complex \/

ReS — RIS —sR 4§ |

ko

p

kry A
R IP R, +P

kry

R+P <

Breitling, Gilbert, Heiner & Orton “A structured approach for the engineering of biochemical models, illustrated for signalling pathways”. Briefings in Bioinformatics, 2008



Composition
Vertical & horizontal

S, S
RQRp L X T Xy
\/p\/pp

2-stage cascade /\

RR ~_ _~ RR, 1-stage cascade
double phosphorylation step



Phosphorylation cascade + feedhack
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Phosphorylation cascade, negative feedback.

Inhibitor on 2nd stage
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MAPK Pathway

Responds to wide range of stimuli:
cytokines, growth factors,
neurotransmitters, cellular stress and

cell adherence,... STIMULUS
Pivotal role in many key cellular J
processes:
— growth control in all its variations, /_\
— cell differentiation and survival MKKK P-MKKK

— cellular adaptation to chemical and

physical stress. \//_\'

Deregulated in various diseases: cancer;

immunological, inflammatory and Uf\'

degenerative syndromes,
MAPK P-MAPK

Represents an important drug target. U



ERK cascade well known biological amplifier

* Amplifies the original signal to create effective cellular responses.

e 1:3:5 are the approximate ratios of Raf-1, MEK and ERK in fibroblasts.

* Well known negative feedback loop:

phosphorylation of SOS by ERK-PP (via Negative feedback
MAPKAP1) resulting in the dissociation [Ere -
of the Grb2/SOS complex. /v
[MEK |<: ERK
N
ERK |
 New negative feedback loop: 1 1 ;. o
ERK-PP phosphorylates Raf-1 resulting [Recepor} {505 |—+[Fes |—[raf 1} —{mex [ [erk | 5
in a hyper-phosphorylated inactive form Input \ &
of Raf
(Dougherty et al. 2005) /.

ek [So[r ]
N
Amplifier

Dougherty et al. (2005), Regulation of Raf-1 by Direct Feedback Phosphorylation, Molecular Cell 17 215-224



Raf/MEK/ERK amplifies the signal

195—
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70—
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Rec. GST-BXB z & Rec. MEK1-His z 8 Rec. GST-ERK = &
Z O Z O Z 0
195:' 195
e 118
90—
- - e 707 70— - -
5 55
-
384 38
33+ 33
WB: Raf-1 WB: MEK WB: ERK
Cell line Raf-1 MEK ERK Concentration
per cell
C0S1 3.6 10.6 21.2 femtomol
1 29 5.9 ratio
NIH 3T3 10.9 71 98 femtomol
1 0.7 9 ratio




Negative Feedback Amplifier

Standard Amplifier Negative Feedback Amplifier

u +

e R
—~0— 2 I—=0— "O—la —0—=

y=Uu*A F

Negative feedback amplifier from electronics
Amplifier with a negative feedback loop from the output of the amplifier to its input.

NF loop = a system much more robust to disturbances in the amplifier.

NFA was invented in 1927 by Harold Black of Western Electric.
Originally used for reducing distortion in long distance telephone lines.

NFA a key electrical component used in a wide variety of applications



Figure 1
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The negative feedback imparts
signalling robustness

Standard Amplifier

S o—{&xt+—o-L

y=A*u

Sudden drop in
Amplifier (A) gain

Output (y)

Time

Negative Feedback Amplifier

u o+ + y
40 LA | @)

y=A*u/(1+A*F)

Sudden drop in
Amplifier (A) gain

T 4 Ay Output
|/

|

Time

Output (y)




How to test if the ERK pathway is a NFA?

