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Multiscale Modelling and Analysis of
Planar Cell Polarity in the Drosophila Wing

Qian Gao, David Gilbert, Monika Heiner, Fei Liu, Daniele Maccagnola, David Tree

Abstract—Modelling across multiple scales is a current challenge in Systems Biology, especially when applied to multicellular
organisms. In this paper we present an approach to model at different spatial scales, using the new concept of hierarchically
coloured Petri Nets (HCPN). We apply HCPN to model a tissue comprising multiple cells hexagonally packed in a honeycomb
formation in order to describe the phenomenon of Planar Cell Polarity (PCP) signalling in Drosophila wing. We have constructed
a family of related models, permitting different hypotheses to be explored regarding the mechanisms underlying PCP. In addition
our models include the effect of well-studied genetic mutations. We have applied a set of analytical techniques including clustering
and model checking over time series of primary and secondary data. Our models support the interpretation of biological
observations reported in the literature.

Index Terms—Hierarchically coloured Petri nets, Continuous Petri nets, ordinary differential equations, multiscale modelling,
continuous simulation, cluster analysis, model checking, planar cell polarity.
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1 INTRODUCTION

With the rapid growth of data being generated in the
biological field, it has become necessary to organise
the data into coherent models that describe system
behaviour, which are subsequently used for simu-
lation, analysis or prediction. Modelling biological
systems beyond one spatial scale introduces a series of
challenges which should be addressed. These include:

1) Repetition of components – e.g. the need to de-
scribe multiple cells each of which has a similar
definition.

2) Variation of components – sets of similar compo-
nents with defined variations, e.g. mutants.

3) Organisation of components – e.g. how cells are
organised into regular or irregular patterns over
spatial networks in one, two or three dimen-
sions.

4) Hierarchical organisation – enabling the descrip-
tion of (possibly repeated) components which
contain repeated sub-components. e.g., cells con-
taining several compartments. This feature en-
ables the use of abstraction regarding the level
of detail used to describe components.

5) Communication between components – in general
communication is constrained to occur between
immediate neighbours, but this may be further
constrained according to the relationship be-
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tween neighbours, and the position of a com-
ponent within a spatial network.

6) Mobility – e.g. transport of components within a
system, or actively motile cells.

7) Replication of components – e.g. cell division.
8) Deletion of components – e.g. cell death.

In this paper we have chosen the biological exam-
ple of Planar Cell Polarity (PCP) signalling in the
Drosophila wing, which illustrates several of these
issues. The epithelial cells in this organ are hexago-
nally packed in a 2-dimensional honeycomb lattice.
Signal transduction within each cell is coupled with
inter-cellular communication through the formation
of protein complexes, so that local (transmembrane)
signalling produces a global effect over the entire
organ. Our model of PCP includes the repetition
of components in a two-level hierarchy of different
geometries, permitting abstraction at the level of cells,
with a static two-dimensional organisation which is
different at each level. The higher inter-cellular level
is that of cells in a rectangular honeycomb grid,
representing the epithelium tissue, and the lower level
being intra-cellular organisation represented by vir-
tual compartments within one cell in a circular grid.
Moreover we model variations among cells in the
form of patches of mutant cells which lack a specific
signalling protein.

A large variety of modelling approaches have al-
ready been applied to model a wide array of bio-
logical systems (see [16] for a review). Among them,
Petri nets are particularly suitable for representing
and modelling the concurrent and asynchronous be-
haviour of biological systems. However, standard
Petri nets along with many other modelling ap-
proaches do not readily scale to meet the challenges
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described above, and current attempts to simulate
biological systems by standard Petri nets have been
mainly restricted so far to relatively small models.

There are two orthogonal concepts which can be
used to structure Petri net models. (i) Hierarchical
Petri Nets reuse the well-established engineering prin-
ciple of hierarchical decomposition to manage the de-
sign of large-scale systems. Sub-networks are hidden
as building blocks within macro nodes. (ii) Coloured
Petri Nets (CPN) overcome the constraints of standard
Petri nets by allowing the modelling of large-scale
systems in a compact, parameterised and scalable
way.

The main contribution of our paper is the develop-
ment of a general approach for modelling multiscale
systems which combines the above two concepts,
Hierarchically Coloured Petri nets (HCPN). In this
study we illustrate the power of our approach for
describing spatial multiscale problems in biological
systems by a complex and challenging case study,
which requires computational experiments over very
large underlying models which are represented by
systems of Ordinary Differential Equations (ODEs).

This paper is based on our earlier work published
in CMSB 2011 [12], extended and improved by

• the use of a circular topology at the intracellular
level, permitting the exploration of different inter-
cellular communication schemes at the higher
level in a more biologically faithful manner,

• the use of a variety of biasing mechanisms to
induce polarity (feedback loops, external ligands,
microtubule transport),

• the introduction of a variety of genetic mutations
which can be placed in different clone shapes
(rectangular, circular, elliptical),

• the development of a highly efficient computa-
tional technology exploiting constraint solving
which permits the construction and exploration
of models of much larger wing tissues than was
previously possible,

• the development and application of automated
clustering and visualisation techniques permit-
ting improved analysis of the simulation results,
complemented by PLTL model checking of pri-
mary and secondary data to explore the be-
haviour of the automatically identified clusters.

This paper is structured as follows: in Section 2
we introduce the biological background of planar
cell polarity, followed by Section 3 on related work.
Section 4 briefly describes coloured Petri Nets and
in Section 5 we present our modelling approach by
means of the PCP case study, followed by Section 6
on the analysis of our PCP model, and finally the
conclusion.

