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Abstract. We describe a quantitative modelling and analysis approach
for signal transduction networks.

We illustrate the approach with an example, the RKIP inhibited ERK
pathway [CSK+03]. Our models are high level descriptions of continu-
ous time Markov chains: proteins are modelled by synchronous processes
and reactions by transitions. Concentrations are modelled by discrete,
abstract quantities. The main advantage of our approach is that using a
(continuous time) stochastic logic and the PRISM model checker, we can
perform quantitative analysis such as what is the probability that if a con-
centration reaches a certain level, it will remain at that level thereafter?
or how does varying a given reaction rate affect that probability? We also
perform standard simulations and compare our results with a traditional
ordinary differential equation model. An interesting result is that for the
example pathway, only a small number of discrete data values is required
to render the simulations practically indistinguishable.

Keywords: signalling pathways; stochastic processes; continuous time
Markov chains; model checking; continuous stochastic logic.

1 Introduction

Signal transduction pathways allow cells to sense an environment and make
suitable responses. External signals detected by cell membrane receptors activate
a sequence of reactions, allowing the cell to recognise the signal and pass it into
the nucleus. The cellular response is then activated inside the nucleus. This
signalling mechanism is involved in a number of important processes, such as
proliferation, cell growth, movement, apoptosis, and cell communication. The
pathways include feedback and may be embedded in more complex networks,
some form of automated analysis required.

Our aim is to develop quantitative techniques for signal transduction pathway1

modelling and analysis, based on continuous time and semiquantitative data. Our
models are distinctive in two ways. First, we model populations (rather than indi-
viduals), that is we model molar concentrations (rather than molecules). Second,
we model semiquantitative data. Contemporary methods for biochemical exper-
iments do not, in general, permit the measurement of absolute or continuous
1 In this paper we use the terms pathway and network synonymously.
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values of concentrations. Consequently, some quantitative models are over con-
strained. We avoid this by considering discrete, abstract concentrations. Thus
our treatment of time is continuous, but concentrations are discrete. Our analysis
is (model) checking for quantitative, temporal, biological queries.

Our modelling approach is motivated by the observation that signalling path-
ways have stochastic, computational and concurrent behaviour. Our models are
continuous time Markov chains (CTMCs). They are defined, in a natural way,
by high level descriptions of concurrent processes: the processes correspond to
proteins (the reactants in the pathway) and the transitions to reactions. Con-
centrations are modelled by discrete, abstract quantities. We use a continuous
stochastic logic and the probabilistic symbolic model checker PRISM [KNP02]
to express and check a variety of temporal queries for both transient behaviours
and steady state behaviours. We can also perform standard simulations and so
we compare our results with a traditional ordinary differential equation model.
Throughout, we illustrate our approach with an example pathway: the RKIP
inhibited ERK pathway [CSK+03].

The paper is organised as follows. In section 2 we present the example path-
way. The CTMC model is developed in section 3. In the following section, we
discuss analysis by model checking, we present four types of probabilistic, tem-
poral query and give instances for the example pathway. We express the queries
in the continuous stochastic logic CSL [BHHK00, ASSB00], and check their va-
lidity. In section 5 we discuss how simulations in the stochastic setting compare
with simulations in the deterministic setting: in a MATLAB implementation of
ordinary differential equations. In section 6 we discuss our results and we review
related work in section 7. We conclude in section 8.

2 RKIP and the ERK Pathway

The example system we consider is the RKIP inhibited ERK pathway. We give
only a brief overview, further details are presented in [CSK+03, CGH04].

The ERK pathway (also called Ras/Raf, or Raf-1/MEK/ERK pathway) is
a ubiquitous pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus. The kinase inhibitor protein RKIP inhibits
activation of Raf and thus can “dampen” down the ERK pathway.

We consider the pathway as given in the graphical representation of Fig-
ure 1. This figure is taken from [CSK+03], where a number of nonlinear ordi-
nary differential equations (ODEs) representing the kinetics are given. We take
Figure 1 as our starting point, and explain informally, its meaning. Each node is
labelled by a protein (or species). For example, Raf-1*, RKIP and Raf-1*/RKIP
are proteins, the last being a complex built up from the first two. A suffix -P
or -PP denotes a (single or double, resp.) phosphorylated protein, for example
MEK-PP and ERK-PP. Each protein has an associated concentration, given by
m1, m2 etc. Reactions define how proteins are built up and broken down. In
Figure 1, bi-directional arrows correspond to both forward and backward re-
actions; uni-directional arrows to forward reactions. Each reaction has a rate
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Fig. 1. RKIP inhibited ERK pathway

given by the rate constants k1, k2, etc. These are given in the rectangles, with
kn/kn + 1 denoting that kn is the forward rate and kn + 1 the backward rate.
Initially, all concentrations are unobservable, except for m1, m2, m7, m9, and
m10 [CSK+03].

The dynamic behaviour of the pathway is quite complex, because proteins
are involved in more than one reaction and there are several feedbacks. In the
next section we develop a model which captures that dynamic behaviour. We
note that the example system is part of a larger pathway which can be found
elsewhere [KDMH99, SEJGM02].

