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Summary 

This paper describes applications of graph theory to the analysis of metabolic 

networks. First it compares different ways of mapping metabolic networks onto a 

graph. Next, it discusses several crucial aspects that need to be taken into account 

for building the graphs in order to reflect the specificity of metabolic pathways. 

Those aspects are the treatment of ubiquitous compounds and of reversible 

reactions. This is followed by a summary of results obtained with different 

approaches, such as analysis of network structure, shortest path finding, path 

enumeration, and reaction clustering. Several of these approaches are based on the 

combination of information on metabolism and gene regulation, and have useful 

applications for the interpretation of gene expression data.  

Introduction 

Metabolic pathways have been characterised for many decades by biochemists on 

the basis of analyses of a few selected model organisms (Cohen, 1994). Enzymes-

coding genes have been identified by genetic approaches, cloned, and sequenced; 

thousands of enzymes have been purified, and their mode of action, including 

substrates and inhibitors, have been investigated experimentally (Fersht, 1985). 

Until relatively recently, this enormous body of knowledge has been archived 

primarily in the scientific literature. In the last 10 years however, efforts have 

been made to store it in electronic form in a variety of databases. Those include 

some of the main resources for information on protein function such as SWISS-

PROT (Bairoch & Apweiler, 2000) and more specialised databases such as KEGG 

(Goto et al., 2000), EMP/WIT (Overbeek et al., 2000), Ecocyc (Karp et al., 1996; 

Karp et al., 2000), and the enzyme resource BRENDA (Schomburg et al., 1990-

1995). 

These databases have in turn been used to predict enzyme functions for newly 

sequenced genes, by using criteria based on sequence similarity alone, or by 

applying more global analyses of the complement of enzymes found in the 
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complete genome. One such method termed ‘metabolic reconstruction’ (Overbeek 

et al., 2000), assigns function to a gene product based on its likelihood of 

catalysing a reaction in a known metabolic pathway. It has now been applied to 

infer the metabolism of more than 40 completely sequenced micro-organisms, 

with the results stored in the WIT database. 

The availability of all these data offers the unprecedented opportunity of obtaining 

a global view of the metabolic network of an organism and for analysing this 

network using objective quantitative approaches.  

Several types of approaches have been proposed for mapping and analysing 

biochemical networks in absence of detailed kinetic information (Schuster et al., 

2000). Earlier methods constructed chemical transformation pathways leading 

from one compound to another by the successive addition of reaction steps 

(Mavrovouniotis et al., 1990; Seressiotis A & J.E., 1986). Subsequently, various 

procedures based on flux analysis have been introduced and shown to be useful 

for analyzing metabolic networks and predicting their response to various 

perturbations (Fell, 1994; Schilling & Palsson, 1998; Schuster et al., 1999; 

Schuster & Hilgetag, 1994; Simpson et al., 1995).  

This paper focuses on a different category of approaches, which rely on graph-

based representations of networks (Fell & Wagner, 2000; Jeong et al., 2000; 

Kuffner et al., 1999; Kuffner et al., 2000; Ogata et al., 2000; van Helden et al., 

2001a; van Helden et al., 2000; Zien et al., 2000). In particular, it discusses 

several applications of graph theory to the analysis of metabolic networks, and to 

the mapping of information on gene expression data (van Helden et al., 2001a; 

van Helden et al., 2000; Zien et al., 2000) onto these networks. Specific examples 

of these applications are taken from work performed in our laboratory. Clearly, 

these applications are presently at their initial stages, with much room left for 

improvements, for which some directions are outlined in the Concluding 

Remarks.  

What is presented here is thus not a comprehensive review of the field but merely 

an attempt to provide the reader with a glimpse of some of the challenges that we 

face in trying to establish correlations between the linear world of genome 

sequences and the non-linear world of cellular processes.  
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Sources of data on metabolic networks 

A first crucial prerequisite for any genome-scale analysis of a metabolic network 

is to collect a consistent and (as far as possible) comprehensive set of data on the 

metabolic pathways. This includes information on all the enzymes, catalysed and 

non-catalysed chemical reactions, and the corresponding small molecule 

compounds.  

One group of databases contains a comprehensive set of such data, with high 

information content (catalytic constants, inhibitors, activators, …) and numerous 

literature references. This includes BRENDA (Schomburg et al., 1990-1995) and 

EMP/WIT (Overbeek et al., 2000), representing some of the earliest initiatives to 

store these data. However, the information stored in these databases is, currently 

at least, not sufficiently structured to enable easy application of algorithmic 

approaches.  