2 PLANAR CELL POLARITY
Planar cell polarity (PCP) refers to the orientation of
cells within the plane of the epithelium, orthogonal

Fig. 1. Drosophila: whole wing (left); scheme of hexag-
onal cells with hairs (right).

to the apical-basal polarity of the cells. This polar-
isation is required for many developmental events
in both vertebrates and non-vertebrates. Defects in
PCP in vertebrates are responsible for developmental
abnormalities in multiple tissues including the neural
tube, the kidney and the inner ear (reviewed in [38]).
The signalling mechanisms underlying PCP have been
studied most extensively in the epithelia of the fruit
fly Drosophila melanogaster including the wing, the
abdomen, the eye, and the bristles of the thorax.

The adult Drosophila wing comprises about 30,000
hexagonal cells each of which contains a single hair
pointing in an invariant distal direction, see Fig. 1.
This hair comprises actin bundles and is extruded
from the membrane at the distal edge of the cell
during pupal development, at the conclusion of PCP
signalling. Preceding this ultimate manifestation of
PCP, signalling occurs such that the proteins adopt
an asymmetric localisation within each cell. At the
initiation of PCP signalling Fmi, Fz, Dsh, Vang and Pk
are all present symmetrically at the cell membrane. At
the conclusion of PCP signalling Fmi is found at both
the proximal and distal cell membrane, Fz and Dsh
are found exclusively at the distal cell membrane and
Vang and Pk are found exclusively at the proximal
cell membrane. These PCP proteins are thus thought
to mediate the cell-cell communication that comprises
PCP signalling and be involved in establishing the
molecular asymmetry within and between cells which
is subsequently transformed into the polarisation of
the wing hairs (reviewed in [40]). The result is a
polarisation of individual cells and local alignment
of polarity between neighbouring cells. A proposed
feedback loop mechanism was proposed by Tree et
al. [41] which is believed to mediate a competition
between proximal and distal proteins between adja-
cent surfaces of neighbouring cells. More details of
the current views of the details of signalling can be
found in [3]. Thus we will use Flamingo-Frizzled-
Dishevelled complexes (FFD) as a proxy for hairs in
our research.

Various studies postulated the existence of an un-
known and as yet un-identified secreted morphogen
signal to which the PCP proteins respond. Despite the
lack of positive data identifying such a morphogen
signal [32] such models remain popular in the liter-
ature. A second postulated upstream signal biasing
PCP is associated with the protocaderhin molecules
Fat and Dachsous (Ds) whose activities are modulated
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by the golgi kinase Four-jointed (reviewed in [5], [46]).
It has thus been proposed that the function of the Fat
and Ds proteins is to facilitate the transport of the dis-
tal PCP proteins to the distal cell cortex where they are
stabilised by interactions with proximal complexes.

In this paper, we use HCPN to model PCP sig-
nalling in a generic setting that encompasses a broad
class of specific models, ranging from a single cell
model to a multi-cellular model. We also provide
alternative ways to build different neighbourhood
relationships between adjacent cells. To this end, we
have developed a set of models for the generation of
PCP to investigate diverse mechanisms which have
been proposed to underly PCP signalling by simulat-
ing and analysing the dynamic behaviour of the PCP
proteins and complexes.

Initially we wish to recapitulate the phenotypes
of all known mutant conditions, both loss and gain
of function. We hope to be able to address ques-
tions about the mechanisms underlying the polarising
signal, the dynamics of signalling by the individual
components and the signals downstream of the PCP
proteins which orchestrate the ultimate morphological
manifestation of planar polarity. Ultimately we hope
our model will make predictions about the mecha-
nisms underlying the PCP signalling process which
will be testable in a biological laboratory.

3 RELATED WORK

Modelling PCP. Several mathematical and compu-
tational approaches have been applied to study PCP
signalling [1], [7], [23], [24], [33], [35]. However, these
models lack an approachable way to generate the
cell geometry or a grid of hexagonal cells and are
hard to reproduce by other researchers. This moti-
vated us to develop an approach which permits the
systematic construction of large scale mathematically
tractable models in which cell geometry is clearly
formalised. Compared with ODEs and PDEs, hier-
archically coloured Petri nets are more intuitive for
users with limited knowledge about modelling. In
addition, we include new aspects of signalling, such
as biased transport of molecules [3], [37], which were
not considered in previous models but have been
suggested as mechanisms which might influence the
regulation of PCP signalling [35]. Furthermore, we
have developed advanced analysis methods and vi-
sualisation to compare simulation results with exper-
imental data (images).

Coloured Petri nets in Systems Biology. There
are a few applications that take advantage of the
power and ease of modelling offered by CPN, e.g. [4],
[14], [25], [45], for more details see [12], [26]. These
existing studies are rather small and usually resort
to Design/CPN [8] or its successor CPN Tools [20],
which, however, were not specifically designed with
the requirements of Systems Biology in mind, and

do not support stochastic or continuous modelling
and simulation. In our work, we use colour not only
to express repetition, but also to encode (spatial)
locality. We will show that the standard colouring
concept can be further enhanced by hierarchically
organised colours, which are able to directly reflect
the hierarchical organisation of the objects modelled.
We will demonstrate our approach by a case study
which yields a design pattern for similar modelling
problems.

4 MODELLING LANGUAGE

4.1 Coloured Petri nets

Coloured Petri nets (CPNs) [18], [19] are an estab-
lished discrete event modelling formalism combin-
ing the strengths of Petri nets with the expressive
power of programming languages. Petri nets provide
a sound graphical notation for modelling systems
with concurrency, communication and synchronisa-
tion. Programming languages offer the constructions
of data types, which permit the creation of compact
and parameterisable Petri net models. This is the most
important advantage of CPN which we are going to
exploit in this paper.