3 Modelling Signalling Networks by CTMCs

In this section we describe how we model concentrations of proteins by discrete
variables, and the dynamic behaviour of proteins by computational processes.

3.1 Discrete Concentrations

Each protein defined in a network has a molar concentration which changes with
time, i.e. m = f(t), where m is a concentration of the protein and t is time. As
we have indicated earlier, there is a difficulty in obtaining precise and/or con-
tinuous concentration values using the methods of contemporary biochemistry.
We therefore make discrete abstractions as follows. When the maximum molar
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concentration is M , then for a given N , the abstract values 0 . . .N represent the
concentration intervals [0, 1 ∗ M/N), [1 ∗ M/N, 2 ∗ M/N), . . . [N − 1 ∗ M/N, N ∗
M/N ]. We refer to 0 . . .N as levels of concentration.

We note that we could define a different N for each protein (depending on ex-
perimental accuracy for that species) but in this paper, without loss of generality,
we assume the same N , for all proteins.

3.2 Proteins as Processes

We associate a concurrent, computational process with each of the proteins in
the network and define these processes using the PRISM modelling language.
This language allows the definition of systems of concurrent processes which
when synchronised, denote continuous time Markov chains (CTMCs). In sec-
tions 3.3 and 3.4 we discuss in detail how CTMCs provide a natural semantics
for signalling networks; in this section we focus on the way in which the proteins
are represented by PRISM processes (modules) and reactions are represented by
transitions.

Below, we give a brief overview of the language, illustrating each concept with
a simple example; the reader is directed to [KNP02] for further details of PRISM.

Transitions are labelled with performance rates and (optional) names. For
each transition, the performance rate is defined as the parameter λ of an expo-
nential distribution of the transition duration. A key feature is synchronisation:
concurrent processes are synchronised on transitions with common names (i.e.
the transitions occur simultaneously). Transitions with distinct names are not
synchronised. The performance rate for the synchronised transition is the prod-
uct of the performance rates of the synchronising transitions. For example, if
process A performs α with rate λ1, and process B performs α with rate λ2, then
the performance rate of α when A is synchronised with B is λ1 · λ2.

As an example, consider the simple single reaction of Figure 2 which describes
the binding of (active) Raf-1*, called RAF1 henceforth, and RKIP. Call this
reaction r1.

Fig. 2. Simple biochemical reaction r1
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The PRISM model for this system is listed as Model 1. The model begins
with the keyword stochastic and consists of some preliminary constants (N and
R), four modules: RAF1, RKIP , RAF1/RKIP , and Constants, and a system
description which states that the four modules should be run concurrently. The
constant N defines the concentration levels, as discussed in section 3.1; R is
simply an abbreviation for N−1. Consider the first three modules which represent
the proteins RAF1, RKIP etc. Each module has the form: a state variable
which denotes the protein concentration (we use the same name for process and
variable, the type can be deduced from context) followed by a single transition
named r1. The transition has the form precondition → rate: assignment, meaning
when the precondition is true, then perform the assignment at the given rate. The
rate for transitions of the first two modules is protein concentration multiplied
by R, the rate for the third is 1. The assignments in the first two modules
decrease the protein level by 1; the level is increased by 1 in the third module.
These correspond to the fact that the rate of the reaction is determined by the
concentrations of the reactants, and the reactants are consumed in the reaction
to produce RAF1/RKIP . But, we must not forget that there is a fourth module,
Constants; this simply defines the constants for reaction kinetics. In this case the
module contains a “dummy” state variable called x, and one (always) enabled
transition named r1 which defines the rate (i.e. 0.8/R) for the transition r1.
For readabilty, our variable and process names include the character ‘/’, strictly
speaking, this is not allowed in PRISM.

Since all four transitions have the same name, they will all synchronise, and
when they do, the resulting transition has rate N ·R·N ·R·0.8

R = 2.4 ( RAF1 and
RKIP are initialised to N , RAF1/RKIP is initialised to 0, N = 3 and R = 1/3).

In this simple PRISM model, all the proteins are involved in only one reac-
tion. The reaction can occur three times, until all the RAF1 and RKIP has
been consumed. Thus in the underlying CTMC, there are 3 transitions (plus a
loop) over 4 states, as indicated in Figure 3. The states are labelled by tuples
representing the (molar) concentrations of RAF1, RKIP and RAF1/RKIP ,
respectively. The edges are labelled with the transition rates.

Fig. 3. CTMC for Model 1

In the RKIP inhibited ERK pathway, each protein is involved in several reac-
tions. We model this quite easily by introducing different names (r1, r2, . . .) for
each reaction (and the corresponding transitions). We use the convention that
reaction rx has rate parameter kx.