Another very important database with undoubtedly one of the richest information 

content on protein and enzyme function is SWISS-PROT (Bairoch & Apweiler, 

2000). But here too this information is not readily amenable to algorithmic 

analyses, although recently, Object-Oriented parsing libraries have been 

distributed (Hermjakob et al., 1999), which greatly facilitates the conversion of 

the information stored in SWISSPROT into a more structured format. A very 

relevant resource for data on metabolism is ENZYME, a satellite database of 

SWISS-PROT, which contains the Enzyme Classification (EC), now used as 

reference world-wide, together with information on the function of the classified 

enzymes (Bairoch, 1993; Bairoch, 2000).  

A second class of databases, of which LIGAND/KEGG (Goto et al., 2000; 

Kanehisa & Goto, 2000) is a typical example, contains well structured data but the 

information coverage is less extensive. KEGG is in fact primarily a genome 

database, and contains information only on proteins and enzymes whose gene 

sequence has been determined. Information on the many enzymes described in the 

literature, which have only been characterised biochemically or genetically is not 

stored.  

Küffner and co-workers (Kuffner et al., 2000) compared the number of chemical 

reactions stored in BRENDA, KEGG and ENZYME and showed that BRENDA 

contains three times as many reactions as the latter two databases. 
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Another important resource is EcoCyc, the Encyclopaedia of Escherichia coli 

genes and metabolism (Karp & Paley, 1996; Karp et al., 2000). This database is 

both highly structured (Karp, 2000) and has a good information coverage (Riley, 

1993; Riley, 1997; Riley, 1998). Initially restricted to E. coli, EcoCyc is currently 

being extended to other organisms (Karp et al., 2000).  

Our group is presently developing a database containing information on protein 

function and biochemical pathways in different organisms, called aMAZE. One 

important aim of this database is to organise the information in ways that allow 

answering complex queries about biochemical networks using automatic 

procedures. To that end, we developed a flexible and powerful data model (van 

Helden et al., 2001b; van Helden et al., 2000), that enables the representation of a 

variety of processes, including metabolic pathways, regulation of gene expression 

and enzyme function, signal transduction and transport. Presently, the database is 

populated with chemical reactions imported from KEGG and information on 

polypeptides imported from SWISS-PROT. Incorporation of information in 

BRENDA is under way, and we are adding custom annotation on metabolic 

regulation. The database and query tools will become available on the Web 

shortly (C. Lemer et al., in prep).  

Metabolic network graphs: representation and 

navigation  

Mapping the metabolic network onto a graph 

The second key issue that needs to be addressed in order to be able to perform 

systematic analyses of metabolic network, is the choice of an appropriate model 

for representing them. The metabolic network first needs to be mapped onto a 

graph. There are many ways for performing this mapping, and the choice among 

them may partly depend on the purpose of the analysis and on the algorithms 

used.  

Figure 1A shows part of a metabolic network, represented according to the 

conventional way used by the biochemist. This network contains two alternative 

pathways for the conversion of L-homoserine into L-methionine, as observed in 

E.coli (left side) and S.cerevisiae (right) respectively. Figures 1B-D depicts three 

alternative ways of mapping this small network onto a graph. One is to associate 
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one node to each compound, and to represent reactions as arcs connecting 

substrates to products (Figure 1B). Nodes are labelled with the compound name, 

and arcs with the identifier of the reaction (or its EC number). In this 

representation, a reaction with n substrates and m products appears as the label of 

n*m distinct arcs. Such a representation directly provides information about 

relationships between compounds, but it is not straightforward to use it for path 

finding, because any path finding algorithm would have to be adapted in order to 

avoid using two arcs with the same label in a path.  

Another possibility would be to associate one node to each reaction, and to link 

them by an arc when they share an intermediate compound (the product of one 

reaction is the substrate of the next), as illustrated in Figure 1C. This time a 

compound used as substrate in n reactions and produced by m reactions appears as 

the label of n*m arcs, giving rise to the same complications for path finding as 

described above.  

A more elaborate representation is to define a graph having two types of nodes, 

one for compounds and one for reactions (Figure 1D), with the arcs representing 

the input/output relationships between reactions and compounds. In this 

representation, arcs always link compounds to reactions (for substrates) or 

reactions to compounds (for products), but never reactions to reactions or 

compounds to compounds. This type of graph, called a bipartite graph, has been 

used in several approaches reviewed here, and will therefore be the representation 

of choice throughout the paper. 

A particular case of bipartite graphs is the Petri nets, which have been used to 

represent metabolic pathways and to perform various analyses, such as path 

finding, network comparison, and simulation (Kuffner et al., 2000). In this 

representation, reactions are mapped onto transition nodes, and compounds onto 

place nodes.  

We developed a general data model for representing biochemical pathways and 

their regulation (van Helden et al., 2001b; van Helden et al., 2000), based on of 

two main classes of objects: BiochemicalEntities and BiochemicalInteractions. 

