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Abstract

We present a general theory of action-based languages as a paradigm for the descrip-

tion of those computational systems which include elements of concurrency and network-

ing, and extend this approach to describe distributed systems and also to describe the

interaction of a system with an environment.

As part of this approach we introduce the Action Language as a common model for

the class of nondeterministic concurrent programming languages and de�ne its inten-

sional and interaction semantics in terms of continuous transformation of environment

behaviour. This semantics is specialised for programs with stores, and extended to de-

scribe distributed computations.
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1 Introduction

We present a general theory of action-based languages as a paradigm for the description of

those computational systems which include elements of concurrency and networking, and ex-

tend this approach to describe distributed systems and also to describe the interaction of

a system with an environment. Our claim is that we are able to characterise most exist-

ing computational and interactive systems with our approach, and to relate the concepts

of computation and interaction. We hope that our approach will facilitate the design and

construction of new computational and interactive systems in the future.

Our basic notion is that of an action which transforms the state of a world; actions are

performed by agents

1

whose behaviour is changed as a result. We distinguish between an

agent and its state and thus speak of an agent in a given state; special types of agents are

programs (which have a syntactical representation) and environments (which usually are not

syntactically represented, and into which programs can be inserted). Behaviours are agents

in a given state considered up to bisimilarity, or possibly to a weaker equivalence. Each agent

may be represented as a transition system labelled by actions from a corresponding action

domain and whose action algebra describes combination, non-deterministic and sequential

composition. Thus we distinguish between primitive actions and compound actions, the

latter being formed from combination of other actions.

Interaction between agents is of two types. The �rst is expressed by the parallel composi-

tion of agents over the same action domains and is characterised by the combination of actions

or interleaving. The second is expressed by the insertion of an agent into some environment

and results in the transformation of the environment into a new environment. Some informal

examples of environments are:

� a computer, or interpreter for some programming language (which does not perform

global analysis and only considers actions performable at some moment of time),

� a server on a computer network, or a software system which manipulates queries con-

sidered as actions of programs, where some actions can be performed immediately and

others are suspended,

� an interactive interface connecting a program with a user, where the user may interrupt

the execution of the program and perform his own action.

Interactive computing is a well-established technique applied to many problem domains,

for example in the construction of controllers, operating systems, programming environments,

1

The term \agent" is used as a notion which formalises real objects such as programs, environments, users,

clients, servers and agents as in the meaning of \software agents"[6]
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expert systems etc. However this paradigm has not been regarded as fundamental until the

relatively recent advent of widely available communications facilities which abstract from

physical locations and networks, coupled with a very high rate of accessibility to computers.

Peter Wegner has documented and explored the paradigm shift from algorithms to interaction

in his recent CACM articles [30, 31]. Our view is of computation and interaction as two some-

what orthogonal concepts as opposed to the view of computation as interaction characterised

by Milner in [24].

We believe that descriptions of interactive systems should be made using formalisms based

on very generalised (abstract) languages, and that a sound semantics needs to be given for

them. This paper presents our �rst attempt in this direction. We base our approach on

that of a general abstract Action Language (AL) as a common model for the class of nonde-

terministic concurrent programming languages [19] (ncpl) and consider them as interactive

programming languages by giving a compositional semantics for them. The set of continuous

transformations of the behaviour algebra is used as a semantic domain for this purpose. This

approach is in some sense a generalization of the idea of discrete transformer introduced by

V.Glushkov in [10] and considered as a model of computation (see also [11]). As a further

extension, we give a distribution semantics for those ncpl languages which have the notion of

store components.

Nondeterministic concurrent programming languages (ncpl) are languages which employ

as primitive constructs nondeterministic choice, parallel and sequential composition. The best

known are the languages based on CCS [21] and the �-calculus [22] of R. Milner, CSP [16]

of C.A.R. Hoare, and process algebra [5] which were designed to study communication and

interaction in concurrent processes. Another class are the concurrent constraint programming

languages [7, 9, 26, 27], which appeared during the last decade and are very popular nowadays,

and combine the properties of computation (over relations) and interaction in a very high

level and abstract manner. All of these languages use all three characteristic constructs of

ncpl. Nondeterministic choice is an important feature of declarative programming and also

of speci�cation languages, although it may be present implicitly. For example the choice

of rewriting rules and redexes in algebraic speci�cations as well as the choice of clauses in

logic programs considered as speci�cations of subject domains, are nondeterministic. Parallel

composition may also be present implicitly as the possibility of simultaneously computing the

values of subexpressions of algebraic expressions or simultaneously solving constraints.

An important advantage of our approach is that it can easily be specialised to describe

speci�c features of languages belonging to the ncpl class. For example some special features

of the cc family: a store, variables and synchronisation mechanisms. Another advantage lies

in the use of our model to design tools such as interpreters, simulators and workbenches for

ncpl languages.

2 The Action Language

The general abstract Action Language (AL) is a common model for the class of ncpl languages.

The abstract syntax of the Action Language is as follows, where the syntax of Act and

ProcedureCall are the parameters of each particular language of the class.

Prog ::= Act j ProcCall j (Prog+ Prog) j (ProgkProg) j (Prog; Prog)
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2.1 Actions

The meaning of actions is de�ned by some algebra of actions A (action algebra) and if it does

not result in any contradictions then action expressions (considered up to their equivalence)

will be identi�ed with the actions themselves. The language is called a language over A if all

action expressions are interpreted in the algebra A.