Notice that we can describe all the transitions of the processes independently of
the number of concentration levels: we simply make the appropriate comparison
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Model 1. RAF1 binding to RKIP

stochastic

const int N = 3;
const double R = 1/N;

module RAF1
RAF1: [0..N] init N;
[r1] (RAF1>0) -> RAF1*R:

(RAF1’ = RAF1 - 1);
endmodule

module RKIP
RKIP: [0..N] init N;
[r1] (RKIP>0) -> RKIP*R:

(RKIP’ = RKIP - 1);
endmodule

module RAF1/RKIP
RAF1/RKIP: [0..N] init 0;
[r1] (RAF1/RKIP < N) -> 1:

(RAF1/RKIP’ = RAF1/RKIP + 1);
endmodule

module Constants
x: bool init true;
[r1] (x=true) -> 0.8/R:

(x’=true);
endmodule

system
RAF1 || RKIP || RAF1/RKIP || Constants

endsystem

(in the precondition). The size of the complete underlying CTMC depends on N ,
some examples are:

• when N = 3 there are 273 states and 1, 316 transitions;
• when N = 5 there are 1, 974 states and 12, 236 transitions;
• when N = 9 there are 28, 171 states and 216, 282 transitions.

The full PRISMmodel for theRKIP inhibitedpathway is given inAppendixA.1.
In the full model, R is calibrated by the initial concentration(s), i.e. R = 2.5/N .

3.3 Continuous Time Markov Chains as Models

The PRISM description allows us to focus on the overall structure of the stochas-
tic system, whilst saving us from the detail of defining the large and complex
underlying CTMC.
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In this section, we give more detail of the underlying CTMCs and why they
provide good, sound models for signalling networks. We assume some familiarity
with Markov chains, for completeness we give the following definition of a CTMC.

Definition. Given a finite set of atomic propositions AP , a continuous time
Markov chain (CTMC) is a triple (S,R,L) where

• S is a finite set of states
• L: S → 2AP is labelling of states
• R: S × S → �≥0 is a rate matrix.

For a given state s, when R(s, s′) > 0 for more than one s′, then there is a
race between the outgoing transitions from s. The rates determine probabilities
according to the “memoryless” negative exponential: when R(s, s′) = λ, then
the probability that transition from s to s′ completes within time t is 1 − e−λt.

A path through a CTMC is an alternating sequence σ = s0t0s1t1 . . . such that
(si, si+1) ∈ R and each time stamp ti denotes the time spent in state si, ∀i.

In the case of PRISM system descriptions, the atomic propositions refer to
PRISM variables, for example atomic propositions include RAF1 = 0, RKIP =
1, etc. CTMCs are often presented using a graphical notation, as in Figure 3.

3.4 Soundness of Stochastic Model

In this section we explain why the underlying CTMCs are sound models for sig-
nalling networks; in particular, we show how the rates associated with transitions
relate to mass action kinetics.

By way of illustration, consider the simple reaction in Figure 2. Recall that for
each reaction, a protein is either a producer or a consumer; thus in the PRISM
representation, producers have their concentrations decreased, and consumers
have their concentrations increased. Now consider the equations for standard
reaction (mass action) kinetics, given by the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dm1

dt
= −k · m1 · m2

dm2

dt
= −k · m1 · m2

dm3

dt
= k · m1 · m2

where m1,m2, and m3 are the concentrations of RAF1, RKIP, and RAF1/RKIP
respectively.

In the CTMC denoted by the PRISM model (Model 1), from the initial state,
the first transition is the synchronisation of four processes (RAF1, RKIP ,
RAF/RKIP and Constants). Recall the rates for synchronising actions in
PRISM are multiplied, so the first transition has rate

(RAF1 · R) · (RKIP · R) · (k · N) (1)

where k = 0.8. The crucial question is is how does this rate compare with, or
relate to, the standard mass action semantics?
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First, consider how the concentration variables relate to each other: the ODEs
above refer to continuous concentrations, whereas our model has discrete natural
number levels. Let m be a continuous variable and let md be the corresponding
PRISM variable (e.g. RAF1, RAF/RKIP ). Then

m = md · R = md · 1
N

(2)

Second, derive a rate expressed in terms of the PRISM variables. From the
continuous rate:

dm3

dt
= k · m1 · m2 (3)

the simplest way to derive a new concentration m′
3 from m3 is by Euler’s

method thus:

m′
3 = m3 + (k · m1 · m2 · Δt) (4)

But the abstract (PRISM) concentrations can only increase in units of 1 level
of molar concentration, or 1

N molars, so

Δt =
1

k · m1 · m2 · N
(5)

PRISM implements rates as the “memoryless” negative exponential, that is
for a given rate λ, P (t) = 1 − e−λt is the probability that the action will be
completed before time t. Taking λ as 1

Δt , in this example we have

λ = k · m1 · m2 · N (6)

Replacing the continuous variables by their abstract forms, we have

λ = k · (md
1 · R) · (md

2 · R) · N (7)

or

λ = k · (RAF1 · R) · (RKIP · R) · N (8)

which is exactly the rate given in (1) above.
We can generalise this to arbitrary reactions as follows. In the PRISM descrip-

tion, for a given reaction r, let Cd and P d be the set of variables representing
consumers and producers, respectively. There is a r-named transition defined for
each member of Cd and P d; together they synchronise as a single r-named tran-
sition in the underlying CTMC. Let the transition representing that reaction be
described by λ :

∧
P , where P is the set of the atomic propositions holding in

the target state. Assume λ is defined as described above. The underlying CTMC
is given by:

∀cl ∈ Cl. ∀pl ∈ Pl.
∧

(cl > 0) ⇒ λ :
∧

(c′l = cl − 1)
∧

(p′l = pl + 1) (9)
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Note the use of ⇒ (logical implication), as opposed to → in the PRISM
description of a transition. Note also that in the PRISM model, we include the
rate factor (·N) in the Constants module, and multiply the concentrations by
R in the protein processes.