The data model can be mapped onto a graph by assigning one node per 

BiochemicalEntity and one node per BiochemicalInteraction, and using arcs to 

connect BiochemicalIntreactions to their inputs and outputs. 

BiochemicalInteractions are further subdivided into Transformations and 
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Controls. Transformations behave like the transitions of a Petri net, in that they 

have BiochemicalEntities both as inputs and outputs. The difference between our 

model and Petri nets resides in the other subclass of interactions, Controls, which 

have the particularity of having another BiochemicalInteraction as output. 

Controls are themselves a subclass of BiochemicalInteractions. They represent 

regulatory interactions (inhibition, up-regulation, down-regulation), which most 

other databases do not represent, and can be regulated in turn by other Controls. 

Note that when Control interactions are taken into consideration, the underlying 

graph is not bipartite anymore.  

Finally, in our data model, networks of biochemical pathways are represented, 

using the Process/Pathway class, which consists of a graph whose nodes are 

BiochemicalEntities, BiochemicalInteractions or even other Processes/Pathways. 

The latter case allows the representation of super-pathways, or ‘pathways of 

pathways’ (van Helden et al., 2000). 

As shown elsewhere (van Helden et al., 2001b) this data model allows the 

representation of some complex regulations (e.g. the regulation of one specific 

catalytic activity of a multifunctional enzyme), which cannot be treated properly 

with other models. It furthermore has the advantage of lending itself naturally to 

the application of graph theory algorithms for network analysis. 

Navigation through metabolic network graphs 

Path finding (finding all possible paths between compounds A and B, or all paths 

leading to compound C etc.) is one of the most common tasks in graph analysis, 

and several algorithms have been developed for this purpose (Gross & Yellen, 

1999). The choice of the appropriate method depends on the question to be 

addressed and on the type of network analysed (e.g. metabolism, signal 

transduction, protein-protein interactions).  

This notwithstanding, classical path finding algorithms need some adaptation in 

order to yield meaningful results for metabolic networks. In particular it is crucial 

to take into account two specific properties of these networks. Namely, the 

reversibility of chemical reactions and the necessity for being selective when 

navigating through intermediate compounds. An improper treatment of these 

issues may produce perfectly acceptable solutions from the mathematical view 

point, but those solutions will be devoid of biochemical meaning.  
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Treatment of ubiquitous compounds 

Although all the substrates of a given reaction are necessary for this reaction to 

take place, they cannot be considered as equivalent for path finding purposes. This 

is illustrated with a trivial example in Figure 2A: water (H2O) is produced by 

reaction EC4.2.1.52 and consumed by reaction EC3.5.1.18. This is however not 

sufficient for connecting these two reactions as successive steps of a pathway, and 

it would make no biochemical sense to claim that L-aspartic semialdehyde can be 

converted to LL-diaminopimelic acid in two steps, with H2O as intermediate 

compound (bottom of Fig. 2A). The problem is particularly evident for water, but 

also holds for a few other ubiquitous compounds, which are involved in hundreds 

of reactions but cannot be considered as valid intermediates for path finding, or 

for that matter, for establishing biologically meaningful network connections.  

One simple and drastic solution would be to delete the corresponding nodes from 

the graph. But which compounds should be considered as invalid intermediates? 

Table 1 provides a list of the most connected compounds, as compiled from the 

reactions in KEGG. Compounds such as H2O, NAD, NADH, orthophosphate are 

at the top of the list. Those should clearly not be considered as valid intermediates 

between two reactions. But the status of compounds such as pyruvate, or Acetyl-

CoA is less clear. Another illustrative example of this difficulty is ATP, which is 

involved in hundreds of reactions, where it is used as energy source and can hence 

not be considered as a valid intermediate. But ATP is a perfectly valid 

intermediate between reactions in the pathways of nucleotide biosynthesis. 

Coming up with objective rules for defining valid intermediates in metabolic 

graphs would be very useful. Such rules could for example consider the transfer of 

matter (atoms) from one compound to the next.  

Treatment of reaction reversibility 

Another aspect specific to metabolic networks is reaction reversibility. This is the 

fact that the chemical reactions in these networks must be considered as 

reversible, unless specific information is given to the contrary. Indeed even 

chemical reactions with a strong directional preferences can be made to go in the 

reverse direction as a result of mass action because they take place in the context 

of other on-going processes in the cell. Information on the directional preferences 
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(reversibility/irreversibility) of reactions in physiological conditions is annotated 

in some databases (BRENDA, WIT, EcoCyc).  