Generate input:

Stimulate with GF \

Ras-GTP
Raf-1 <
Remove negative
S feedback
3 /
A 4 -c
Q
MEK1/2 e
“Disturb the Amplifier”: g
Use a MEK inhibitior, such ®
U0126 —| o
as U0126 Z
A
ERK1/2

Measure signal output: _—

i.e. ERK phosphorylation



Hypothesis: Breaking the feedback should sensitise the
ERK pathway to MEK-inhibitor

Feedback intact

Ras-GTP

Raf-1

A

uo0126

ERK1/2

»1 Negative Feedback

A
¢
24 %
L .
o s
N %
o s
8 ‘_
i o “‘.
a | e
MEK inhibitor

Feedback removed

Ras-GTP

Raf-1

U0126 —|

ERK1/2




How to test if the ERK pathway is a NFA?

Strategy
In vivo system that allows us Computational Model of
to compare feedback broken ERK pathway with/without

to feedback intact model. feedback



Computational Modeling 1:
Build the model

« Non-linear ordinary differential
equations (ODE's).

« ODE's were solved using Math Lab
and Gepasi.

 Models are based on the Schoeberl| et
al. (2002) model

« Mass Action Kinetics instead of
Michaelis Menten

« Kinetic parameters are from
literature, previous models and
"guesstimates”

Schoeberl et al. (2002), Computational modeling of the dynamics of the MAP kinase cascade activated
by surface and internalized EGF receptors, Nature Biotechnology 20, 370-375
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The experimental systems

Negative feedback
loops intact

EGFR

One feedback loop
eliminated by
constitutively active
RasV12 mutant

i — 4557W EGFR inhibitor

S0S ¢t

|

Ras

l

—> Raf

l

MEK
i|— U0126

RasV12

l

—> Raf

l

MEK
i|— U0126

ERK

l

ERK

|

Both feedback loops
eliminated by BXB-ER
(4-OHT regulatable
Raf-1 mutant)

4-OHT

l

BXB-ER

l

MEK MEK
ll_ V0126 inhibitor

ERK

l




BXB-ER +4HT+U0126

Kinase activity

BXB-ER +4HT
Raf-6A +EGF+U0126
i Raf-6A +EGF of mutants
Raf-1 +EGF+U0126
Raf-1 +EGF 6
o 10 30 minutes

Figure 1



Breaking the ERK feedback with BXBER

Regulatory Domain

Kinase Domain

Raf-1 CR1 CR2 CR3
N SN !
29 43 289 296 301 622 ERK feedback phosphorylation sites
ps & b & prosprery
BXB-ER CR3 H ER hormone binding
!
642
®
9
8 |
o | 7
R BXB-ER stimulated with 4-
2| °] OHT
ﬁ 4 (4-Hydroxy Tamoxifen, a synthetic estrogen)
3 |
g, Raf-1 stimulated with EGF
14
0
0 10 20 40 80 120 min




Ablation of feedback by BXBER decreases

robustness

EGFR

|— 4s57W

ERK1/2

Feedback Broken

MEK1/2 /Qeanf

to MEK-inhibitor U0126

Computer Simulation

14000000

\WT |
—e— Feedback Intact; 4557W
ha W

10000000 4 —a— Feedback Intact; UD126

—a— Feedback Broken: UD126

5000000

6000000

Total Steady State [ERK-PP]

4000000

D-
FFIEFF LI FL LS ISP F PP EF S S P O

Initial [RasGTP] (decreasing) representing Initial [4557W] (increasing) or Initial [U0126]
{increasing)



Ablation of feedback by BXBER decreases
robustness to MEK-inhibitor U0126

Experiment
4HT v
12
! \ [ ——Feedback Intact: EGF, U0126
<
BXB-ER g -8~ Feedback broken: BXBER, 4HT, U0126
g 08 \ =4~ Fedback Intact: EGF, 4557W
*]
L
3
2 0.6
=
! 5 \
&
MEK1/2 L:: 0.4
2
E l
}— vo126 L SN
| R E—

A 4
ERK1/2

0 10 20 30 40 50 60 70 80 90 100
Inhibitor/[mM]

Feedback Broken



Figure 3

(A) Model prediction (B) Biochemical validation
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Signal recovery after MEK inhibition
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Figure 2

Feedback Intact Feedback Broken
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Figure 2

Graded or switch-like?

d) 16 4 3¢ %
0 30 60 100% M . .pg...
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*The presence of the negative feedback dictates whether ERK activation follows a
graded or switch-like pattern.