The main operation of the algebra of actions is a binary ac-operation (associative and

commutative) denoted as � and called the combination of actions. There is also the empty

action � which is the neutral element for combination and the zero element 0 (the impossible

action). Therefore the algebra of actions is a commutative monoid. It may include also some

other operations, as for instance in [23]. Among the di�erent operations we are interested

in are nondeterministic choice and sequential composition of actions. The main properties

of these operations are illustrated in Figure 1 (nondeterministic choice of a and b is a + b,

sequential composition is ab).

a� b = b� a

(a� b)� c = a� (b� c)

a� � = � � a = a

a� 0 = 0� a = 0

a+ a = a

a+ b = b+ a

(a+ b) + c = a+ (b+ c)

a+ 0 = a

(ab)c = a(bc)

a� = �a = a

a0 = 0a = 0

(a+ b)� c = a� c+ b� c

(a+ b)c = ac+ bc

c(a+ b) = ca+ cb

Figure 1: Relations of an algebra of actions

An action is called deterministic if it cannot be represented as a nondeterministic choice

of two di�erent nonzero actions. A deterministic action is called primitive if it is � or 0, or

it cannot be split into a combination of actions di�erent to � and 0. Nondeterministic or

nonprimitive actions are called compound ones. The algebra of actions is called primitive if

1. It is generated by primitive actions;

2. The representation of a nonzero action as a (�nite) sum of nonzero deterministic actions

is unique up to the commutativity and idempotence relations for sum.

Theorem 1 Each action algebra is a homomorphic image of a primitive action algebra.

A free action algebra de�ned by equations of Figure 1 is a primitive one and any action

algebra is a homomorphic image of some free action algebra.
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In the sequel we shall consider only primitive action algebras without explicit reference to

this fact.

In real languages the combination of actions is usually either parallel (simultaneous) per-

formance of information independent computations, or interaction (for example send and

receive operations for the exchange of data between two processes). Combinations expressing

multiparty communications which are performed in parallel with communication and inter-

action are also possible. The complexity of actions and their compositions depends on the

point of view and level of abstractness desired.

The sequential composition of two actions is a nontrivial (di�erent from 0) action if these

actions are interpreted as functions or relations and in this case the new action is equivalent

to the sequential performance of two actions. Nondeterministic composition of actions is used

for technical reasons, and as it will be shown later usually can be eliminated at the level of

program transformations.

The simplest examples of action algebras are Hoare action algebra (a� a = a; a� b = 0 if

a 6= b) and Milner action algebra (a�a = �; a�b = 0 if b 6= a). Relations on some set of states

or transformations de�ned by assignments on a set of memory states are also the examples

of action algebras. Others include Milne's Circal calculus [20], the algebra of Hennessy [15],

LOTOS [17, 29] and its extensions (e.g. LOTCAL [8]).

2.2 Procedure calls

The syntax of procedure calls is another parameter of action language and each program is

associated with a set of procedure de�nitions and also an algorithm which unfolds any pro-

cedure call to a program. We do not consider the details of procedure de�nitions, parameter

passing, etc. in order not to restrict generalisations. As an example the utilisation of rewriting

technique for the de�nition of unfolding algorithm is quite useful.

Thus a program may be considered as an in�nite object which can be obtained by means of

in�nite (in the case of nontrivial recursive de�nitions) unfolding of procedure calls. Formally

this in�nite program may be considered as the limit of a directed set of �nite programs using

an approximation relation with a bottom element added to the set of all programs. If the

unfolding algorithm is partially de�ned then the resulting program may contain occurrences

of the bottom element. The unfolding process will be formally de�ned later.

3 Semantics

Semantics is a function de�ned on the expressions of a language and which maps the program

expressions of a language to their meaning in some semantic domain. Di�erent semantic

functions re
ect di�erent levels of abstractions and di�erent properties of a program. We are

interested in two kinds of semantics: computational and interaction ones; we also want our

semantical functions to be compositional which means that the meaning of a composition of

programs is a corresponding composition of their meanings.

A semantic domain is usually equipped with some topology which provides the possibility

of constructing in�nite objects using passage to the limits. Classical examples of such domains

are Scott functional domains [14], see also [3]. In this paper we shall use domains which are

continuous algebras [12, 13] or algebras with approximation [18]. The latter is a poset with

partial order called an approximation relation, a minimal element ?, and operations which

are continuous w.r.t. the approximation relation. We shall also assume that in each algebra
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with approximation which we consider there is given a subalgebra of �nite elements which

contains the bottom element ? and that all other elements are the limits of ordered sets of

�nite elements. In [18] it has been shown how an arbitrary algebra with approximation can

be completed by such limits.

We speak about computational semantics of a program if it has been designed to compute

some function or relation. In this case the meaning of a program is that function or relation

itself. This corresponds to the traditional denotational semantics of programs. However the

execution of any program takes place in some environment which interacts with the program,

performing the sequences of actions de�ned by this program or allowing these sequences to

be performed. If the environment only supports the computational properties of a program

it is passive and does not change the operational meaning of a program. This interaction is

described by the traditional operational semantics of programs [25]. However the environment

may be more active, and change the prede�ned behaviour of a program within wide limits.

For example, it may contain some other programs designed independently and intended to

interact and communicate with the given program at its run time. Therefore the interaction

semantics must include an environment as the main parameter. The classical theories of

communication (CCS, CSP, �-calculus) are based on the notions of transition systems and

bisimulation, and consider interaction within the scope of the parallel composition of agents.

The in
uence of the environment sometime are expressed as an explicit language operation

such as restriction in CCS or hiding in CSP.

Our approach in describing the interaction semantics of the Action Language is also based

on the notion of bisimilarity, but the environment is considered as a semantic notion and is

not explicitly included in the program. The meaning of an interactive program is de�ned

as a transformation of an environment which corresponds to inserting the program into its

environment. When this action is performed the environment changes and this change is

considered as the main property of a program which is to be described by its meaning.

In order to realize this approach �rst we formalise the notion of behaviour in terms of

algebras with approximation. Each behaviour is an element of some behaviour algebra over

an algebra of actions. This behaviour de�nes some transition system (with a given initial

state); two behaviours are equal i� the initial states of corresponding transition systems are

bisimilaryly equivalent. Therefore behaviours are the invariants of transition systems consid-

ered up to the bisimilarity relation. Then each program is assigned its behaviour which is

de�ned independently of its environment. The behaviour of a program is called its intensional

meaning. The construction of the intensional meaning of a program is built in two steps. The

�rst step is to convert the syntactic algebra of the AL to a continuous syntactic algebra by

eliminating procedures calls. This conversion is realized by homomorphism which identi�es

equivalent procedure calls (having the same in�nite unfoldings). Then the continuous syn-

tactic algebra is homomorphically mapped to the behaviour algebra by means of continuous

homomorphism which provides programs of the AL by behavioral meaning.