One is faced with several choices for representing reaction reversibility in the 

metabolic graph. One possibility is to link reversible reactions and their reactants 

with undirected arcs, i.e. arcs that can be traversed in both directions during path 

finding (Figure 2B). This however would make it cumbersome to distinguish 

between substrates and products. Indeed, straightforward navigation through the 

graph would result in connecting 2 substrates (or 2 products) of the same 

chemical reactions to each other. In the context of path finding, this would mean 

that 2 substrates of the same reaction can be inter-converted in one step, thereby 

violating the laws of chemistry.  

Another solution is to represent a reversible reaction as two separate nodes in the 

network, one for each direction, as illustrated in Figure 2C. With this solution 

however, path finding algorithms would have to be prevented from including 

both the direct and reverse reactions in the same path. Inclusion of both would 

indeed lead to the chemically meaningless situation where two substrates of a 

reversible reaction could be transformed into each other in two steps (Figure 2C). 

Choice of graph analysis algorithms 

In summary, several alternative representations could be suitable for mapping the 

metabolic network onto a graph. But whichever mapping is used, it is crucial to 

adapt path finding algorithms, in order to ensure that they return consistent and 

relevant answers. In particular, each time a reaction is added to a path, it is 

essential to check whether the corresponding reverse reaction has not already 

been included previously. This can be done easily with depth-first search (DFS) 

methods, which potentially have exponential running times, and not, or at least 

not in an obvious way, with breath-first-search (BFS) methods. For this reason, 

classical algorithms of counting paths based on powers of matrices (Gross & 

Yellen, 1999), which are the most efficient methods for graph analysis, are thus 

less useful in the case of metabolic networks since they can not be readily applied 

to them. 
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Structural properties of metabolic networks 

Once a metabolic network is mapped onto a graph, it becomes possible to evaluate 

the global structural properties of the network.  

The global network built from all the chemical reactions stored in KEGG 

(catalysed by enzymes from all organisms) contains 5,871 compounds and 5,223 

reactions, each represented as one node in the graph. Connections between 

reactions and their substrates are represented by 21,194 arcs, of which 7,116 

involve ubiquitous compounds (14 compounds selected from Table 1). After 

filtering out these trivial connections, the bipartite graph contains 11,094 nodes 

and 14,078 arcs in our representation. 

Using a different approach for mapping metabolic networks into a graph, Jeong 

and co-workers (Jeong et al., 2000) recently evaluated several global parameters 

of these networks, such as the network connectivity. Their first conclusion is that 

metabolic networks belong to the class of scale-free networks, where a small 

number of compounds are involved in many reactions, and are hence denoted as 

‘hubs’, because they are heavily connected, whereas the majority of the other 

compounds are involved in only few reactions, and are hence weakly connected.  

Figure 3, shows the results of a similar analysis, which we performed on the basis 

of the entire set of compounds and reactions from KEGG, mentioned above. Fig 

3A shows in abscissa the number of connections (i.e. reactions in which a 

compound is involved), and in the ordinate the number of compounds with this 

number of connections/reactions. In this analysis substrates and products are 

pooled together since most reactions are reversible, and the direction found in the 

databases is often arbitrary. Details of the connectivity are provided in Table 1 for 

the 30 compounds with highest connectivity (the rightmost points on Figure 3A).  

While the paper of Jeong and co-workers never mentions the identity of their so-

called "hubs", our Table 1 shows clearly that these are none else than the 

ubiquitous compounds like H2O, NAD, NADH, ATP, S-adenosyl-L-methionine. 

Biochemists know that these compounds are the actors of basic metabolic 

operations like oxido-reduction, phosphorylation, methyl transfer, and it is 

probably not a big surprise to them to see that these compounds are involved in 

significantly more reactions than other compounds.  

Another interesting structural parameter is the average connectivity of the 

reactions in the network. Counting the number of substrates and products for the 
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entire set of KEGG reactions, we find that on average, reactions have 2 substrates 

and 2 products (Figure 3B), but when ubiquitous compounds are discarded, these 

numbers drop to 1.4 and 1.3, respectively (Figure 3C).  

The second conclusion of Jeong and co-workers (Jeong et al., 2000) is that 

metabolic networks have a small-world character, i.e. that on average, any two 

nodes can be connected by rather short paths. To reach this conclusion they 

calculate the average length (or average number of steps), of the shortest path 

between any pair of compounds, which is defined as the network diameter. It is 

important to remember however, that their conclusion crucially depends on the 

way in which the metabolic networks were mapped into the graph. In particular, 

on how ubiquitous compounds are dealt with. In their paper, all the compounds, 

including the heavily connected H2O, NAD molecules, were considered as valid 

nodes. As a result, most of their shortest paths include shortcuts involving these 

molecules (the problem illustrated in Figure 2A), and are hence not chemically 

acceptable.  