*Demonstrated by the differences in ERK activation responses when the negative
feedback is broken

*The biological NFA provides a mechanism to generate analog or digital responses.



Cancerous Mutations

 The Feedback Intact
— Ras mutated & always active

— continual activation of the ERK pathway
typically causing cancer [ Ras-eP_|

* The Feedback Broken
— Raf mutated & always active [ ot ] _ RafBXB-ER

— continual activation of the ERK pathway
typically causing cancer.

H

A

g
‘ m \
2
\i|
Negative Feedback

| MEK1/2 |
* MEK inhibitors (e.g. U0126) will be
effective against cancers caused by Raf |
mutation (standard amplifier) but @J [ Erkiz_|
ineffective against cancers caused by Ras
Feedback Intact Feedback Broken

mutation (negative feedback amplifier)



The Mammalian MAPK/ERK Pathway Exhibits
Properties of a Negative Feedback Amplifier

 Three-tiered kinase module, signal amplifier.

 Negative feedback loops - system like negative feedback amplifier

* Smoothens the output to changes in input - system robust to change.
* No feedback loops: cells sensitive to inhibition of MEK

* Feedback intact: cells are resistant to inhibition there. D

Drug development: inhibitors targetting components outside NFA are
more effective at inhibiting the pathway.

Sturm, Orton, Vyshemirsky, Grindlay, Birtwistle, Gilbert, Calder, Pitt,
Kholodenko and Kolch., Science Signalling Dec 21;3



Computational modelling reveals feedback
redundancy within the EGFR/ERK signalling pathway

Plasma Membrane

Cytoplasmic

i -
Internalisation o

Nuclear

] @

Degradation

Orton, Sturm, Gormand, Kolch & Gilbert 2008. IET Systems Biology, 2:4, pp. 173 — 183



Computational modelling reveals feedback
redundancy within the EGFR/ERK signalling pathway

400000

350000

[ERK-PP]
:

— + FB E_l'mu +FB
- -FB = - FB

p.1} 0 40 0 80 0 10 20 0 40 50 [=1]
Time (minutes) Time (minutes)

e Simulations of the Brightman and Brown models with and without the SOS negative feedback
loop present

* in both cases knocking out the negative feedback loop has a dramatic effect with the ERK-PP signal
switching from a transient to a sustained response, suggesting that the feedback loop is essential
for the transient response and efficient signal termination.

Orton, Sturm, Gormand, Kolch & Gilbert 2008. IET Systems Biology, 2:4, pp. 173 — 183



Computational modelling reveals feedback
redundancy within the EGFR/ERK signalling pathway

T»‘o\
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Time (minutes)
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PERK o=

i

New model - Corrected version of Schoeberl model - utilises a receptor-complex
strategy, receptor internalisation and degradation, and Shc-dependent and
independent pathways leading to the activation of Ras.

Orton, Sturm, Gormand, Kolch & Gilbert 2008. IET Systems Biology, 2:4, pp. 173 — 183



Computational modelling reveals feedback
redundancy within the EGFR/ERK signalling pathway

ERK-PP MEK-PP
+FB +FB

- FB ' - FB
. Ry L
RN E A

Time (r::inutes] ‘ N N ’ ? ‘ Time (r: ||||| )
Time/ [min]: 0 2 5 10 20 30 40 50 60 70 80 Time/ [min]: 0 2 5 10 20 30 40 50 60 70 80

e === -+ BWERFIENEEL
—— — —
= -

|

- -FB % pg -
FB | o "-nq'-lo-oﬁ'

* Knocking out the feedback loop gives a slightly prolonged but still transient
MEK signal — validates model’s prediction that the feedback loop is not
needed for the transient response

* The apparent delay in MEK activation is caused by increased vulnerability
to phosphatase activity due to U0126 interference

Orton, Sturm, Gormand, Kolch & Gilbert 2008. IET Systems Biology, 2:4, pp. 173 — 183



Computational modelling reveals feedback
redundancy within the EGFR/ERK signalling pathway

25000000

_ X : Normal
EHDDDDDD K \ _ FB

§1DDDDDDD - Deg

- \ \ - FB & Deg
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Time (minutes)

* Individually knocking out the feedback loop or receptor degradation has
little effect as the ERK response still remains very much transient.