Syntax. CPNs comprise – as do standard Petri
nets – places, transitions, and arcs. In systems bi-
ology, places typically represent species (chemical
compounds), while transitions represent any kind of
chemical reactions or transport steps [17]. In this
paper places represent PCP proteins whereas transi-
tions represent physical interaction and/or signalling
events between proteins and polarised transport of
proteins. Additionally, a CPN model is characterised
by a set of colour sets (i.e. discrete data types). Each
place gets assigned one colour set and may contain
distinguishable tokens coloured with a colour of this
colour set. As there can be several tokens of the same
colour at a given place, the tokens at a place define
a multiset over the place’s colour set. A specific dis-
tribution of coloured tokens at all places constitutes a
marking of a CPN. Each arc is assigned an expression;
the result type of this expression is a multiset over the
colour set of the connected place. Each transition has
a guard, which is a Boolean expression, typically over
variables occurring in the expressions of adjacent arcs.
The guard must be evaluated to true for the enabling
of the transition. The trivial guard ‘true’ is usually not
explicitly given.

Behaviour. The variables associated with a tran-
sition consist of the variables in the guard of the
transition and in the expressions of adjacent arcs.
Before the expressions are evaluated, the variables
must be assigned values with suitable data types,
which is called binding [19]. A binding of a transition
corresponds to a transition instance in the underlying
unfolded net.
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Enabling and firing of a transition instance are
based on the evaluation of its guard and arc ex-
pressions. If the guard is evaluated to true and the
preplaces have sufficient and appropriately coloured
tokens, then the transition instance is enabled and
may fire. When a transition instance fires, it removes
coloured tokens from its preplaces and adds coloured
tokens to its postplaces, i.e. it changes the current
marking to a new reachable one. The colours of the
tokens that are removed from preplaces and added to
postplaces are decided by the arc expressions. The set
of markings reachable from the initial marking con-
stitutes the state space of a given net. These reachable
markings and transition instances causing the mark-
ing change constitute the possibly infinite reachability
graph (state transition system) of the coloured net.

Folding and unfolding. Coloured Petri nets with
finite colour sets can be automatically unfolded into
uncoloured Petri nets, which then allows the appli-
cation of all the powerful standard Petri net analysis
techniques. Vice versa, uncoloured Petri nets can be
folded into coloured Petri nets, if partitions of the
place and transition sets are given. These partitions of
the uncoloured Petri net define the colour sets of the
coloured Petri net. However, the algorithmic identifi-
cation of suitable partitions is an open research issue.
The conversion between uncoloured and coloured
Petri nets changes the style of representation, but does
not change the structure of the underlying reaction
network, see Fig. 2 for some introductory examples
and Section 5 for more details.
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<->

(a) 

(c) 
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Declarations:

colorset CS = int with 1,2;

variable x : CS;

(d) 

Fig. 2. Three typical examples for folding-unfolding;
notation: ++ multiset addition, (+x) successor, [x=2]
guard.

The key challenge when unfolding coloured Petri
nets is to compute all transition instances. Their
computation can be considered as a combinatorial
problem, which suffers from combinatorial explosion.
However, when the number of transition instances
is only decided by guards, which are in fact logical
expressions, a constraint satisfaction approach [6],
[42] can be employed. We have used the efficient
search strategies of Gecode [13] to greatly improve the
unfolding efficiency of coloured Petri nets, reported in
more detail in [26]; see Table 2 for results.

Extensions. We allow special arcs, e.g. read arcs or
inhibitor arcs in our coloured Petri nets. If transitions
are additionally associated with stochastic (determin-
istic) firing rates, as discussed in [15], [17], we will
obtain coloured stochastic (continuous) Petri nets. The
rate functions defining the usually state-dependent
rates can be specified for coloured transitions, or
individually for each transition instance; for more
details see [27], [28].

4.2 Hierarchically coloured Petri nets

CPNs enable the modelling of (biological) systems
comprising repeated components, each of which is
associated with a particular colour.

Moreover, colour can be used to encode spatial lo-
cality. For example, to model cells in a 2-dimensional
lattice, we can represent one cell as a CPN with colour
sets denoting the number of copies (cells), and use
functions to describe the connectivity between the
cells. A colour is a 2-tuple which can then be read as
an address identifying locality in space. This can be
easily extended to higher dimensions. Moreover, the
model is adjustable to different lattice sizes by just
changing some constants.

Typically colour sets are not read as unordered
sets, but are assumed to be totally ordered, with an
implicit successor relation. We generalise this idea,
by permitting a partial order relation over a set. One
instance of this would result in a hierarchy, i.e. a tree-
like structure. Combining the base colour set with the
partial order relation, we obtain a hierarchical colour
set, and represent each node in the tree by the path
describing the branch from the root to the node, which
enables direct referencing of the position of the node
in the hierarchy, and thus permitting the formulation
of operations over hierarchy levels.

We can define operations over the hierarchically
defined colours which correspond to navigation over
the hierarchy tree. Operations which move up/down
one node are a generalisation of the predeces-
sor/successor function over a totally ordered set.
However, we can also define operations which move
over more than one node at a time or jump to nodes
in different branches in the tree.

The concept of hierarchy is orthogonal to, and can
be freely combined with other colour set constructors
such as product or union.

Specifically, we adopt the notation that colour sets
are described by one, two or three-tuples, corre-
sponding to the number of spatial dimensions being
modelled, and note that the underlying colour set
is given by the Cartesian product expansion of the
colour set tuple. Thus, for example, when modelling
cells in, for instance, a rectangular M × N grid,
each cell is associated with a colour (x, y) where
x ∈ {1..M}, y ∈ {1..N}. A colour set can be associated
with a set of constraints which effectively describe the



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

topology of the one, two or three-dimensional grid
used to model the layout of the components. Thus we
may embed a component in a honeycomb (hexagonal)
grid by imposing the requisite constraints over an
underlying rectangular grid. Guards over transitions
permit the description of the patterns of connection
allowed between cells.

Furthermore if we want to describe regular organ-
isation within a cell, we can extend this concept by
having a grid at the intra-cellular level and another
set of colours to indicate the position inside the inner
grid. A separate set of arc functions at the intra-
cellular level indicates the inter-component communi-
cation at this level. Consequently, we get a sequence
of tuples, each tuple referring to the address within
a certain level. We call this concept hierarchically
structured colours, and the corresponding net class
Hierarchically Coloured Petri Nets (HCPN).