This explains the surprising observation made by these authors that the network 

diameter remains constant irrespective of the number of enzymes in the 

considered organisms. The number of connections involving ubiquitous 

compounds is indeed so large (e.g. over one thousand for water, in Fig. 3A) that 

adding or deleting a set of enzymes makes little differences. 

These authors show on the other hand that the network diameter increases 

significantly from 3 to 10 steps when the 25 most ubiquitous compounds are 

removed as illustrated in their Figure 3e. Unfortunately, this larger value, which 

probably reflects much better what biochemists would consider as the average 

distance between two compounds in a metabolic network, is not used in their 

analysis. Using it would have indicated that the network diameter is affected by 

adding or deleting enzymes and that the metabolic world is not as small, as Jeong 

and colleagues conclude it to be.  

In a more recent paper (Fell & Wagner, 2000), the diameter of a network 

representing the core metabolism in Escherichia coli is computed after removal of 

ubiquitous compounds. In this paper, two compounds are considered as connected 

irrespective of the side of the reaction equation in which they occur. The distance 

separating two substrates of a same reaction is thus 1, as in our Figure 2B. This is 

a deliberate choice, justified by the fact that the authors are interested in the 
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capability of two compounds to interact, i.e. the fact that each substrate will 

influence the rate of the reaction, which will affect the concentration of the other 

substrate (D.A. Fell, personal communication). Even though perfectly justified in 

this case, it is important to bear in mind that the distances calculated by Wagner 

and Fell have nothing to do with the physical pathways describing the inter-

conversion of compounds.  

In summary, it appears that the global structural properties of metabolic networks 

published so far do not really reflect the biochemical notion of pathways, and 

should thus be interpreted with caution.  

Graph analysis methods applied to metabolic 

networks 

Pathway enumeration 

With the metabolic network graph and some basic path navigation rules in place, a 

number of useful graph analysis operations can be performed in order to answer 

some typical queries. These include, finding all possible paths between a given 

pair of source and target nodes (two-end path finding), finding all possible paths 

starting from a given source node (one-end path finding), and finding all possible 

paths ending at a given target node (one-end reverse path finding). In performing 

these analyses, a limit on path length (number of intervening reactions) can be 

imposed to limit calculation time. 

Two-ends path finding can be used with the aim of discovering alternative 

pathways between two compounds A and B in the global network built from all 

known reactions and compounds. One application of pathway enumeration might 

be to discover alternatives to the classical pathways. Indeed, it is well known that 

different organisms often use distinct pathways to synthesise or degrade the same 

metabolites. For example, biosynthesis of methionine from homoserine requires 3 

steps in the yeast Saccharomyces cerevisiae, and 4 steps in the bacteria 

Escherichia coli, with only one reaction in common (Figure 1A). In other cases, 

such as lysine biosynthesis, completely different pathways are used in E.coli and 

S.cerevisiae, with not a single reaction in common. Since most biochemical 

knowledge has been derived from a few model organisms, one might expect that 
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many more alternative pathways will be discovered, particularly as our knowledge 

of enzymes and the reactions they catalyse in different organisms expands. 

The exhaustive enumeration of paths between the source and target compounds, 

though straightforward, may however not always yield a practical solution. Often, 

the number of computed paths is so large that the result is devoid of any 

biochemical meaning. This is clearly illustrated by Küffner and co-workers, who 

computed more than 500,000 possible paths of at most 9 steps from glucose to 

pyruvate (Kuffner et al., 2000) using the set of reactions and compounds in 

databases such as KEGG and BRENDA. 

One way of reducing the number of computed paths is to impose constraints on 

the derived solutions. For example to compute only closed paths, defined as sub 

graphs in which the net production and consumption of compounds is zero, except 

for the starting and end compounds and a predefined list of ubiquitous molecules 

(Kuffner et al., 2000). Another constraint can be to set limits on path width (see 

(Kuffner et al., 2000) for the formal definition of closed pathway and path width). 

This was shown to reduce the number of paths in the above mentioned case from 

500,000 to 541 (with a width limit of 2) or 170 (width limit of 1) (Kuffner et al., 

2000). However, restricting path width too severely, bears the danger of missing a 

sub branch of a branched pathway, and can therefore not be applied 

indiscriminately. 