In the next section we give a more detailed example.

3.5 A More Complex Example

Consider the network given in Figure 4; this is more complex than the single
reaction given in Figure 2, in particular, some of the arrows are bidirectional.

m1 m2 m3

m4 m5

k1/k2 k3

Fig. 4. Network with three reactions, 5 proteins

Assume N = 2. The CTMC model for this network is given in Figure 5,
tuples of concentration 〈m1 m2 m3 m4 m5〉 label the states. Since one reaction
is reversible, there are simple loops in this topology. (More complicated pathway
topologies can produce more nontrivial loops.)

2 2 2 0 0

1 1 2 1 0 2 1 1 0 1

0 0 2 2 0 1 0 1 1 1 2 0 0 0 2

1.14

0.04

0.57

0.62

0.1550.31

0.02

0.285
0.02

Fig. 5. CTMC for network in Figure 4

Assume rate constants k1 = 0.57, k2 = 0.02, and k3 = 0.31 and initial
concentrations m1(0) = m2(0) = m3(0) = 2 and m4(0) = m5(0) = 0. The
performance rates for the transitions are calculated as follows:
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• 〈2 2 2 0 0〉 −→ 〈1 1 2 1 0〉: λ = k1·m1
N ·m2

N
1
N

= k1· 22 · 22
1
2

= 2 · k1 = 1.14

• 〈1 1 2 1 0〉 −→ 〈2 2 2 0 0〉: λ = k2·m4
N

1
N

= k2· 12
1
2

= k2 = 0.02

• 〈2 2 2 0 0〉 −→ 〈2 1 1 0 1〉: λ = k3·m2
N ·m3

N
1
N

= k3· 22 · 22
1
2

= 2 · k3 = 0.62

Other performance rates can be calculated exactly in the same way, the results
are given in Figure 5.

In conclusion, we propose that CTMCs are good models for networks because
they allow us to model performance and nondeterminism explicitly; however,
it would be unrealistic to construct a CTMC model manually. The high level
modelling abstractions of PRISM allow us to separate system structure from
performance and to generate the appropriate underlying rates automatically.
Moreover, we can model check stochastic properties of CTMCs, a more pow-
erful reasoning mechanism than (stochastic) simulation. For example, consider
evaluation of the probability that the state 〈2 0 0 0 2〉 is reachable. We cannot
determine this probability by simulation, since there are an infinite number of
paths leading to this state. However, the PRISM model checking algorithms can
compute the probabilities (e.g. in the steady state) automatically, as we will
consider in the next section.

4 Analysis

Temporal logics are powerful tools for expressing temporal queries which may be
generic (e.g. state reachability, deadlock) or application specific (e.g. referring to
variables representing application characteristics). For example, we can express
queries such as what is the probability that a protein concentration reaches a
certain level, and then remains at that level thereafter?, or if we vary the rate of
a particular reaction, how does this impact that probability? Whereas simulation
is the exploration of a single behaviour over a given time interval, model check-
ing allows us to investigate the truth (or otherwise) of temporal queries over
(possibly infinite) sets of behaviours over (possibly) unbounded time intervals.

Since we have a stochastic model, we employ the logic CSL (Continuous
Stochastic Logic) [BHHK00, ASSB00], and the symbolic probabilistic model
checker PRISM [PNK04] to compute validity. We can not only check validity
of logical properties, but using PRISM we can analyse open formulae, i.e. we
can perform experiments as we vary instances of variables in a formula express-
ing a property. Typically, we will vary reaction rates or concentration levels.

CSL is a continuous time logic that allows one to express a probability measure
that a temporal property is satisfied, in either transient behaviours or in steady
state behaviours. We assume a basic familiarity with the logic, it is based upon
the computational tree logic CTL. The operators of CSL are given in Table 1,
for more details see [PNK04]. The P��p[φ] properties are transient, that is, they
depend on time; S��p[φ] properties are steady state, that is they hold in the
long run. To check the latter properties, we use a linear algebra package in
PRISM to generate the steady state solution. Note that in this context steady



54 M. Calder et al.

state solutions are not (generally) single states, rather a network of states (with
cycles) which define the probability distributions in the long run.

�� p specifies a bound, for example P��p[φ] is true in a state s if the probability
that φ is satisfied by the paths from state s meets the bound �� p. Examples of
bounds are > 0.99 and < 0.01. A special case of �� p is no bound, in which case
we calculate a probability. We write P=?[ψ] which returns the probability, from
the initial state, of ψ. If we don’t want to start at the initial state, we can apply a
filter thus: P=?[ψ{φ}], which returns the probability, from the state satisfying φ,
of ψ. (Note: if more than one state satisfies φ then the first one in a lexicographic
ordering is chosen.)