In order to support the description of hierarchically
organised systems, we extend the notation for colour
sets as follows. The colour set of the highest level of
an L hierarchy is denoted by a tuple TL, that of the
next level by a tuple TL−1 and the lowest level by a
tuple T1. When referring to the colour set of a level,
we will give its position in the hierarchical tree of
colour sets by prefixing the colour sets above it. Thus
for example, the colour set for the L−1 level is given
as TL · TL−1, and the colour set for the lowest level
as TL · TL−1 · . . . · T1. The number of colours in the
underlying colour set is given by the product of the
number of underlying colours in the colour set tuple
from each level.

In order to further facilitate modelling, we can
denote each level by a descriptive label, thus the levels
in a three level hierarchy could be denoted by wing,
cell, subcellular-location and the entire colour set by
wingcs·cellcs·subcellular-locationcs. We further expand
our notation for the guards so that they are associated
with the level at which they operate. See Section
5 for more details on how a HCPN model can be
constructed.

In summary, hierarchically structured colours are
useful to express repetition and (spatial) locality as
we will demonstrate in our case study. Unlike [43],
we do not use a concept of nets-within-nets to de-
scribe hierarchy, but colours-within-colours. We use
two two-tuples (nested two dimensions) to address
hierarchical systems.

5 MODELLING APPROACH

Overview. We start off by modelling each cell as a
(standard) Petri net, initially at a highly abstract level,
neglecting details of the intra-cellular pathways, and
divide the cell into several virtual compartments to
facilitate the description of PCP. Because Drosophila
wing cells form a regular honeycomb lattice, we im-
pose this organisation at the top level of the model as

a hexagonal grid of cells, see Fig. 3. We get the HCPN
model by step-wise colouring this spatial information.
In the next step we create a refined model by adding
details of the intra-cellular signalling mechanisms,
and reusing the colouring template of the abstract
model.

We first construct an unbiased model (Fig. 6), which
does not include any proposed biased factors, to
recapitulate the symmetrical localisation of proteins
before the polarisation of PCP signalling. We then
build a set of models based on this unbiased model
by introducing various proposed biased factors in
order to discover the underlying mechanism of PCP.
These models are built up by inserting (i) feedback
loops, (ii) feedback loops plus morphogen factor X,
(iii) feedback loops plus biased transport, and (iv)
feedback loops plus factor X and biased transport.

(a)  

Cell (3,2) 

(b) 

(c) (d) 

Fig. 3. Drosophila wing epithelial cells. (a) Fragment
of wing tissue; coordinates represent honeycomb grid
position; (b) Cell with seven virtual compartments in
one-to-two relationship, arrows denote inter-cellular
communication with adjacent neighbouring cells. (c)
Likewise, for one-to-one relationship. (d) Cell asym-
metrically divided into seven virtual compartments,
see [12].

Abstract Petri net model for a single cell. Our
initial model of the wing epithelial cell, illustrated
in Fig. 4, is a high-level representation of the PCP
network in order to establish the colour sets required.

We first sub-divide each cell into four spatial re-
gions (Fig. 4, from left to right): (i) the extracel-
lular space (labelled as communication), where the
intercellular complexes form, (ii) the proximal cell
margin (left-hand side of each cell) in order to process
intercellular signals between two neighbouring cells,
(iii) production (read arcs cause an infinite supply of
proteins) and intracellular transport of core species,
and (iv) the distal cell margin (right-hand side of each
cell).
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TABLE 1
Declarations for the abstract and refined HCPN

models. Abbrev used: “const” – “constant”, “cs” –
“color set”, “var” – “variable”, and “fun” – “function”.

Category Declaration
const int : M = 15, N = 15, R = 3, C = 3

cs Row = int with 1−M
cs Column = int with 1−N
cs CS1 = product with Row × Column
cs CS Cell = CS1 with

x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1
cs ComR = int with 1−R
cs ComC = int with 1− C
cs CS ComP = product with ComR× ComC
cs CS2 = product with CS Cell × CS ComP
cs CSmembrane = CS2 with b = 1|b = 3
cs CSmiddle = CS2 with a = 2&b = 2
cs CSI = int with 1− 2
cs CS3 = product with CMembrane× CSI

var x : Row, y : Column,
a : ComR, b : ComC, r : CSI

fun NN (Row x,Column y,ComR a,ComC b,CSI r)
CSMembrane :
{[(!(x = 1|x = 2))&(r = 2&a = 1&b = 1|
r = 1&a = 1&b = 3)], (((x− 2, y), (a+ 2, b)),+r)}

fun NW (Row x,Column y,ComR a,ComC b,CSI r)
CMembrane :
{[(!(x = 1|y = 1))&(r = 1&a = 1&b = 1|r = 2&
a = 2&b = 1)], (((x− 1, y − 1), (a+ 1, b+ 2)),+r)}

fun SW (Row x,Column y,ComR a,ComC b,CSI r)
CMembrane :
{[(!(x = M |y = 1))&(r = 1&a = 2&b = 1|r = 2&
a = 3&b = 1)], (((x+ 1, y − 1), (a− 1, b+ 2)),+r)}

fun Gd1 (Row x,Column y)
bool :
{x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1}

fun Gd2 (Row x,Column y,ComR a,ComC b)
bool :
{(!(x = 1|x = 2))&(a = 1)&(r = 1&b = 3|r = 2&
b = 1)|(!(x = 1|y = 1))&(b = 1)&(r = 1&a = 1|
r = 2&a = 2)|(!(x = M |y = 1))&(b = 1)&
(r = 2&a = 3|r = 1&a = 2)}

fun RectangleReg (Row x,Column y)
bool :
{x >= 15&x <= 25&y >= 20&y <= 25}

fun DiskReg
(Row x,Column y,Row x0,Column y0,int radius)
bool :
{(abs(y − y0) <= radius)&
(abs(x− x0) + abs(y − y0) <= 2 ∗ radius)}

fun OvalReg
(Row x,Column y,Row x0,Column y0,int rx,int ry)
bool :
{(rx < ry)&(abs(x− x0) <= rx)&
(abs(x− x0) + abs(y − y0) <= ry)|
(rx >= ry)&(abs(y − y0) <= ry)&
(abs(x− x0) + abs(y − y0) <= rx)}