After introducing the intensional semantics of programs the notion of an environment is

presented. The environment is de�ned as a four-tuple which includes as a component a subset

of some behaviour algebra (the algebra of environment behaviours) over the action algebra

di�erent from the action algebras of the languages which are accepted by this environment.

This subset is closed over transitions. Then the algebra of continuous transformations of envi-

ronment behaviours is introduced and the continuous homomorphism of intensional semantics

algebra of the AL to the algebra of transformations is de�ned providing each program with

its interaction meaning. The homomorphism is determined by a residual function which sets
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the relationships between the actions of a program and those of an environment.

3.1 Behaviours

A behaviour over an action algebra A is considered as an element of an algebra of behaviours

over A (sometimes called a behaviour algebra). This algebra is an algebra with approximation

(poset with a minimal element and continuous operations

2

). It has two operations, the �rst

being denoted by + and is the internal binary aci-operation (idempotent ac-operation). This

operation corresponds to nondeterministic choice. The second operation is pre�xing au, a

being an action, u being a behaviour. The minimal element of a behaviour algebra is denoted

?. The empty behaviour � performs no actions and usually denotes the termination of a

process. The impossible behaviour 0 is denoted by the same symbol as the impossible action

and is the neutral element for nondeterministic choice.

Generating relations of any algebra of behaviours are shown in Figure 2. The symbols a; b

are actions, u; v; w are behaviours. All other relations are consequences of these ones.

u+ v = v + u

(u+ v) + w = u+ (v + w)

u+ u = u

u+ 0 = 0 + u = u

(a+ b)u = au+ bu

0u = 0

Figure 2: Relations of an algebra of behaviours

The approximation relation of the algebra of behaviours over A is the minimal partial

order which satis�es the relations presented in Figure 3.

?v u

u v v ) u+ w v v + w

u v v ) au v av

Figure 3: Approximation for behaviours

The elements of the minimal sub-algebra F

fin

(A) of the algebra of behaviours over A

that is a sub-algebra generated by the empty behaviour, the impossible behaviour and the

bottom element are called �nite behaviours. All other behaviours are assumed to be the

limits (least upper bounds) of the countable directed sets of �nite elements. The algebra of

behaviours which includes all such limits is denoted F (A). It is de�ned uniquely up to the

continuous isomorphism and all behaviour algebras considered in the paper are assumed to

be subalgebras of this algebra.

2

A function f : D ! D on a poset D is called continuous if it is monotone and for each directed set

fx

i

ji 2 Ig if this set is convergent i.e. has the least upper bound

`

i2I

x

i

then the set ff(x

i

)ji 2 Ig is also

convergent and f(

`

i2I

x

i

) =

`

i2I

f(x

i

). An operation is continuous if it is continuous as a function of each

of its arguments.
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From the primitivity of an action algebra it follows that each behaviour u can be repre-

sented in the form

u =

X

i2I

a

i

u

i

+ " (1)

where a

i

are nonzero deterministic actions, u

i

are behaviours, I is a �nite (for �nite elements)

or in�nite (but countable) set of indices, " = �;?;�+ ?; 0 (termination constants).

Theorem 2 If all summands in representation (1) are di�erent then this representation is

unique up to the associativity and commutativity of nondeterministic choice.

For a �nite behaviour u the statement of this theorem is true because the set of behaviours

of a type av with a deterministic such as u = av + v

0

does not depend on the representation

of u as an expression of the behaviour algebra considered up to the commutativity and

assosiativity of nondeterministic choice. The same is true for the termination constants. For

in�nite behaviours the theorem follows from the uniqueness of the representation of u as an

in�nite sum

u =

X

a2A

0

^P (av)

av + "

where A

0

is the set of deterministic actions, " is the termination constant and the predicate

P is de�ned as follows:

P (z), 9x 2 F

fin

(A):x+ ?v u ^ z =

a

xvy2F

fin

(A);y+?vu

y

Parallel and sequential compositions are introduced as derived operations using the recur-

sive de�nitions presented in Figure 4 where u; v; w are behaviours, a and b are deterministic

actions. Parallel composition is denoted by k and sequencing by ; (however we will sometimes

omit this latter operator as in Figure 4).

(u+ v)kw = ukw + vkw

uk(v + w) = ukv + ukw

(au)k(bv) = (a� b)(ukv) + a(ukbv) + b(aukv)

�ku = uk� = u

0ku = uk0 = 0

? ku = uk ?=?

(u+ v)w = uw + vw

(au)v = a(uv)

�u = u� = u

0u = 0

? u =?

Figure 4: The de�nition of parallel and sequential composition of behaviours

These de�nitions uniquely determine sequential and parallel composition on �nite elements

and may be uniquely extended to all others by continuity if the corresponding limits are in
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the algebra of behaviours

3

under consideration.

Theorem 3 Sequential composition is associative, parallel composition is associative and

commutative.

The theorem is proved �rst for �nite behaviours and then extended to the in�nite ones.

The proofs for �nite behaviours use induction on the length of a behaviour which is de�ned

so that length(") = 0 for the termination constant ", length(au) = length(u) + 1, and

length(u + v) = max(length(u); length(v)). The following (expansion) theorem gives the

explicit form of parallel composition. In this theorem E(u) is a termination constant for a

behaviour u, and u and v are �nite behaviours.

Theorem 4 Let u =

P

a

i

u

i

+E(u); v =

P

a

j

v

j

+E(v). Then

ukv =

X

(a

i

� b

j

)(u

i

kv

j

) +

X

a

i

(u

i

kb

j

v

j

) +

X

b

j

(a

i

u

i

kv

j

) +E(u)kv + ukE(v)

Proof is by induction on the sum of the lengths of u and v. From this theorem the

associativity of parallel composition is proved by direct computation (other properties of

compositions are trivial). To simplify the computations it is useful to distinguish between

�nal and non�nal behaviours. A behaviour u is called �nal if it is equal to 0 or E(u) 6= 0

and non�nal otherwise. The associativity law is �rst proved for non�nal behaviours, then for

parallel composition of three behaviors at least one of which is a termination constant, and

then for a general case.