* Knocking out both the feedback loop and receptor degradation causes the
response to switch from transient to sustained.

Orton, Sturm, Gormand, Kolch & Gilbert 2008. IET Systems Biology, 2:4, pp. 173 — 183



Model checking in Systems Biology
Robin Donaldson

Biologists will often talk in qualitative or semi-quantitative
language (trends).

— “this protein peaks after 5 minutes, then falls to
half concentration”

— Often quite certain about time.

Systems biology; Part of model design process, validate the
model conforms to the observed data.

Synthetic biology; Make sure the model and constructed bio
system conform to the desired behaviour.



What can we do with model checking in
sys/syn bio?

e Model validation:

— Show that your model of the pathway matches the lab data

— Show that the (constructed) biosystem conforms to the specification

— May not be obvious behaviours, so not easy to see by eye!

— Might have a high probability of doing what you want, but doesn’t always do it!

* Model building:

— If the model doesn’t do what we want, we can change the model (automatically?) until
it does!

— Change the parameters of a model (reaction rates/initial concentrations) until the
pathway behaves as you want

* Model finding:
— Many models in a database, can use PLTL as a query language like SQL.
— “Give me all the models in the database which oscillate”



Model Checking

Biochemical Pathways

Behaviour
Eg, “Order of peaks is; Rafl

MEKPP, ERKPP”

\

Pathway Model

>

Model Checker

Yes/no or
probability



Time-series based Model Checking

of Biochemical Pathways

Property
Eg, “Order of peaks is
RafP, MEKPP, ERKPP”

AN

Time-series data
/ N

d

Model Checker

/ \

\

Model Lab

Yes/no or
probability



Synthetic Biology

design construction

desired model synthetic
behaviour (blueprint) biosystem

verification ‘ verification *

predicted observed
behaviour behaviour




MC2 model checker

Simulative, off-line

Trace set can be:
— Set of stochastic runs
— A single continuous run
— A parameter scan
— Lab data!

Simulation output from;

— ODE, SDE, CTMC, Gillespie, hybrid approaches, multi-cellular
simulation, open models

Experimental data from the wet lab



MC2 with ODE Output

Pl F(X>5) ]

=>P =1




MC2 with Gillespie Output

Pl F(X>5) ]

=> P = 4/6




PLTL language

* Behaviours to be checked against a model is expressed in temporal
logic

« We chose:
Probabilistic logic called Probabilistic Linear-time Temporal Logic
(PLTL)

* Main PLTL operators:
G (P) — P always happens
F (P) — P happens at some time
X (P) — P happens in the next time point
(P1) U (P2) — P1 happens until P2 happens
P1 { P2 }—-P1 happens from the first time P2 happens



Range of expressivity in PLTL

Qualitative:

Protein rises then falls
P=? [ ( d(Protein) >0 ) U ( G( d(Protein)<0) )]

Semi-qualitative:
Protein rises then falls to less than 50% of peak concentration
P=? [ ( d(Protein) >0) U ( G( d(Protein) <0 ) A F ( [Protein] < 0.5 * max[Protein] ) ) ]

Semi-quantitative:
Protein rises then falls to less than 50% of peak concentration by 60

minutes
P=? [ (d(Protein) >0) U ( G( d(Protein)<0) A F (time =60 A Protein < 0.5 *
max(Protein) ) ) ]

Quantitative:

Protein rises then falls to less than 100uMol by 60 minutes
P=? [ (d(Protein) >0) U ( G( d(Protein)<0) A F (time =60 A Protein<100))]
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Model development: Y b<d
. . “cPp |
Parameter estimation : chppj_/
Continuous Brightman & Fell model: |'\-\,,!.//
Smhcp
The EGF signal transduction pathway W GS*GSP
produces transient Ras, MEK and ERK Sths

RasGDP. |,

activation whereas NGF stimulation
produces sustained activation.
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Brightman & Fell, FEBS Lett 2000. “Differential feedback regulation of the MAPK
cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells”




Parameter estimation

Response with EGF vs. NGF signal |
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Brightman & Fell, FEBS Lett 2000. “Differential feedback regulation of the MAPK
cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells”



Desired Behaviour in PLTLc

The desired (sustained) NGF behaviour of the pathway was written in the original model paper.
Can be written in PLTLc as:

Sustained Ras: Active Ras peaks within 2 minutes to a maximum of 20% of total Ras and is stable between
5% and 10%

P_, [ d(active Ras) >0 U (time <2 A active Ras > 0.15*total Ras
A\ active Ras < 0.2*total Ras A ( d(active Ras) < 0)
U ( G( active Ras > 0.05*total Ras A active Ras < 0.10*total Ras ) ) ) ]

Sustained MEK: Active MEK peaks within 2 to 5 minutes and is stable between 40% and 50% of peak value

P_, [d(MEKPP) >0 U (time 22 A time <5 A d(MEKPP) <0
U ( G( MEKPP 2 0.40%max(MEKPP) A MEKPP < 0.50%max(MEKPP) ))) ]

Sustained ERK: Active ERK peaks within 2 to 5 minutes and is stable between 85% and 100% of peak value

P_, [ (d(ERKPP)>0) U (time>=2 A time<5 A d(ERKPP) <0
U ( G( ERKPP > 0.85 * max(ERKPP) ) ) ) ]

Robin Donaldson and David Gilbert (2008). A Model Checking Approach to the Parameter Estimation of
Biochemical Pathways In proceedings CMSB 2008 (Computational Methods in Systems Biology). To Appear.



Model construction using a genetic algorithm

1. Initial Population

S
O Y
e 0® ¢ 0 ¢ "y
O *
O Y
@ o © ® o %,

Sustained ERK: Ideal Case K
Active ERK peaks
within 2to 5 o p e Chromosome
minutes and is - N -
stable between ./ _/ On e
85% and 100% of . =
oeak value 2. Fitness Test Generat|on
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4. Children
3. Select Best Parents

2000 models, 100 generations: 200,000 simulations/checks



Parameter fitting results

* Built a fitness function for sustained Ras, MEK and ERK
* Ran the genetic algorithm with 100 generations and obtained results:

Simulation output of RasGTP Simulation output of MEKPP Simulation output of ERKPP
8 8
2 - | [TTT——==
l e e e \_._\\
(2]
g 7 § 87 § 81|
g g _ s
:(:_; o | g © 7 g © 7 |
~— (0] (0]
© I o 4 S o ]
< c < c < I
[0 [0
3 o o
s £ 9 - £ g -
o - o -
T T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (minutes) Time (minutes) Time (minutes)

* Original model of the NGF signalling pathway varying V28 (dotted)
* Best model returned when varying the critical parameters (solid)
* Critical parameters without V28 (dashed).