Yet another option is to restrict the metabolic network to the subset of reactions 

known to be catalysed in the organism of interest. However, while this strongly 

reduces the size of the metabolic graph, and consequently the number of 

computed paths, it also limits the ability of finding alternative pathways, and this 

for two main reasons. It precludes the consideration of spontaneous reactions, 

those not catalysed by any enzyme (e.g. the third reaction of proline biosynthesis: 

glutamate gamma-semialdehyde <=> 1-pyrroline carboxylate), as well as the 

reactions for which no enzyme has as yet been annotated in the corresponding 

genome. Imposing constraints on the graph itself is thus not a satisfactory solution 

for reducing the number of computed paths when the aim is to predict new 

pathways or to reconstruct the pathways of an organisms whose metabolism is 

incompletely characterised.  
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Scoring enumerated pathways with gene expression data 

An alternative to imposing constraints a priori, is to use data from other sources 

for guiding the selection of likely paths. In one such approach pertinent pathways 

are selected from among all the solutions provided by the path enumeration 

procedure on the basis of gene expression data (Zien et al., 2000). The underlying 

rationale is the observation that enzymes participating in a given pathway tend to 

be co-regulated at the gene expression level. In the described approach, Zien and 

coll (Zien et al., 2000) rank the 541 glycolysis pathways computed by Kueffner et 

al (2000), according to 3 criteria derived from experimental data on the 

transcriptional response of S.cerevisiae to diauxic shift (DeRisi et al., 1997). One 

is a measure of the level of transcriptional response of the genes coding for the 

enzymes catalysing all the reactions in a given pathway. The second is a measure 

of the level of correlation between this response in all the enzyme coding genes in 

the pathway, and the third is a single criterion combining both measures. This 

scoring results in the top ranking of the yeast glycolytic pathway, suggesting that 

this approach may have useful applications for the prediction of metabolic 

pathways in organisms in which these pathways have not been previously 

characterised.  

Pathway reconstitution from clusters of reactions 

Instead of using gene expression data to score a posteriori the paths produced by 

exhaustive enumeration (Zien et al., 2000), one can use this information as the 

starting point for building pathways (van Helden et al., 2001a; van Helden et al., 

2000). The problem at hand is thus formulated differently and the goal becomes to 

identify the set of processes which would link together, in a biologically 

meaningful way, most or all of the activities carried out by a cluster of 

functionally related genes.  

An algorithm which performs such operation has recently been developed in our 

laboratory (van Helden et al., 2001a; van Helden et al., 2000). It works roughly as 

follows. Starting from a cluster of functionally related genes, it first identifies the 

reactions catalysed by their products from available information in databases such 

as KEGG, BRENDA and SWISS-PROT. These reactions are used as starting 

nodes or ‘seeds’ which the procedure then endeavours to interconnect via the 

shortest paths. In the simplest case, two seed reactions share an intermediate 
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compound (the product of one reaction is a substrate of the other). But this is not 

always so and the program therefore allows to intercalate additional reactions, 

which were not part of the initial set of seeds.  

The underlying algorithm is a single linkage clustering over the metabolic graph, 

with the distance metric between two reaction clusters being the length of the 

shortest path which links these clusters. The returned result is a subgraph 

containing all the seed nodes, as well as the arcs and intermediate nodes (reactions 

and compounds) traversed during the linkage process.  

It was shown (van Helden et al., 2001a; van Helden et al., 2000) that this 

algorithm is cable of reconstituting the methionine pathway of S. cerevisiae, 

starting from a cluster of co-regulated genes identified from DNA micro-array 

experiments (Spellman et al., 1998). We are currently systematically evaluating 

the performance of the program by testing its ability to reconstitute known 

metabolic pathways starting each time from different subsets of reactions. Figure 

4 illustrates such tests performed with the E. coli lysine pathway. In this pathway, 

shown in Fig. 4A, L-aspartate is converted into L-lysine in 9 steps, each catalysed 

by a specific enzyme. Figure 4B displays the reconstructed pathway when all 9 

reactions (defined only by their EC numbers) are provided to the clustering 

algorithm, in any order. We see that the reactions are placed in the appropriate 

order to form the lysine pathway as biochemists know it, and that the reactions 

could be ordered correctly, solely on the basis of the intermediate compounds. 

Figure 4C, displays the reconstructed pathway when only half of the EC numbers 

are provided as seeds. We see that the algorithm inferred the missing reactions, 

with however several alternatives for the intercalated reactions.  

The pathway reconstructed using only four EC numbers as seeds (less than half 

the reactions in the known lysine pathway) is shown in Fig. 4D. We see that, in 

addition to identifying the missing reactions and correctly rebuilding the lysine 

pathway, the procedure detects two other paths. One is a shortcut converting 

2,3,4,5-tetrahydrodipiclinate into meso-2,6-diaminoheptanedioate in 2 steps. The 

other is a degradation pathway, converting L-lysine into L-aspartate in two steps. 

Catalysts for this pathway are missing in E.coli, but are found in bacteria like 

Pseudomonas. The program was thus capable of reconstituting the E.coli pathway, 

but also identified pathways, which are not pertinent to this organism. These 

pathways can however be readily eliminated by scoring the pathways computed 
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by our procedure according to the presence/absence of enzymes in the considered 

organism.  