3.2 Behaviours and transition systems

We present the well known notions of a transition system and (partial) bisimulation, adapted

to our collection of termination constants.

De�nition 1 A transition system over the set of actions A is a set S of states with a tran-

sition relation s

a

! s

0

; s; s

0

2 S; a 2 A and two subsets S

�

and S

?

called correspondingly

sets of terminal and divergent states.

De�nition 2 A binary relation R � S � S is called a partial bisimulation if for all s and t

such that sRt and for all a 2 A

� s 2 S

�

) t 2 S

�

� s

a

! s

0

) 9t

0

:t

a

! t

0

^ s

0

Rt

0

� s 62 S

?

) (t 62 S

?

^ t

a

! t

0

) 9s

0

:s

a

! s

0

^ s

0

Rs)

3

The behaviour algebra plays the same role in the theory of interactive programs as the Kleene algebra

does in the theory of automata. In fact the only di�erence from the Kleene algebra is the absence of right

distributivity (if nondeterministic choice and sequential composition are considered as the only operations

of the algebra of behaviours) and the Kleene algebra may be obtained as the homomorphic image of the

corresponding algebra of behaviours.
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A state s of a transition system S is called a bisimilar approximation of s

0

denoted as

sv

B

s

0

if there exists a partial bisimulation R such that sRs

0

. Symmetric closure of partial

bisimulation is a bisimulation equivalence denoted s�

B

s

0

.

To each state s of a transition system there is a corresponding behaviour u

s

which is a

component of a minimal solution of a system of equations

u

s

=

X

s

a

!s

0

au

s

0

+ "

s

Theorem 5 sv

B

s

0

, u

s

v u

s

0

and s�

B

s

0

, u

s

= u

s

0

These are standard domain theoretic constructions. Detailed proofs of similar statements

based on Plotkin power domains can be found in [1].

The transition closure Tr(u) of behaviour u is the minimal set of behaviours which includes

u and for any v 2 Tr(u) if v = aw for some action a then w 2 Tr(u). If Tr(u) = fu

i

ji 2 Ig

then u may be represented as a component of the minimal solution of a system of equations

in an algebra of behaviours (equational representation):

u

i

=

X

(i;j;k)2M

i

a

ijk

u

j

+ "

i

; i 2 I;M

i

� I

2

�K (2)

The notion of a transition closure can be naturally extended to sets of behaviours. The

set U is called transition closed if it coincides with its transition closure. A transition closed

set U can be considered as a set of states of a transition system with transitions de�ned by

the following rule:

v

a

! v

0

, v = av

0

+ v

00

The state u is terminal if E(u) = �+" and divergent if E =? +". In all such representations

we assume that a is a deterministic action.

3.3 Examples

Let us consider some special cases of behaviours which cover the majority of classical examples

and are useful for applications.

3.3.1 Finite (rational) behaviours

We obtain �nite state transition systems by taking the sets I and M

i

in the equational repre-

sentation (2) as �nite. This corresponds to the \linear case", the behaviours u

i

constituting

the minimal solution of a system of linear equations. Bisimilarity is algorithmically recognis-

able and many theoretical and practical problems such as proving and recognising properties,

model checking and so on may be solved completely [4].

3.3.2 Algebraic behaviours

Equational representation:

u = F

i

(u

1

; : : : ; u

n

); i = 1; : : : ; n

Here F

i

(u

1

; : : : ; u

n

) are expressions of some behaviour algebra, which use not only pre-

�xing and nondeterministic choice but also parallel and sequential compositions. This is the
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simplest way to introduce constructive transition systems with in�nite sets of states and this

corresponds to the \nonlinear case". The continuity of parallel and sequential compositions

provides the minimal solution. An interesting special case occurs when parallel composition

is not used, and corresponds to \context free behaviours" [28].

3.3.3 Parameterised algebraic behaviours

Equational representation:

u

i

(x

1

; :::; x

m

) = F

i

(v

1

; : : : ; v

k

); i = 1; : : : ; n

v

j

= u

i

j

(f

1

(x

1

; : : : ; x

m

); : : : ; f

m

(x

1

; : : : ; x

m

)); i

j

2 [1 : n]

Here x

1

; :::; x

m

are variables (formal parameters), f

j

(x

1

; : : : ; x

m

) are expressions of some

algebra where the variables are assigned values (data algebra). F

i

(v

1

; : : : ; v

k

) are again be-

haviour algebra expressions. Each equation is in fact a set of equations indexed by value tuples

from data algebra (compare with value passing in CCS). This is another more powerful way

to introduce the in�nite state behaviours.

3.3.4 Behaviours over state spaces

Action a 2 A is interpreted as a partial transformation f

a

� S ! S of a state space. It may be,

for instance, conventional memory states or stores in concurrent constraint programming [27]

(conjunctions of primitive constraints). The equality of transformations performed by actions

must be a congruence w.r.t. combination: f

a

= f

b

) f

a�c

= f

b�c

. Now a behaviour over a

state space S may be de�ned in the equational form in the following way:

u

i

(s) =

X

(i;j;k)2M

i

;s2Dom(a

ijk

)

a

ijk

u

j

(sa

ijk

) + "

i

; i = 1; : : : ; n

Here Dom(a) is the domain of f

a

, sa = f

a

(s). Usually if the behaviour of a program and

information environment is considered, it is split into the behaviour of a program

u

i

=

X

(i;j;k)2M

i

a

ijk

u

j

+ "

i

; i = 1; : : : ; n

and the behaviour of a whole system which is de�ned by the following rule:

u

i

a

! u

j

; s 2 Dom(a)

u

i

(s)

a

! u

j

(sa)

3.4 Syntactic algebras

The main syntactic compositions of programs de�ne the algebra of syntactic expressions

which is called the syntactic algebra of a language. In the case of the Action Language there

are three main compositions (nondeterministic choice, parallel and sequential composition).