The best model returned when varying the critical parameters only required a 16-fold increase in
V28 (compared with 40-fold in original paper)

Even possible to get similar behaviour without varying V28



Target Driven Biochemical Network Reconstruction
Based on Petri Nets and Simulated Annealing
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Wu, Gao & Gilbert. CMSB 2010



Modelling the effect of drug inhibition
- towards individualised patient models

Effects of inhibiting EGFR on downstream signalling (ERK-PP).

iginal behaviour

SIMAP extended downstream model
IC50 & KD(M) values for 170 drugs from SIMAP database

0.0000002

Increasing inhibition:

* Amplitude of ERK-PP reduced

* Peak time shifted from 8 — 25 mins
000 1,250 1,500 1,750 timeZ.(:lOO 2,250 2,500 2,750 3,000 3,250 3,500 3,750

— EGFR=0.0 — EGFR=3.7100000000000002E-9 EGFR=7.4200000000000004E-9 EGFR=1.1130000000000001E-8 EGFR=1.4840000000000001E-8
— EGFR=1.855E-8 EGFR=2.2260000000000002E-8 EGFR=2.597E-8 — EGFR=2.9680000000000002E-8 — EGFR=3.339E-8 — EGFR=3.71E-8




Modelling & Analysing knock-downs
Pam Gao, MAPK Pathway
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* What multiple knockdowns are interesting?

* Problem — many possible combinations

* Very time-consuming & expensive to carry out all possible assays
* Model — Alter for each k/d, simulate, analyse
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Clustering of multiple knock-downs

Amplitude reduced,

Delayed Low activation levels
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® Raf, MEK, ERK
generally, reduce the
duration of the
signalling

*Raf-phosphatase, MEK-
phosphatase, ERK-
phosphatase generally,
convert ERK activation
from transient to
sustained.



Multiscale from signalling to
organs

. Petri nets (coloured, hierarchical)
Monika Heiner

Figure 4: Plots of concentrations of key proteins over time obtained by solving
0OEs,

ODEs, stochastics :’ E E: ,. -
Planar Cell P-systems =2 S2%-2S=
Polarity (InfoBiotics - Nottingham) e e cce’ ao=

Pam Gao, David Tree

= Design & genetically engineer ‘patterns’!



BioModel Engineering

* Takes place at the interface of computing science,
mathematics, engineering and biology.

* A systematic approach for designing, constructing and
analyzing computational models of biological systems.

* Some inspiration from efficient software engineering
strategies.

* Not engineering biological systems per se, but
— describes their structure and behavior,
— in particular at the level of intracellular molecular processes,
— using computational tools and techniques in a principled way.

Rainer Breitling, David Gilbert, Monika Heiner, Richard Orton (2008). A structured approach for the engineering of
biochemical network models, illustrated for signalling pathways. Briefings in Bioinformatics

David Gilbert, Rainer Breitling, Monika Heiner, and Robin Donaldson (2009). An introduction to BioModel Engineering,
illustrated for signal transduction pathways, 9th International Workshop, WMC 2008, Edinburgh, UK LNCS Volume 539,
ppl3-28

Rainer Breitling, Robin Donaldson, David Gilbert, Monika Heiner (2010): Biomodel Engineering - From Structure to
Behavior; : Trans. Comp Systems Biology XlI, Springer LNBI 5945, pp. 1-12



SIMAP Utility — BioModel engineering platform

Intuitive Ul interface
Model creation and editing
Model simulation
Embedded analytical tools

— Parameter scanning (multi-core/threaded/Grid-enabled)
— Sensitivity analysis
— Model fitting (genetic algorithm)
— Advanced model checking (MC2)
Database integration and management

Database of models, biochemical & patient data
Model concurrent version system

Gene Knockdown in-silico

Grid enabled

EU - FP6



SIMAP Utility

SIMAP Utility

Secure Communication

Database Retrieval

1|
Firewall 1

MySQL Server
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Database




Formal Methods in
Molecular Biology

* Dagst uhIS minar
* February 2009
* Modelling I;ans

competition... -

*Transactions on Computational Systems Biology XII:
Special Issue on Modeling Methodologies. Springer LNBI 5945
Priami, Breitling, Gilbert, Heiner, Uhrmacher (Eds.) (2010)

 April 2011 - ( http://www.dagstuhl.de/11151 )



Subtext

 Can modelling ever be useful?
— Explanations
— Predictions
 What did it tell us? NFA = drug targeting

* When should we invest in modelling? ....
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