Table 1. Continuous Stochastic Logic operators

Operator CSL Syntax
True true

False false

Conjunction φ ∧ φ

Disjunction φ ∨ φ

Negation ¬φ

Implication φ ⇒ φ

Next P��p[Xφ]
Unbounded Until P��p[φUφ]
Bounded Until P��p[φU≤tφ]
Bounded Until P��p[φU≥tφ]
Bounded Until P��p[φU[t1,t2]φ]
Steady-State S��p[φ]

In the next section we use CSL and PRISM to formulate and check a number
of biological queries against our model for the RKIP inhibited ERK pathway.
We consider four different kinds of temporal property:

1. steady state analysis of stability of a protein, i.e. a protein reaches a level
and then remains there, within certain bounds,

2. transient analysis of monotonic decrease of a protein, i.e. the levels of a
protein only decrease,

3. steady state analysis of protein stability when varying reaction rates, i.e. a
protein is more likely to be stable for certain reaction rates,

4. transient analysis of protein activation sequence, i.e. concentration peak or-
dering.

4.1 Stability of Protein in Steady State

This type of property is particularly applicable to the analysis of networks where
transient and sustained signal responses can produce markedly different cellular
outcomes. For example, a transient signal could lead to cell proliferation, whereas
a sustained signal would result in differentiation.
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Fig. 6. Stability of RAF1 wrt C in steady state

Consider the concentration of RAF1. Stability for this protein (within bounds
C − 1, C + 1) is expressed by the CSL formula:

S=?[(RAF1 ≥ C − 1) ∧ (RAF1 ≤ C + 1)] (10)

In other words, the level of RAF1 is at most 1 increment/decrement away
from C. The results are given Figure 6, with C ranging over 0 . . . 9 (N = 9).
They illustrate that RAF1 is most likely to be stable at level 1, with a relatively
high probability of stability at levels 0 and 2. It is unlikely to be stable at levels
3 or more.

4.2 Monotonic Decrease of Protein

This type of property expresses the notion that the system does not allow an accu-
mulation of a protein. To decide it, consider two properties. The first property is:

P≥1[(true)U((Protein = C) ∧ (P≥0.95[X(Protein = C − 1)]))] (11)

This property expresses “Is it possible to reach a state in which Protein
concentration is at level C and after the next step this concentration is C − 1
with the probability ≥ 95%?”. Figure 7 illustrates evaluating this property for
RAF1, with N = 9 and C ranging over 1 . . . 9: the result is false for levels 1 to
4 and true for levels 5 to 9.

The second property evaluates the probability of accumulating a protein (as-
sume RAF1) within 120 seconds, but only once RAF1 has reached a given level
of (lower) concentration. The property is defined by :

P=?[(true)U≤120(RAF1 > C){(RAF1 = C)}] (12)
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Fig. 7. RAF1 decreases with probability 95%
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Fig. 8. RAF1 increases from a given concentration level

This property expresses “What is the probability of reaching a state with a
higher level of RAF1 from the state where the concentration level is C?” The
result is given in Figure 8, with C ranging over 0 . . . 9.

Note that the first property concerns the probability of protein decrease, from
a given level; the second property concerns the probability of exceeding a given
level, within a given time. From the combined results of the two experiments,
we conclude there is a low probability of accumulating RAF1, when the concen-
tration is between levels 5 and 9.

4.3 Protein Stability in Steady State While Varying Rates

This type of property is particularly useful during model fitting, i.e. fitting the
model to experimental data. As an example, consider evaluating the probability
that RAF1 is stable at level 2 or level 3 (in the steady state), whilst varying
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the performance of the reaction r1 (the reaction which binds RAF1 and RKIP).
We vary the parameter k1 (which determines the rate of r1) over the interval
[0 . . . 1]. The stability property is expressed by:

S=?[(RAF1 ≥ 2) ∧ (RAF1 ≤ 3)] (13)

Consider also the probability that RAF1 is stable at levels 0 and 1; the formula
for this is:

S=?[(RAF1 ≥ 0) ∧ (RAF1 ≤ 1)] (14)

Figure 9 gives results for both these properties, when N = 5. The likelihood of
property (13) (solid line) peaks at k1 = 0.03 and then decreases; the likelihood
of property (14) (dashed line) increases dramatically, becoming very likely when
k1 > 0.4.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

P

k1

Fig. 9. Stability of RAF1 at levels {2,3} and {0,1}

4.4 Activation Sequence Analysis

The last example illustrates queries over several proteins: sequences of protein ac-
tivations. Consider two proteins: RAF1/RKIP and RAF1/RKIP/ERK − PP .
Is it possible that the (concentration of the) former “peaks” before the latter?
Let M be the peak level.