Actions and procedure calls are the generators of the syntactic algebra. We may construct

the syntactic algebra with approximation and delete procedure calls in the following way.

Extend the syntax of programs by adding the unde�ned program ? to the de�nition of

Prog. De�ne the approximation relation v on the set Prog as the minimal partial order

satisfying the rules in Figure 5.
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?v P

P v Q) PkR v QkR

P v Q) P +R v Q+R

P v Q) PR v QR

Figure 5: Approximation for programs

Let Fprog be the set of all programs without procedure calls. For each p 2 ProcCall

and each integer n = 0; 1; : : : de�ne the n step unfolding p

(n)

of p and the substitution

�

n

: ProcCall! Fprog by the de�nition in Figure 6.

p

(0)

=?

p

(n+1)

= (unfold(p))�

n

�

n

(p) = p

(n)

Figure 6: Unfolding procedure calls

For each program P de�ne its complete unfolding Unfold(P ) as the least upper bound of

the set fP�

n

g

n=0;1:::

. Completing the algebra Fprog by these limits we obtain the continuous

algebra Prog

�

. This algebra is a homomorphic image of Prog with homomorphism Unfold

which obviously identi�es the procedure calls with the same complete unfoldings. In the

rest of this paper we shall identify program with its complete unfolding and consider it as a

member of a continuous syntactic algebra.

3.5 Intensional semantics

The intensional meaning of a program in AL is its behaviour de�ned independently of any

external environment. If the language is a language over A, the meaning of its program is an

element of a behaviour algebra F (A). This algebra also will be called an intensional algebra

of the language. The formal de�nitions are presented in Figure 7.

[[P +Q]] = [[P ]] + [[Q]]

[[PkQ]] = [[P ]]k[[Q]]

[[P ;Q]] = ([[P ]]; [[Q]])

[[a]] = a�

Figure 7: Intensional semantics of Action Language

P and Q in this �gure are programs, a is an action. The same operation symbols on
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the left and right hand sides of equations denote the operations in di�erent algebras. The

left hand side operations are the operations of the syntactic algebra, the right hand side

are operations of the intensional algebra of the language. The mapping [[:]] is obviously a

continuous homomorphism so the intensional semantics is compositional.

The intensional meaning of a program can also be presented as a labelled transition

system de�ned up to the bisimilarity relation where labels are actions. First we de�ne the

equivalence relation on a set of programs as an equivalence generated by the identities of the

algebra of behaviours (Figure 2), associativity of sequential composition, associativity and

commutativity of parallel composition and relations among termination constants and other

compositions (Figure 4). Now the reduction relation ! is de�ned on a set of programs and

the transition system is de�ned by only one inference rule in Figure 8. The relation

�

! is

the transitive closure of the reduction relation de�ned on programs and

a

! denotes a labelled

transition on programs.

p! unfold(p)

p is a procedure call

((P +Q);R)! (P ;R) + (Q;R)

((P +Q)kR)! PkR +QkR

(a;P )k(b;Q) ! ((a� b); (PkQ)) + (a; (Pk(b;Q))) + (b; ((a;P )kQ))

P

�

! (a;Q) +R) P

a

! Q

a; b are actions

Figure 8: Reductions and labelled transitions of programs

Note that our de�nition of parallel composition is weaker than that usually de�ned in

the process algebra using the so called left merge operator [5]. The system corresponding

to this more strong de�nition is presented in Figure 9. Nondeterministic choice and parallel

composition are considered here as a commutative operations.

3.6 Interaction semantics

The interaction or extensional semantics of AL over an action algebra A is de�ned for a given

environment hE;A;C; resi. Here E is a transition closed subset of behaviour algebra F (C)

over an algebra of action C called the behaviour algebra of an environment, and

res : C �A! 2

C

is called a residual function. The set E is also called a set of behaviour states of an en-

vironment, and its symbol sometimes is used as a symbol of the environment instead of a

four-tuple.
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p! unfold(p)

P

�

! Q; Q

a

! R

P

a

! R

a

a

! �

P

a

! Q; S 6=?; 0

P +R

a

! Q;PR

a

! QR;PkS

a

! QkS

P

a

! Q;P

0

a

0

! Q

0

; a� a

0

6= 0

PkP

0

a�a

0

�! QkQ

0

Figure 9: Transition system representing strong intensional semantics of Action language

The interaction meaning [[P ]]

E

of a program P is the continuous transformation of F (C)

restricted to the set E. This transformation is de�ned by means of a residual function res.

De�nition 3 If res(c; a) 6= ; then action a is said to be conformant with the environment

action c, and any action d 2 res(c; a) is called a residual of c generated by a.

De�nition 4 An action of the environment is said to be complete if it has no conformant

actions, otherwise it is incomplete.

Instead of considering a function, one may consider a ternary relation res � C � A� C.

This relation de�nes a label transitions system on the set C with transitions

d 2 res(c; a), c

a

! d

The function res induces the equivalence relation on A:

a � b, 8c 2 A res(c; a) = res(c; b)

The important restrictions on res are the following:

1. The relation a � b is a congruence w.r.t. combination, that is for all c 2 A a � b )

a� c � b� c;

2. res(c; 0) = res(0; a) = ;;

3. a 6= 0) 9c 2 C(res(c; a) 6= ; ^ res(c; a) 6= fcg.

An environment and an action algebra A are said to be compatible if they satisfy the

restrictions above.

The domain for the interaction semantics is the algebra T

res

(A;C;E) of continuous be-

haviour transformations of the type ' : E ! F (C). This algebra has the same type as

an intensional algebra, that is nondeterministic choice and pre�xing by actions from A are

de�ned for behaviour transformations, but this algebra may posses more relations among
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behaviours. It is also an algebra with approximation built up in the following way. First

generate a �nite element algebra using the following as generators (basic transformations):

(i) the identity transformation I, such that I(u) = u,

(ii) the zero transformation '

0

, such that '

0

(u) = 0,

(iii) the bottom transformation '

?

, such that '

?

(u) = ? for all u 2 E.