Finally, we observed that the algorithm fails to reconstruct the correct pathway 

(Fig. 4E) when only 3 of the 9 EC numbers are used as seeds, due to the fact that 

the remaining pairs of seed EC numbers can be linked by shorter paths.  

Shortest path analysis of gene fusion data 

Another way to obtain information about functional relatedness between genes is 

by gene fusion-fission analysis (Enright et al., 1999; Marcotte et al., 1999a; 

Marcotte et al., 1999b; Tsoka & Ouzounis, 2000). This approach is based on the 

observation that 2 or more genes (termed "fusion partners" or "components") from 

one organism display significant sequence similarity with the sequences of non-

overlapping segments of a single gene in another organism. Marcotte and 

coworkers (Marcotte et al., 1999a) showed that genes  frequently involved in 

fusion events share a common keyword in their Swissprot annotation, indicating a 

functional relationship between them. Tsoka and Ouzounis (Tsoka & Ouzounis, 

2000) showed that enzymes are more frequently involved in fusion events than a 

random selection of other proteins.  

A direct way to assess the functional relationship between two fused genes is to 

calculate the length of the shortest path between the reactions they catalyse. The 

shorter the path, the greater the likelihood that the two enzymes functionally 

interact (for example, that they are involved in the same pathway). We calculated 

the shortest path length or distance between the two reactions catalysed by each 

pairs of fused enzyme from Tsoka and Ouzounis (Tsoka & Ouzounis, 2000), with 

the results displayed in Fig. 5A. A distance of 0 corresponds either to 

isofunctional enzymes, or to subunits of an enzymatic complex. A distance of 1 

corresponds to enzymes catalysing successive steps in a metabolic pathway. We 

compared this result with the distribution of distances between pairs of randomly 

selected enzymes (Figure 5B). This analysis shows that fusions generally occur 

between enzymes involved in closely related reactions. 

Concluding remarks 

In this paper we discussed a number of approaches that use graph theory to 

represent metabolic networks, to analyse their global properties and to perform 
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various operations on them. In particular we showed that several issues, such as 

reaction reversibility and ubiquitous compounds, need to be dealt with in an 

appropriate manner in order to obtain biologically meaningful results. But what is 

considered appropriate, may depend on the particular application that one has in 

mind. For instance, an adjacency matrix such as defined Fell & Wagner (2000), in 

which two substrates of the same reaction are directly connected, cannot be used 

to construct biochemically meaningful pathways, but is perfectly valid for 

determining if 2 compounds present some interaction at the level of mass action. 

The mapping onto a graph and the path finding algorithms should thus be 

reconsidered for each particular application.  

Even when algorithms are adapted to take into account the particularities of 

metabolic networks, an analysis restricted to metabolic reactions is often poorly 

informative, due to the innumerable possible paths for converting any compound 

into any other. Biological processes however differ from chemical experiments in 

that cells are able to regulate the concentration and/or activity of their enzymes 

and transporters Thus, a comprehensive analysis should integrate metabolic, 

genetic and physiological information. With methods made available for 

measuring the level of expression of all the genes of an organism (Brown & 

Botstein, 1999; DeRisi et al., 1997), we are in a position to integrate metabolic 

and genetic information, as seen in one example discussed above. In cases where 

gene expression data are not available, metabolic network analysis can be 

combined with other sources of information, such as data from genome scale 

analyses of protein-protein interactions (Ito et al., 2001; Uetz et al., 2000; Uetz & 

Hughes, 2000). Alternatively, one could use clusters of genes or proteins 

predicted to be functionally related on the basis of theoretical analyses such as 

those recently described by Eisenberg and colleagues (Enright et al., 1999; 

Marcotte et al., 1999a; Marcotte et al., 1999b; Pellegrini et al., 1999; Tsoka & 

Ouzounis, 2000). However, since the latter type of data is probably less reliable 

than those derived from experimental approaches, their effectiveness in helping 

the identification of relevant pathways may probably be reduced.   

It is also clear that a set of objective rules are needed for building metabolic 

network graphs, which can be used to establish a biologically meaningful 

correlation between the information on genes, proteins and metabolism. Methods 

based on flux analysis, and particularly those based on the ‘elementary flux 
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modes’ (Clarke et al., Schuster et a. 2000) seem particularly relevant in this 

regard, since they are entirely based on stoicheometry and require no knowledge 

of kinetic parameters. Although these methods have so far been applied only to a 

limited set of metabolic processes, without a systematic incorporation of 

regulation, particularly that on the genetic level, combining some of the 

underlying concepts with graph analysis methods should be a useful way of going 

forward. 