In order to facilitate the detection of PCP asym-
metry, we then partition each cell into seven virtual
compartments, three each for the proximal and distal
membrane compartments arranged in a circular man-
ner, and one middle compartment for the cytosol, see
Fig. 3, right. This circular structure is imposed on an
underlying 3× 3 rectangular grid, which explains the
numbering of the compartments. We also create dif-
ferent neighbourhood relationships between adjacent

Fig. 4. Abstract PN for a single cell, one-to-two neigh-
bourhood relationship, four spatial regions: communi-
cation, proximal, transport and distal, and the seven
virtual compartments. Dashed red lines indicate cell
boundaries.

cells in order to investigate their influence on the over-
all behaviour. The two neighbourhood relationships
are (i) one-to-two, where one individual compartment
in a cell communicates with two other compartments
in the neighbouring cell(s), see Fig. 3(b); (ii) one-to-
one, where each compartment in a cell communicates
with only one compartment in the neighbouring cell,
see Fig. 3(c).

Both of these relationships require the definition of
six neighbourhood functions (north, north-east, south-
east, south, south-west and north-west, abbreviated
as NN, NE, SE, SS, SW, NW respectively), see Fig. 4.
Because a honeycomb is a tessellated structure, we can
ignore pairwise complementary symmetries between
neighbouring cells, thus reducing the need for the 6
rotational axes of symmetry to 3 axes (NN, SW, NW),
see Table 1.

In our previous work [12] we designed an asym-
metric model, see Fig. 3(d), where the cell was divided
into virtual compartments, three each at the proximal
and distal sides, and one large central block. This
configuration introduced an inherent proximal-distal
topological bias across the wing tissue. In addition our
previous model included three specific intracellular
biasing mechanisms in terms of feedback loops, mor-
phogen factor X and cytosolic transport. Our current
work eliminates the tissue-level bias by using the
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symmetrical configurations of the virtual compart-
ments in Fig. 3(c)&(d), and then focuses on controlled
addition of the intracellular biasing mechanisms (see
“Refined models” below).

HCPN model for honeycomb lattice of cells. We
begin by demonstrating how to construct a HCPN
model for a one-to-two neighbourhood relationship
and later illustrate how simple it is to adapt this
approach to generate a HCPN model for a one-to-one
relationship. For the following see Table 1.

We define two constants M , N and a two-
dimensional colour set (CS1) representing a rectangu-
lar M ×N grid, and select the subset denoting the co-
ordinates of the hexagonally packed cells (CS Cell),
(Fig. 3). At this level of hierarchy (wing tissue com-
prising folded cells) we obtain a HCPN model, which
has a similar structure to that of Fig. 4, but each place
has been assigned the colour set CS Cell.

Next we assign a colour to each of the seven virtual
compartments of a cell. We do this by using a 3 × 3
grid (CS ComP ) and ignoring colours (2,1) and (2,3)
so that the proximal compartments are (1,1), (2,1) and
(3,1), the middle compartment is (2,2), and the distal
compartments are (1,3), (2,3) and (3,3). We combine
information about cell and compartment locality by
defining CS2 as product of the colour set to ad-
dress cells (CS Cell) and the colour set to address
the virtual compartments (CS ComP ). We introduce
two subsets CSmembrane, and CSmiddle of CS2 to
facilitate addressing the components of a cell in a
specific region, (i.e. distal or proximal, and middle).
The colour sets we define are hierarchical, so we
can locate each place in terms of the coordinates
((x, y), (a, b)), where (x, y) denotes the position of a
cell in the honeycomb grid, and (a, b) denotes the
position of a virtual compartment within that cell.

We continue folding using these colours to obtain
a more compact HCPN model – a tissue of cells
comprising virtual compartments. This is achieved by
folding the six membrane compartments into one, by
assigning the colour set CSmembrane to its places.
The central compartment (2, 2) is denoted by the
colour set CSmiddle.

Finally, we fold the two similar communication
components (the transitions given in red in Fig. 4) in
each membrane compartment into one. For this we
define a colour set CSI of two colors, and a product
colour set CS3 based on CSmembrane and CSI .

In the following, we describe the necessary steps to
construct the compact HCPN model. Having defined
the colour sets, we create variables that are used
in transition guards and arc expressions. All the
transitions in the six membrane compartments are
assigned guard Gd1 that selects the coordinates of the
hexagonally packed cells, while the communication
transitions are assigned guard Gd2 which mediates
the communication between two neighbouring cells.
Each arc in the six membrane compartments for

the proximal and distal cell edges is assigned an
expression (((x, y), (a, b)), r), where the coordinate
tuples ((x, y), (a, b)) describe the arcs linking
the associated place to a particular transition in
compartment (a, b) in cell (x, y), and r takes a value
of the colorset CSI . In the middle compartment, the
arc expression is ((x, y), (2, 2)). In the communication
region, each arc is assigned an expression
NN(x, y, a, b, r)++NW (x, y, a, b, r)++SW (x, y, a, b, r)
which defines how neighbouring cells communicate
with each other. Finally we obtain the HCPN of the
abstract PCP model illustrated in Fig. 5. Unfolding
this model gives the plain Petri net model in Fig. 4.

This is a generic model able to generate honeycomb
tissues of arbitrary size by adjusting the two constants
M , N . The colour sets define a pattern which can
easily be reused to model similar scenarios of spatial
locality. For example, the colour sets for a one-to-one
HCPN model retain most of what we have established
for the above HCPN model. Since this neighbourhood
relationship only enables each compartment of the cell
to communicate with one compartment in an adjacent
cell, we can simply remove CSI , CS3, and the pa-
rameter CSI r in the neighbourhood functions. Due
to space considerations, in this paper we concentrate
on the one-to-two model.