Then complete this algebra by all necessary limits. Nondeterministic choice and pre�xing in

this algebra are de�ned in Figure 10. Action a in this de�nition is supposed deterministic,

the de�nition of pre�xing is recursive and must be understood as the minimal �xed point.

('+  )(u) = '(u) +  (u);

(a')(u + v) = (a')(u) + (a')(v)

(a')(cu) =

8

>

>

>

<

>

>

>

:

X

c

0

2res(c;a)

c

0

'(u) if res(c; a) 6= ;

c(a')(u) otherwise

a 6= 0

(a')(�) = �

(a')(0) = 0

(a')(?) =?

Figure 10: The de�nition of nondeterministic choice and pre�xing in the algebra of behaviour

transformations

The (informal) meaning of this de�nition is the following. The interaction between a

program and an environment at the current moment of time consists of choosing a conformant

pair of actions a 2 A and c 2 C from all possible ways de�ned by the nondeterminism of their

current states. From the point of view of game semantics [2] a program and an environment

are partners in a game and this choice is a choice of moves. We do not �x the order of moves

\splitting the atom of interaction" and leave it for applications. Both cases are possible.

If an environment moves �rst then the choice of an action c de�nes the set of actions of a

program which are conformant with the action of an environment and which a program may

chose as an answer. The residual action c

0

of an environment is selected as a result of an

interaction of a program and an environment. If this residual is complete it means that no

other programs may interact with the new environment and the given program at this moment

of time. Moreover, if some of these programs are ready to interact, this interaction will be

postponed and may only be performed in the future. Otherwise a program may interact at

the current moment with other programs according to the rules of the game de�ned by the

conformance relation.

This is of course only one interpretation of the interaction semantics introduced here.

Other interpretations may include many programs and many environments to describe more

complex multiparty hierarchical interaction.

Now the meaning [[P ]]

E

of a program P in the environment E is de�ned by the equation:
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[[P ]]

E

= trans[[P ]]

The function trans is the continuous homomorphism of the intensional semantic algebra

F (A) to the algebra of behaviour transformations de�ned by the equations: trans(�) =

I; trans(0) = '

0

; trans(?) = '

?

. This provides the compositionality of the extensional

semantics w.r.t pre�xing and nondeterministic choice.

3.7 Compositionality of parallel and sequential compositions

To prove compositionality, parallel and sequential composition must be de�ned in the alge-

bra of behavior transformations so that trans('k ) = trans(')ktrans( ), trans(' ) =

(trans('))(trans( )).

Both compositions are de�ned by the same equations as for behaviours (i.e. Figure 4 with

� changed to I, 0 changed to '

0

, ? to '

?

and behaviour transformations considered instead

of behaviours).

Now the problem is to prove the uniqueness of this de�nition. For this purpose we in-

troduce the normal form for �nite behaviour transformations. Each �nite behaviour trans-

formation can be presented in the form

P

i2I

a

i

'

i

+ " where a

i

6= 0 and " = I; '

0

; '

?

or

I +'

?

. Then we can apply the relation a'+ b' = (a+ b)' and all '

i

will be di�erent. Such

a representation is called the normal form of a transformation. The main theorem is on the

uniqueness of this normal form.

Theorem 6 If the set of states of an environment which is compatible with an algebra A is a

subalgebra of the environment algebra F (C) then the normal form of behavior transformations

is unique up to the equivalence of pre�xes and the order of summands.

To prove the theorem �rst we prove that for a 6= 0, a' = b , a � b and ' =  . Denote

Res(c; a) =

P

c

0

2res(c;a)

c

0

and let res(c; a) 6= ; (such c exists because of compatibility). Then

(a')(cu) = Res(c; a)'(u) = Res(c; b) (u), (note that res(c; b) 6= ; because the equality must

be true for u = �). The arbitrariness of u 2 E implies the required result.

Similar reasoning can be applied to the sum of guarded transformations and for the

transformations of the type '+ ", which then completes the proof.

The compositionality of parallel and sequential composition is proved using this theorem

together with the congruence property of �. We must prove the independence of the de�nition

of parallel and sequential composition from the representation of transformation in normal

(now canonical) form. It can be done �rst for �nite behaviors and then extended to their

limits.

3.8 Computational semantics

In the de�nition of interaction semantics, arbitrary combinations of choices of actions for

program and environment are possible. This re
ects the situation in which a given program

may interact with arbitrary other programs which were inserted to the environment before the

choices under consideration had to be made. But in reality there may be some restrictions

or commitments which the choices made by a program and an environment must satisfy.

Speci�cally, if the program has been developed as a computational one, that is for computation
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of some function or relation then only interaction with the environment, not with other

programs must be considered for the de�nition of its computational meaning.

The aim of this section is to de�ne the computational meaning of a program in an abstract

and possibly general form. For this purpose the notion of completeness of environment action

will be used. Namely, if the action of a program forces the transition u

d

! v and d is

complete then a transition u! v can be considered as a transition which is the result of the

interaction of an action and an environment only, otherwise some other actions produced by

other programs could participate in generating this transition.

So the computational meaning can be de�ned as a relation comp[[P ]]

E

� E � E. By

de�nition (u; v) 2 comp[[P ]]

E

i� there exists a sequence of transitions

(P; u) = (P

1

; u

1

)

d

1

! : : :

d

m�1

! (P

m

; u

m

) = (�; u)

such that all d

i

; i = 1; : : : ;m� 1 are complete. Computational semantics can be expressed

also in the form of a transition system. This presentation is given on Figure 11.

P

a

! Q;u

c

! v; c

a

! d; complete(d); d 6= 0

(P; u)

d

! (Q; v)

P

a

! Q;u

c

! v; complete(c)

(P; u)

c

! (aQ; v)

Figure 11: Transition representation of a computation semantics

An important property of a computation semantics is the following.

Theorem 7 Computation semantics is compositional w.r.t. sequential composition.

The computation meaning of a sequential composition of programs is the sequential com-

position of their meanings considered as relations over environment behaviours.

The operational representation of computation semantics (Figure 11) also allows us to

distinguish between di�erent forms of termination, which is important for studying the com-

putational properties of a program.