The formula for this property is:

P=?[(RAF1/RKIP/ERK − PP < M)U(RAF1/RKIP = C)] (15)

This property expresses “What is the probability that the concentration of
RAF1/RKIP/ERK − PP is less than level M , until RAF1/RKIP reaches
concentration level C?” The results of this query, for C ranging over 0, 1, 2 and M
ranging over 1 . . . 5 are given in Figure 10: the line with steepest slope represents
M = 1, the line which is nearly horizontal is M = 5. For example, the probability
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Fig. 10. Activation sequence

RAF1/RKIP reaches concentration level 2 before RAF1/RKIP/ERK − PP
reaches concentration level 5 is more than 99%, the probability RAF1/RKIP
reaches concentration level 2 before
RAF1/RKIP/ERK − PP reaches concentration level 2 is almost 96%.

To confirm these results, we conducted the inverse experiment – check if it
is possible for RAF1/RKIP/ERK − PP to reach concentration level 5 before
RAF1/RKIP reaches concentration level 2. The property is:

P=?[(RAF1/RKIP < C)U(RAF1/RKIP/ERK − PP = M)] (16)

This property expresses “What is the probability that the concentration of RAF1/
RKIP is less than level C until RAF1/RKIP/ERK−PP reaches concentration
level M?” The results are given in Figure 11 which is symmetric to Figure 10: for
example, the probability RAF1/RKIP/ERK − PP reaches concentration level
5 before RAF1/RKIP reaches concentration level 2 is less than 0.14%.

This concludes our analysis of temporal queries, we now consider using our
stochastic model for simulations, and relating those simulations to (determinis-
tic) ODE simulations.

5 Comparison with ODE Simulations

While our primary motivation is analysis with respect to temporal logic proper-
ties, it is interesting to consider simulation as well. Our stochastic models permit
simulation, in PRISM, using the concept of state rewards [Pri]. For comparison,
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Fig. 11. Inverse activation sequence

we also implemented a standard deterministic model, given by a set of ODEs,
in the MATLAB toolset. The ODEs are given in Appendix A.2.

To compare simulation results between the two types of model (i.e. stochas-
tic and deterministic), consider the concentration of phosphorylated MEK,
MEK − PP , over the time interval [0 . . . 100]. Concentration is the vertical
axis. Figure 12 plots the results, using the ODE model and two instances of our
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Fig. 12. Comparison ODE and Stochastic models: MEK-PP simulation
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stochastic model, with N = 3 and N = 7. The “upper” curve is the ODE simu-
lation, the “lower” curve is the stochastic simulation, when N = 3; the curve in
between the two is the stochastic behaviour when N = 7. As N increases, the
closer the plots; with N = 7 the difference is barely discernable.

We make the comparison more precise by defining the distance between the
stochastic and deterministic models:

Δ =
x∑

i=1

∫ y

0
(mi(t) − m̃i,N (t))2 · dt

where x is the number of proteins, 0 . . .N are concentrations levels in the stochas-
tic model, mi is the concentration of ith protein in the deterministic model, and
m̃i,N is the concentration of the ith protein in the stochastic model. [0 . . . y] is
the time interval for the comparison. As N increases, the stochastic and deter-
ministic models converge, namely

lim
N→∞

Δ = 0.

Convergence is surpisingly quick. For example Table 2 gives the number of
cumulative error metrics over 200 data points, in the time interval [0..100], of
the protein RAF1/RKIP (which exhibits the maximum error in this pathway).

Table 2. Error measurements

N εa εr Cεa Cε2a
3 0.126 mM 0.28 21.557 mM 2.58

4 0.103 mM 0.217 17.569 mM 1.727

5 0.086 mM 0.176 14.582 mM 1.191

7 0.061 mM 0.122 10.402 mM 0.605

11 0.036 mM 0.071 6.042 mM 0.204

The metrics are:

• Maximal absolute error of simulation εa,
• Maximal relative error of simulation εr,
• Cumulative absolute error of simulation Cεa,
• Cumulative square error of simulation Cε2a.

We conclude that in this network, N = 7 is quite sufficient to make the
two models indistinguishable, for all practical purposes. This was a surprising
and very useful result, since computation with small N is tractable on a single
processor. This means that for the example network, our stochastic approach
offers a new, practical analysis and simulation technique.

6 Discussion

A number of interesting (generic) temporal biological properties were proposed
in [CF03], but we have not repeated that analysis here. Rather, we have con-
centrated on further properties which are specific to signalling networks and
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population based models. Mainly, we have found steady-state analysis most use-
ful, but we have also illustrated the use of transient properties.

PRISM has been a useful tool for model checking, experimentation, and even
simulation. All computations have been tractable on a single standard processor
(the times are trivial and have been omitted).

We have assumed that the duration of a reaction is exponentially distributed.
We choose the negative exponential because this is the only “memoryless” distri-
bution. Our underlying assumption is that reactions are independent of history,
that is they depend only on the current concentration of each reagent. Mass
action kinetics are based on a similar assumption. It would be interesting to
consider whether other distributions have a physical interpretation, and if so, to
investigate how they relate to experimental and statistical results.