Lastly one should add that generalising these approaches to other types of cellular 

processes is also very important. Among those, the highly connected networks of 

signal transduction pathways have been receiving increased attention (Takai-

Igarashi & Kaminuma, 1998; Takai-Igarashi et al., 1998; Weng et al., 1999). The 

data model developed for the aMAZE database (van Helden et al., 2001b; van 

Helden et al., 2000) already includes a representation of these interactions, and 

provides a good basis for extending the algorithmic approaches presented here. 

However, one should beware that these different types of interactions cannot a 

priori be considered equivalent to chemical reactions. For example, transcriptional 

regulation is intrinsically directional (the transcription factor regulates expression 

of its target genes, but the opposite is not true), and there is no consumption of the 

input. It is thus likely that specific rules will have to be defined for different 

subclasses of interactions, to make sure the mapping and graph traversal are 

biologically meaningful .  
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Legends to figures 

Figure 1. Alternative modes for mapping a metabolic network onto a graph. A. 

Typical drawing of a metabolic pathway, as can be found in biochemical 
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textbooks. Two alternative pathways for the conversion of L-homoserine into L-

methionine. The number alongside each reaction represents the catalytic 

mechanism, and is the EC number. B. Each compound is represented as a node, 

and arcs indicate the conversions between compounds performed by reactions (as 

shown by the labels in italic). Note that each reaction is represented by a set of 

arcs. C. Each reaction is represented as a node, and arcs indicate the intermediate 

compounds (as shown by the arc labels in italic). Note that each compound is 

represented a set of arcs. D. A bipartite graph, where two distinct types of nodes 

are used to represent compounds and reactions (boxed labels) respectively.  

Figure 2. Specific issues for path finding in metabolic graphs. A. Invalid 

intermediate compounds. B-C. Treatment of reaction reversibility. B. Using non-

directed arcs would amount to considering that the substrates of a reaction can be 

transformed into each other in one step. C. Instantiating separate nodes for the 

direct and reverse reaction solves this problem, but direct and reverse nodes 

cannot be combined in the same path, because this would amount to transforming 

substrates into each other in two steps. See text for details.  

Figure 3. Metabolic network connectivity as deduced from reactions in the 

KEGG database. A. Connectivity of compounds. The abscissa indicates the 

number of reactions in which a compound is involved as reactant, and the ordinate 

the number of compounds with this connectivity. B. Connectivity of reactions. 

The abscissa indicates the number of substrates, or products, of a reaction, and the 

ordinate the number of reactions with this connectivity. All reactants are counted, 

including ubiquitous compounds like H2O. C. Reaction connectivity is strongly 

reduced when ubiquitous compounds are discarded from the count.  

Figure 4. Metabolic pathway reconstitution by reaction clustering. We illustrate 

the concept by reconstructing Escherichia coli lysine pathway, starting from a 

subset of EC numbers. A. Lysine pathway in Escherichia coli. B-D. Pathways 

found by reaction clustering, starting from an unordered set of seed EC numbers 

(shaded boxes on the diagram). B. All EC numbers from pathway A are provided 

as seeds. C. Half of the EC numbers are provided as seeds. D. Four EC numbers 

are provided. E. Three EC numbers are provided.  

Figure 5. Length of the shortest pathway between reactions catalyzed by (A) 

fusion partners and (B) random pairs of enzymes. 
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Tables 

rank description product substrate sum discarded

1 H2O 979 636 1615 1
2 NAD+ 303 275 578 1
3 NADH 265 304 569 1
4 NADP+ 314 250 564 1
5 NADPH 248 311 559 1
6 Oxygen 189 338 527 1
7 ATP 124 311 435 1
8 Orthophosphate 166 183 349 1
9 ADP 220 104 324 1

10 CO2 157 166 323 1
11 CoA 210 93 303 1
12 H+ 130 142 272
13 NH3 122 148 270
14 Pyrophosphate 156 96 252 1
15 UDP 153 37 190 1
16 S-Adenosyl-L-methionine 29 145 174
17 S-Adenosyl-L-homocysteine 134 31 165
18 Pyruvate 33 117 150
19 AMP 85 57 142
20 H2O2 78 60 138
21 L-Glutamate 56 76 132
22 2-Oxoglutarate 49 80 129
23 Acceptor 66 60 126
24 Acetyl-CoA 24 98 122
25 Reduced acceptor 56 66 122 1
26 Acetate 30 57 87
27 UDPglucose 16 63 79
28 D-Glucose 16 46 62
29 Succinate 19 40 59
30 CMP 31 23 54  

Table 1: The 30 compounds with the highest connectivity (calculated from KEGG data).  