If the state of a computation system is (Q;u) then if P = � this is a successful termination

of a computation process. If Q 6= � and there are no moves from (Q;u) the termination is

unsuccessful. We can also distinguish between a case when there exists such an action c of

an environment that u

c

! v (deadlock) or there is no such an action (fail).

4 Environments

If ' is the transformation de�ned by a given program over an environment E, then all be-

haviours '(u), u 2 E may be represented as states of a transition system de�ned on a set

of pairs (P; u) where P is a state of a program. This is illustrated by the rules in Figure 12

where the �rst rule describes a move of a program in a state P and the second rule describes

the situation when a program is suspended (with the already selected action a). We also

identify states of a type (�; u) with u, so a system continues its performance after a program
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has �nished. The terminal state of a system is therefore � (not (�; u)) and there are three

types of divergent states: (?; u), (P;?), and ?.

P

a

! Q;u

c

! v; c

a

! d; d 6= 0

(P; u)

d

! (Q; v)

P

a

! Q;u

c

! v; res(c; a) = ;

(P; u)

c

! (aQ; v)

Figure 12: Interaction semantics of AL, transition representation

Let us consider some useful examples of environments. Each example consider an en-

vironment hE;A;C; resi and de�ne this environment by the properties of its components.

Sometimes we refer to an environment instead of its behaviour having in mind an environ-

ment in a given initial or intermediate state which de�nes this behaviour.

Example 1. Let A [ feg � C and residual function satisfy the equations res(e; a) =

fag; res(a; b) = ;; a; b 2 A. Let

u = eu

be a behaviour of the environment (u 2 E), P be a program and '

P

the interaction meaning

of this program. Then

'

P

(u) = (P ;u)

and if '

Q

is the interaction meaning of another program Q then

'

Q

('

P

(u)) = (P ;Q;u)

Example 2. Generalisation to multi-threaded computing. For an arbitrary action algebra

let us de�ne a

n

= a : : : a and [a]

n

= a� : : :� a, n times; note that a

0

= [a]

0

= �. Assume the

following properties of the residual function (for this example):

res([e]

n

; a) = f[e]

n�1

� ag; n > 0

res([e]

n

� a; b) = f[e]

n�1

� a� bg; n > 0

Now if the state of an environment is

u =

1

X

n=0

[e]

n

u

then several programs are permitted to be inserted to it and interact using combinations of

actions. The environment

u =

1

X

n=0

[e]

n

u+

X

a2A

au

not only permits several programs to be inserted, but can itself interrupt the execution of a

program and perform its own action, changing the intensional meaning of a program.
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5 Action languages over stores

Usually (especially for computational programs) some actions of a program are interpreted as

functions or relations over some state space, and the algebra of actions of a program generated

by these actions is the algebra of relations. The states can be memory states if there are

names and values, or some abstract structures describing all the possible values which names

(or variables) may take in a given state as in the constraint programming paradigm. We shall

use the general term store to denote the state space and sometimes say \store" instead of

\state of a store". If the actions of a language are interpreted on some store the language is

called a language over stores.

If a program P comprises the parallel composition of some other programs, then the store

is a common store for these programs and therefore it must be considered as a part of an

environment into which P will be inserted before execution.

After inserting a program into this environment, a new environment will be obtained

whose behaviour can be described by a transition system with states (P; s; u). In this triple,

P represents a state of a program, s is a state of a store and u is a state of the control part of

an environment. Of course the environment must be compatible with the algebra of actions

of a program. As before we suppose that (�; s; u) = (s; u). The transition system which

produces this behaviour can be de�ned by the rules in Figure 13

P

a

! Q; (s; u)

c

! (t; v); c

a

! d d 6= 0

(P; s; u)

d

! (Q; t; v)

P

a

! Q; (s; u)

c

! (t; v); res(c; a) = ;

(P; s; u)

c

! (aQ; t; v)

Figure 13: Transitions for programs over store

5.1 Synchronous and asynchronous communication

The above presentation of interaction semantics of programs over stores is very general and

hence cannot serve to provide a good understanding of what happens in reality when the

program interacts with its environment. Especially it does not describe synchronous and

asynchronous communication as well as the computational connections between the actions

of a program and an environment. So let us consider a more speci�c case in which a store

is used as a common memory for exchanging the information between a program and an

environment. Let the action space of the environment includes the following three types of

actions:

1. (prog : a); a 2 A, computational program actions;

2. (env : a); a 2 A, computational environment actions;

3. (inter : a; b); a; b 2 A, interactions.
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Let actions of A be interpreted as relations on a store and computational actions as relations

on the environment states. The desired properties of a residual function and relations between

the actions of an environment and a program are presented in Figure 14.

res((prog : a); a) = fag for all a 2 A

res((prog : a); b) = ;; if b 6= a

res((env : a); b) = ; for all b 2 A

res((inter : a; b� c); b) = f(inter : a� b; c)g

res((inter : a; d); b) = ; if there is no x such that d = b� x

(s; u)

(prog:a)

! (t; v)) s

a

! t

(s; u)

(env:a)

! (t; v)) s

a

! t

(s; u)

(inter:a;b)

! (t; v)) s

a�b

! t

Figure 14: Residual and transition functions of the environment with common store

The special cases when computational actions \add something to a store" or \remove

something" can be considered as asynchronous communication. Interactions are obviously

synchronous ones.

5.2 Local store

In real programs only a part of a store may be used as a shared item, other parts are localised

in a program and the external part of an environment can not access them. To express this

partitioning on the semantic level the notion of variables or names must be introduced on the

language level and then used in the de�nition of the extensional (interactive) semantics of

programs. Action expressions of a language and procedure calls are called primitive programs.

Actions of an environment are represented by means of syntactic expressions of an extended

AL and also are considered as primitive programs.