In Section 3.4 we showed that our PRISM model relates to mass action kinet-
ics. While simulation is not the primary goal of our approach, in Section 5 we
demonstrated that with small N , our model provides (more than) sufficient sim-
ulation accuracy, for the example system. This is because the example pathway
has reactions which are all on a similar scale. If we were to apply our approach
to a pathway where the changes of concentrations are on different scales, i.e. the
corresponding ODE model is a set of stiff equations, then we could still reason
about the stochastic model using temporal logic queries. However, simulations
would not be as accurate, for small N . If more accuracy of simulation was re-
quired, then we would have to either increase N , or encode a more sophisticated
solver within the PRISM representation (at the expense of transparency).

7 Related Work

The standard models of functional dynamics are ordinary differential equations
(ODEs) for population dynamics [Voi00, CSK+03], or stochastic simulations for
individual dynamics [Gil77].

The recent work of Regev et al on π-calculus models [RSS01, PRSS01] has
been deeply influential. In this work, a correspondence is made between molecules
and processes. Here we have proposed a more abstract correspondence between
species (i.e. concentrations) and processes. Whereas the emphasis of Regev et
al is on simulation, we have concentrated on temporal properties expressed in
CSL. More closely related work is presented in [CGH04] where the stochastic
process algebra PEPA is used to model the same example pathway. The main
advantage is that using the algebra, different formulations of the model can be
compared (by bisimulation). One formulation relates clearly to the approach here
(proteins as processes) whereas another permits abstraction over sub-pathways.
Throughput analysis is main form of qualitative reasoning, though it is possible
to “translate” the algebraic models into PRISM and then model check. The
algebraic models cannot be used directly for simulation.

Petri nets provide an alternative to Markov chains [PWM03, KH04], with time,
hybrid and stochastic extensions [PZHK04, MDNM00, GP98]. However, there are
no appropriate model checkers for quantitative analysis (e.g. for stochastic Petri
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nets), or there are difficulties encoding our nonlinear dynamics (e.g. in time Petri
nets), thus we cannot directly compare approaches.

The BIOCHAM workbench [CF03, CRCD+04] provides an interface to the
symbolic model checker NuSMV; the interface is based on a simple language for
representing biochemical networks. The workbench provides mechanisms to rea-
son about reachability, existence of partially described stable states, and some
types of temporal behaviour. However, quantitative model checking is not sup-
ported, only qualitative queries can be verified.

8 Conclusions

We have described a new quantitative modelling and analysis approach for sig-
nal transduction networks. We model the dynamics of networks by continuous
time Markov chains, making discrete approximations to protein molar concen-
trations. We describe the models in a high level language, using the PRISM
modelling language: proteins are synchronous processes and concentrations are
discrete, abstract quantities. Throughout, we have illustrated our approach with
an example, the RKIP inhibited ERK pathway [CSK+03].

The main advantage of our approach is that using a (continuous time) stochas-
tic logic and the PRISM model checker, we can perform quantitative analysis
such as what is the probability that a protein concentration reaches a certain
level and remains at that level thereafter? and how does varying a reaction rate
affect that probability? The approach offers considerably more expressive power
than simulation or qualitative analysis. We can also perform standard simula-
tions and we have compared our results with traditional ordinary differential
equation-based (simulation) methods, as implemented in MATLAB. An inter-
esting and useful result is that in the example pathway, only a small number
of discrete data values is required to render the simulations practically indis-
tinguishable. Future work will include the addition of spatial dimensions (e.g.
scaffolds) to our models.
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A Models

A.1 PRISM

The PRISM model is defined by the following; the system description is omitted
- it simply runs all modules concurrently.

stochastic

const int N = 7;
const double R = 2.5/N;

module RAF1
RAF1: [0..N] init N;

[r1] (RAF1 > 0) -> RAF1*R: (RAF1’ = RAF1 - 1);
[r2] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
[r5] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
endmodule

module RKIP
RKIP: [0..N] init N;

[r1] (RKIP > 0) -> RKIP*R: (RKIP’ = RKIP - 1);
[r2] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);
[r11] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);
endmodule

module RAF1/RKIP
RAF1/RKIP: [0..N] init 0;

[r1] (RAF1/RKIP < N) -> 1: (RAF1/RKIP’ = RAF1/RKIP + 1);
[r2] (RAF1/RKIP > 0) -> RAF1/RKIP*R:

(RAF1/RKIP’ = RAF1/RKIP - 1);
[r3] (RAF1/RKIP > 0) -> RAF1/RKIP*R:

(RAF1/RKIP’ = RAF1/RKIP - 1);
[r4] (RAF1/RKIP < N) -> 1: (RAF1/RKIP’ = RAF1/RKIP + 1);
endmodule

module ERK-PP
ERK-PP: [0..N] init N;

[r3] (ERK-PP > 0) -> ERK-PP*R: (ERK-PP’ = ERK-PP - 1);
[r4] (ERK-PP < N) -> 1: (ERK-PP’ = ERK-PP + 1);
[r8] (ERK-PP < N) -> 1: (ERK-PP’ = ERK-PP + 1);
endmodule
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module RAF1/RKIP/ERK-PP
RAF1/RKIP/ERK-PP: [0..N] init 0;