In summary, the procedure to construct a HCPN
model for a multi-cellular tissue with regularly struc-
tured compartments inside each cell can be divided
into two steps.

• Fold cells: build up the structure of multi-cells
representing the locality of each cell.

• Fold compartments: create the required localisa-
tion of compartments within a cell.

This can be trivially extended to model systems with
more than two levels of hierarchy.

Refined models of PCP. We develop step-wise a set
of more detailed PCP models by refining the model in
Fig. 5. The refined models of PCP signalling consider
a set of five core proteins (Fz, Dsh, Vang, Pk and Fmi,
see Section 2).

(i) We start off with an unbiased model of PCP
(Fig. 6) which creates an equal distribution of FFD
in all membrane compartments in those cells having
six neighbours (see Fig. 6). Remark: boundary cells
or cells communicating with less than six neighbours
will not have a symmetric localisation of FFD due to
the lack of intercellular communication.

The following models are available as supplemen-
tary material.

(ii) In order to build up a basic biased model with
which to test different hypotheses, we include the
intracellular inhibitory loops which mediate a compe-
tition between proximal and distal proteins displayed
on adjacent surfaces of neighbouring cells [41].

(iii) Subsequently we create a set of HCPN models
based on this basic biased model, by introducing
either factor X or biased transport alone, or both
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Fig. 5. Abstract HCPN model, folded version of Fig. 4. Places B, C, D, and E are logical nodes which are in the
distal compartments of each cells. See Table 1 for declarations.
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Fig. 6. HCPN model of unbiased PCP. It refines the abstract HCPN model given in Fig. 5.

combined. These variants enable us to test various
hypotheses underlying PCP signalling.

In order to simplify the identification of these mod-
els, we distinguish between the biased and unbiased
versions. If the model is biased (B) then it always
includes feedback loops (F), and optionally either
or both of biased transport (T) or factor X ligand
(X). Finally a biased model can be wild-type (Wt) or
contain one of two mutant clones, Fz- or Vang-. We
can describe this naming convention by the following
simple BNF: B F [X] [T] [Wt|Fz|Vang].

To construct these refined models we use the same
declarations as those used for Fig. 5 (see Table 1); thus,
we do not need to start from scratch. We group transi-
tions and places into different spatial regions and vir-
tual compartments, and then assign the same colour
sets to each region or compartment as done for Fig. 5,
likewise for arc expressions. Additionally, we define

three functions, RectangleReg, DiskReg and OvalReg
to generate a rectangle, circle-like (hexagonal) or oval
region within the whole tissue, respectively (see Table
1) which will be used to place mutant cells on the
tissue to model biological mutant clones. Thus, with
our models we can not only perform simulations of
PCP signalling in normal, wild-type cells but also on
patches of mutant cells in a wild-type background.

Quantitative models. We quantify our PCP models
by assigning to each transition a rate function follow-
ing mass-action kinetics. The kinetic parameters have
been optimised by using simulated annealing with
wet-lab time series target data, taken from [2].

These quantitative models can be equally read as
stochastic or continuous models, with appropriate
scaling of the kinetic constants. Particularly, a continu-
ous HCPN model uniquely defines a set of ODEs. To
simulate wild-type and different mutant conditions,
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we consider individual marking sets, function sets,
and parameter sets (which are maintained within one
model file).

All the models we have discussed are available at
http://people.brunel.ac.uk/˜cspgqqg.

6 ANALYSIS

HCPNs enjoy a large variety of analysis techniques,
ranging from informal animation to formal static or
dynamic analysis techniques. In the following we
confine ourselves to simulative methods to analyse
dynamic properties of our models in the continuous
setting, because the infinite state space caused by the
infinite supply of proteins precludes the application of
dynamic exhaustive analysis techniques. Specifically
we apply automated clustering and visualisation tech-
niques to identify sets of cells with similar behaviours,
complemented by PLTL model checking and visual
analysis to both primary and secondary time-series
data from representative cells of automatically identi-
fied clusters.

6.1 Analysis techniques

Cluster analysis. The strategy to analyse the models
is based on the behaviour of each cell, represented
by the FFD complex concentrations for each of the six
membrane compartments because these are associated
with the PCP response [39]. In the first step, we take
the time points of the FFD time series from the six
membrane compartments and use them as ‘features’
for each cell; they comprise the characteristics which
define the behaviour. With e.g. 200 time points for
each of the six time series we obtain 1,200 features;
too many for a clustering algorithm, which would be
slowed down and its result diluted by the background
noise.

We then reduce the number of features by applying
a feature selection technique: Principal Component
Analysis (PCA) [21]. This way, the original features
are converted into new features, which are a linear
combination of the previous ones, see Fig. 7. PCA
allows us to compute the variance explained by each
new feature in order to find how many new features
we need to describe the space. We then check how
many features are needed to explain at least 95% of
the variance.

Once we have obtained the new dataset through
PCA, we apply a clustering algorithm to find groups
of cells with similar behaviour. There are many clus-
tering algorithms available in literature, such as the
commonly used K-means [30]. However we cannot
rely on K-means because we do not know a priori
the number of clusters we are looking for, and most
importantly the clusters are not necessarily spherical.
For this reason we employ a density-based clustering
algorithm called DBScan [11], which permits finding
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Fig. 7. Representation of the most important three
features derived by PCA for model BFXFz.

clusters of any shape. DBScan identifies dense areas of
space by looking at the neighbourhood of each point.