Let V be a set of variables, and assume that for each primitive program q, a set of variables

Var(q) � V on which it depends on is given. If primitive programs may contain operators

with bound variables such as for instance lambda abstraction, only free occurrences must be

considered, and they also contain all free variables which can appear under the unfolding of

this procedure call. We also need the renaming substitutions � = [X=Y ] where X and Y are

ordered sets of the same numbers of variables (if the order is not given it must be chosen in

an arbitrary way). These substitutions are de�ned on primitive programs and extended to

arbitrary ones by renaming of all occurrences of primitive programs.

The notion of program is extended by adding the notion of local program components

with the syntactical form Loc(X;P ) where X is a �nite set of variables and P is a program.

Local program components are considered up to renaming. It means that if � = [Y=X] is

a substitution which changes symbols from X to symbols from Y di�erent from all symbols

which occur free in P (Y \ V (P ) = ;) then Loc(X;P ) is equivalent to Loc(Y; P�). This

assumption extends the equivalence of programs. We also de�ne the reduction relation for

local program components by Figure 15 which extends the reductions in Figure 8.

We de�ne an interaction semantics for programs with a local store and the control part
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Loc(X;P ) +Q! Loc(Y; P� +Q)

Loc(X;P )kQ! Loc(Y; P�kQ)

(Loc(X;P );Q)! Loc(Y; (P�;Q))

Loc(X; Loc(Y; P ))! Loc(X [ Z;P�)

P ! Q) Loc(X;P )! Loc(X;Q)

Figure 15: Reductions of local program components

of an environment given by the equation:

u = eu+

X

a2A

au

For this case the state of the control part of an environment must not be considered in the

de�nition of the interactive semantics of AL and the state of a transition system for interactive

semantics is a local store component Loc(X;P; s). We assume that the set of free variables

and renaming are also de�ned for store states. Local store components are considered up to

the equivalence relation de�ned in Figure 16. The renaming � renames all variables y 2 Y to

those which are di�erent from X.

Loc(X; Loc(Y; P ); s) = Loc(X [ Z;P; (s�))

(P; s) = Loc(;; P; s)

Figure 16: Equivalence of local store components

The transition system for the interactive semantics is presented in Figure 17. Renaming

� protects the local variables of a program when the transition is de�ned by an environment.

Hiding operator h also hides the local information of a program action from other programs

which can be inserted to the transformed environment as well as from an environment itself.

P

a

! Q; s

a

! t

Loc(X;P; s)

h(X;a;s;t)

! Loc(X;Q; t)

s�

a

! t

Loc(X;P; s)

a

! Loc(Y; P�; t)

Figure 17: Transition system for programs with local store
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5.3 Channels

Communication between a program and an environment in AL with a local store (as well as

between programs inserted to an environment) can be realized via common (global) memory or

as a synchronous interaction (rendez-vous, hand shaking etc.). Channels may be represented

by variables in the common memory which have values assigned to them or changed by actions.

The use of these actions can be restricted by an environment according to the information

which the program gives to its environment or introduced by special compositions equivalent

to the declaration of properties of variables.

6 Distributed action languages

Distributed computation is a very important area of modern computer science and its appli-

cations. The main characteristic of this area is the use of local sites for distributing memory

and programs. These local sites may be separate processors in the network or the components

of a multiprocessor system as well as persistent software components (software agents) which

perform concurrent computation sharing the time of a central processor (multi-threading) or

other resources.

The AL with local store could be used for distributed programming but its interactive

semantics de�ned in the previous section has some disadvantages which limit this use. The

main disadvantage of the semantics for programs with a local store is that it loses the structure

of a program state de�ned by nesting program components and partitioning a global store

on local spaces for parallel composition. In reality this information could be used for the

organisation of a distributed implementation of a given program. Moreover, if the programmer

is aware of the strategy for the distributed implementation, he could use this information for

the development of e�cient distributed programs using the localisation operator as a tool for

expressing his algorithmic ideas for the distribution of data and actions.

Another use of a local component structure could be a more adequate description of

components of real systems as programs which simulate their activity or create communities

of software components.

To eliminate the disadvantage mentioned above, a new distributed interaction semantics

is introduced for the AL with local store. We call this new language the distributed action

language (DAL). The main semantic notion of the DAL is the notion of a distributed action

component (dac) which is used to describe the state of computation with distributed programs

and stores (local stores). The de�nition is the following:

1. A program is a (simple) dac;

2. Parallel composition of dacs CkD is a (parallel) dac;

3. If C is a dac and s is a store then Loc(X;C; s) is a (local) dac.

The equivalence of dacs includes the equivalence of programs, renaming, and extra equiv-

alences introduced by Figure 18.

Instead of reductions of local components in Figure 15 we introduce only one reduction

rule on action components (Figure 19) where � is a protective renaming.

Transitions of dacs which de�ne the distributed interaction semantics are introduced in

Figure 20.
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Loc(X; Loc(Y;�; s)kC; t) = Loc(X [ Z;C; (s�) � t)

Loc(X; Loc(Y;C; s); t) = Loc(X [ Z;C�; (s�) � t)

Loc(X; 0; s) = 0

Figure 18: Equivalence of components

Loc(X;P )Q! Loc(Y; (P�)Q;?)

Figure 19: Reductions for components

The transition rules for dacs cover some of the transition rules of programs as a special

case of a dacs. Therefore these rules can be reduced to those presented in Figure 21.

7 Conclusions

We have presented a general theory of action-based languages as a paradigm for the descrip-

tion of those computational systems which include elements of concurrency and networking,

and extended this approach to describe distributed systems and also to describe the inter-

action of a system with an environment. As part of this approach we have introduced the

Action Language as a common model for the class of nondeterministic concurrent program-

ming languages and de�ned its intensional and interaction semantics in terms of continuous

transformation of environment behaviour. This semantics has been specialised for programs

with stores, and extended to describe distributed computations.

In the future we intend to specialise our theory in order to obtain a working semantics

for reasoning about and designing programs in di�erent paradigms, including concurrent

constraint languages. We have started on this work, and the ideas presented in this paper are

being used as the basis for the design of a workbench for action languages.

We plan to study the semantics of distributed languages. Our present approach to seman-

tics does not describe the structure of distributed programs, and will investigate the possibility

of preserving this structure using equivalent transformations of distributed components.
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