[r3] (RAF1/RKIP/ERK-PP < N) -> 1:
(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP + 1);
[r4] (RAF1/RKIP/ERK-PP > 0) ->
RAF1/RKIP/ERK-PP*R:
(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP - 1);
[r5] (RAF1/RKIP/ERK-PP > 0) ->
RAF1/RKIP/ERK-PP*R:
(RAF1/RKIP/ERK-PP’ = RAF1/RKIP/ERK-PP - 1);
endmodule

module ERK
ERK: [0..N] init 0;

[r5] (ERK < N) -> 1: (ERK’ = ERK + 1);
[r6] (ERK > 0) -> ERK*R: (ERK’ = ERK - 1);
[r7] (ERK < N) -> 1: (ERK’ = ERK + 1);
endmodule

module RKIP-P
RKIP-P: [0..N] init 0;

[r5] (RKIP-P < N) -> 1: (RKIP-P’ =RKIP-P + 1);
[r9] (RKIP-P > 0) -> RKIP-P*R: (RKIP-P’ =RKIP-P - 1);
[r10] (RKIP-P < N) -> 1: (RKIP-P’ =RKIP-P + 1);
endmodule

module RP
RP: [0..N] init N;

[r9] (RP > 0) -> RP*R: (RP’ = RP - 1);
[r10] (RP < N) -> 1: (RP’ = RP + 1);
[r11] (RP < N) -> 1: (RP’ = RP + 1);
endmodule

module MEK-PP
MEK-PP: [0..N] init N;

[r6] (MEK-PP > 0) -> MEK-PP*R: (MEK-PP’ = MEK-PP - 1);
[r7] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);
[r8] (MEK-PP < N) -> 1: (MEK-PP’ = MEK-PP + 1);
endmodule
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module MEK-PP/ERK
MEKPPERK: [0..N] init 0;

[r6] (MEK-PP/ERK < N) -> 1: (MEK-PP/ERK’ = MEK-PP/ERK + 1);
[r7] (MEK-PP/ERK > 0) -> MEK-PP/ERK*R:

(MEK-PP/ERK’ = MEK-PP/ERK - 1);
[r8] (MEK-PP/ERK > 0) -> MEK-PP/ERK*R:

(MEK-PP/ERK’ = MEK-PP/ERK - 1);
endmodule

module RKIP-P/RP
RKIP-P/RP: [0..N] init 0;

[r9] (RKIP-P/RP < N) -> 1: (RKIP-P/RP’ = RKIP-P/RP + 1);
[r10] (RKIP-P/RP > 0) -> RKIP-P/RP*R:

(RKIP-P/RP’ = RKIP-P/RP - 1);
[r11] (RKIP-P/RP > 0) -> RKIP-P/RP*R:

(RKIP-P/RP’ = RKIP-P/RP - 1);
endmodule

module Constants
x: bool init true;

[r1] (x) -> 0.53/R: (x’ = true);
[r2] (x) -> 0.0072/R: (x’ = true);
[r3] (x) -> 0.625/R: (x’ = true);
[r4] (x) -> 0.00245/R: (x’ = true);
[r5] (x) -> 0.0315/R: (x’ = true);
[r6] (x) -> 0.8/R: (x’ = true);
[r7] (x) -> 0.0075/R: (x’ = true);
[r8] (x) -> 0.071/R: (x’ = true);
[r9] (x) -> 0.92/R: (x’ = true);
[r10] (x) -> 0.00122/R: (x’ = true);
[r11] (x) -> 0.87/R: (x’ = true);

endmodule

A.2 ODE Model

The ODE based model, given by the following reactions, is implemented in MAT-
LAB toolset. The kinetics are taken from [CSK+03].

1. RAF1 + RKIP → RAF1/RKIP
dv
dt = 0.53 · RAF1 · RKIP

2. RAF1/RKIP → RAF1 + RKIP
dv
dt = 0.0072 · RAF1/RKIP
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3. RAF1/RKIP + ERK-PP → RAF1/RKIP/ERK-PP
dv
dt = 0.625 · RAF1/RKIP · ERK − PP

4. RAF1/RKIP/ERK-PP → RAF1/RKIP + ERK-PP
dv
dt = 0.00245 · RAF1/RKIP/ERK − PP

5. RAF1/RKIP/ERK-PP → ERK +RKIP-P + RAF1
dv
dt = 0.0315 · RAF1/RKIP/ERK − PP

6. MEK-PP + ERK → MEK-PP/ERK
dv
dt = 0.8 · MEK − PP · ERK

7. MEK-PP/ERK → MEK-PP + ERK
dv
dt = 0.0075 · MEK − PP/ERK

8. MEK-PP/ERK → MEK-PP + ERK-PP
dv
dt = 0.071 · MEK − PP/ERK

9. RKIP-P + RP →RKIP-P/RP
dv
dt = 0.92 · RKIP − P · RP

10. RKIP-P/RP →RKIP-P + RP
dv
dt = 0.00122 · RKIP − P/RP

11. RKIP-P/RP → RKIP + RP
dv
dt = 0.87 · RKIP − P/RP

The initial concentrations are: RAF1 = RKIP = ERK − PP = MEK −
PP = RP = 2.5 Molar; all other proteins are 0.
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