An area of a given radius is considered to be dense
if it contains at least a given number of points. The
algorithm then merges connected dense areas to form
a cluster. All the points left out of the clusters are
labelled as outliers. We can find the best number of
clusters to fit the scenario by inspecting the three
dimensional data space and adjusting the parameters
(radius and size of the neighbourhood). The results
are then plotted on a hexagonal grid, which represents
the layout of the cells in the model, see experiments
below. The cells in each cluster are allocated a unique
colour and are labelled by the cluster number gener-
ated by our technique. All outliers are allocated -1 as
their cluster number.

Model checking. In order to explore in more detail
the behaviour of a model, we perform model checking
on representative cells from the clusters identified by
the cluster analysis. Model checking is a technique
which is used to check the validity of properties
of a dynamic model expressed in a temporal logic;
this can be performed either analytically (requiring
the entire state space to be explored), or over finite
time-series traces produced by the simulation of the
model. In our work we use simulative model checking
because of the infinite state space of our models,
and specifically employ the MC2 model checker [10]
which operates over Probabilistic Linear Temporal
Logic with constraints (PLTLc). We check both the
primary data output from a model (i.e. time series of
concentrations) as well as secondary data – in this case
time series of accumulated concentrations (known as
cumulative rewards in CSL model checking [36]).

We check this secondary data because the localisa-
tion of PCP signalling components at any given time
point is the result of the cumulative effect of the sum
over the signalling events until that point. We do this
by computing the accumulation of the concentration
of FFD at each point in the time series trace, and
call this a cumulative time series. The cumulative time
series data ”smooths away” small variations which
are apparent in the primary data.
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6.2 Models
For reasons of space all experiments reported in this
section refer to one-to-two neighbourhood relation-
ship models, namely the unbiased model and variants
of the biased model. We focus on the BFX family of
models in order to further conserve space.

A crucial point is how many cells we can simu-
late in terms of current computational capabilities,
i.e. what tissue size can we actually analyse. In this
respect, we have to address three technical key prob-
lems: unfolding, ODEs construction, and simulation.
The coloured continuous Petri nets are automatically
unfolded which can be considered as a kind of com-
pilation. Afterwards, the corresponding ODE needs
to be constructed for each place; the runtime for
this step is negligible. Finally, the model has to be
simulated using an appropriate continuous simulation
algorithm.

We performed a simple test by increasing the num-
ber of cells in the tissue. We report the runtime for
unfolding and simulation for increasing size of the
PCP model in Table 2. From the ratio of unfolding or
simulation runtime to number of cells, respectively,
we can see that both the unfolding and simulation
runtime increase approximately linearly.

We begin the experiments by using our unbiased
and biased HCPN models to generate an in-silico
wildtype tissue based on a honeycomb grid com-
prising 800 cells imposed on an underlying 40 × 40
rectangular grid. Next, we have modelled the ef-
fect of a patch of mutated cells (clone) lacking the
key signalling molecules Frizzled (Fz) or Van Gogh
(Vang), denoted by Fz- and Vang- respectively, in
an otherwise wild-type field of cells by zeroing the
concentration and switching off transport in the corre-
sponding Petri net places. Using the DiskReg function
(see Table 1), we can produce a mutant clone of Fz-
or Vang- in a circle-like shape with 80 mutant cells,
i.e. 10% of the in-silico tissue.

We conduct our analysis as a proof of principle
that our models indeed have the ability to capture
the given biological phenomena and make sensible
predictions. All simulations were run over 1,000 time
units reported at 200 time points. The time span
represents 33 hours of PCP signalling in-vivo.

6.3 Experiments
In order to validate the ability of our models to
recapitulate biological phenomena observed in the
wet lab, we start off by simulating and analysing
the wild-type models, before considering the effect on
neighbouring wild-type cells of a patch of mutant cells
lacking Frizzled or Van Gogh proteins.

Experiment 1: Unbiased model
Current biological models of PCP in the literature [39]
show that at initialisation of signalling PCP proteins

are symmetrically distributed along the cell mem-
brane. In order to mimic this we use our unbiased
model which reflects this symmetry.

Clustering. We expect that FFD complexes will be
equally distributed over the six membrane compart-
ments in those cells which communicate with six
neighbouring cells (i.e. except boundary cells). The
continuous simulation result confirms the expected
behaviour, as shown in Fig. 9; all cells with six neigh-
bours belong to cluster 3 (labelled in green in Fig. 9).
Cells at each boundary are separately assigned to
other clusters; due to the different number of com-
munication partners resulting from the honeycomb
grid. In the following analyses we ignore tissue border
cells, since these are an artifact, and there are no real
biological data or observations for these.

Model checking, primary data. The unbiased
model has been constructed to reproduce the lack of
polarisation, causing proteins to be symmetrically dis-
tributed along the cell membrane. This is confirmed
by our results, see Fig. 12 which shows identical time-
series plots for all six membrane compartments.

For this, we form the following query, where P1, P2,
P3, D1, D2 and D3 denote the concentration of FFD
in the proximal and distal compartments.

P=? [G(P1 = P2 ± δ ∧ P1 = P3 ± δ ∧ P1 = D1 ± δ
∧P1 = D2 ± δ ∧ P1 = D3 ± δ)]

Note that P1 = P2 ± δ is a short-hand for P2 − δ <
P1 < P2+δ. We use a small value δ = 0.003 because we
are dealing with real numbers, and there can be slight
variations between traces due to, for example, effects
in the solver. This query holds for all non-boundary
cells.

Model checking, secondary data. Because the wild
type cells (except boundary cells) exhibit the same
time-series behaviour in all compartments, the accu-
mulation of FFD is identical in all membrane com-
partments (Fig. 18).

We use the same query as above, but set δ = 0.04
due to the cumulative nature of variations; again this
query holds for all non-boundary cells.

Experiment 2: Biased model, wild-type (BFXWt)
Clustering. The feedback loops mediate the compe-
tition between proximal and distal proteins between
adjacent surfaces of neighbouring cells and amplify
the asymmetric localisation of these proteins. The
results obtained by clustering analysis for this model
exhibit similar characteristics to the wild-type unbi-
ased model (Experiment 1, Fig. 9).

Model checking, primary data. The time-series
behaviour for a representative cell is shown in Fig. 13.
We choose to compare the middle proximal and distal
compartments because they exhibit the largest dif-
ferences in proximal-distal intra-cellular behaviour.
At the initial time point all concentrations are zero;
after this the concentration of FFD in the middle
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TABLE 2
Unbiased PCP model size and runtimea for unfolding and continuous simulation over 1000 time units,

illustrating the efficiency of our computational technology.

Size Unfolding runtime (seconds) Simulation runtime (seconds)
Grid(M ×N ) Cells Places Transitions Before optimisation After optimisation

5× 5 12 2,028 2,802 3.195 1.154 3.145
10× 10 50 8,450 11,826 9.714 2.613 14.618
15× 15 112 18,928 26,622 22.771 4.495 42.586
20× 20 200 33,800 47,646 44.818 9.231 88.886
40× 40 800 135,200 191,286 280.598 83.162 371.647
40× 40b 800 164,000 229,686 329.384 120.186 7,399.544

a performed on a Mac Quad-core Intel Xeon, CPU 2× 2.26GHz, memory (DDR 3) 8 GB; b for the biased model BFXWt.

distal compartment (D2) is always the highest of all
the compartments, and that in the middle proximal
compartment (P2) is always the lowest. The upper
and lower distal compartments are equal, lower than
the middle distal and higher than the corresponding
upper and lower proximal compartments.

We first of all construct the following query to
reflect the observation above, where δ = 0.002:

P=? [time > 0→ G(D2 > D1 ∧D1 = D3 ± δ∧
D1 > P1 ∧ P1 = P3 ± δ ∧ P1 > P2)]

We also observe that all traces exhibit one peak
followed by a trough, and formulate a query for
compartment D2 as an example, using the differential
function:

P=?[F (d(D2) > 0 ∧ F (d(D2) < 0 ∧ F (d(D2) > 0)))]

We can extend our queries in the obvious manner
to show that the proximal compartments have two
peaks whilst the distal compartments have one peak
in the traces over the time period shown here.

Model checking, secondary data. We observe that
the middle distal compartment always has a higher
cumulative time series than the other compartments,
whereas the middle proximal compartment is consis-
tently the lowest. The upper and lower distal com-
partments are very similar, less than the middle distal
and higher than the corresponding upper and lower
proximal compartments (Fig. 19).

We denote the cumulative variables for the mem-
brane compartments P1, . . . , D3 by CP1, . . . , CD3. The
equivalent query to that which we formulated for
the time series traces holds for the cumulative signal,
again with δ = 0.002:

P=? [time > 0→
G(CD2 > CD1 ∧ CD1 = CD3 ± δ∧
CD1 > CP1 ∧ CP1 = CP3 ∧ CP1 > CP2)]

We can use the free variables in MC2 [10] to com-
pute the range over the difference in the maximum
and minimum cumulative signals:

P=? [$γ = max(CD2)−max(CP2)]

In this case γ = 194, indicating the clear signal in
the Wt for the formation of the hairs in the central
part of the distal edge of the cell.

Experiment 3: Biased models with mutated clones
(BFXFz and BFXVang)

We present the results of both Fz- and Vang- mutant
clones. As reported in [44], cells in a Fz- clone have
incorrect polarity and occasional multiple hairs. Wild-
type cells distal, but not proximal to the clone have
incorrect polarity, pointing more proximally towards
the clone [22], see Fig. 8. Regarding the capability of
our current model, we expect that: (i) cells in the clone
have incorrect polarity (FFD does not form); (ii) wild-
type cells distal to the clone have FFD accumulated
at the proximal rather than distal edge of cell.

b	  

a	  

c	  

Fig. 8. Image of Drosophila wing. (a) Fz- clone, (b)
wild-type cells distally adjacent to clone, (c) wild-type
cells far from clone.

Cells in a Vang- clone have proximal domineering
nonautonomy characteristic, the wild-type neighbour-
ing cells proximally next to the clone point away from
the clone rather than towards the clone [29].

Clustering: Fz- mutant clone. The result demon-
strates the impact of a clone of Fz- mutant cells on
the neighbouring wild-type cells surrounding it, see
Fig. 10 where all of the mutant cells are in one cluster,
and we detect disruption in all the wild-type cells
directly adjacent to the clone. In more detail, we detect
different clusters, and hence different responses in
the wild-type cells to each of the six sides of the
clone. Note that each of the six cells at the vertices
of the clone are detected as individual outliers by our
technique. Because Fz is knocked out in all mutant
cells, the supply of Fz to form FFD is completely
cut off, leading to zero FFD in the mutant cells. In
addition, FFD can be affected by adjacent cells due
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to intercellular communication. These factors have an
influence on the clusters that are detected.

Clustering Vang- mutant clone. The result shows
the impact of a clone of Vang- mutant cells on their
neighbouring cells around it (see Fig. 11). In this case
the central cells in the clone are in one cluster, while
the mutant cells at the edges of the clone are in other
clusters – one cluster at each of the six edges. We
detect disruption in all the wild-type cells directly
adjacent to the clone, resulting in several clusters, one
at each edge of the clone. Only cells at four of the
vertices of the clone are detected as individual outliers
by our technique. The lack of Vang in the central
mutant cells indirectly affects the formation of FFD
in adjacent cells due to intercellular communication.
Thus while the central Vang- clone cells have zero
FFD due to the lack of Vang in their surrounding cells,
mutant cells at the boundary of the clone have some
FFD because they maintain some communication with
adjacent wild type cells.

Model checking, primary data, Fz- clone. In the
following, we only consider the middle distal and
middle proximal compartments, D2 and P2, because
they exhibit the highest PCP signal.

Unlike in the wild-type cells, for the cells distally
neighbouring to the clone the concentration of FFD in
the middle distal compartment is always lower than
that of the middle proximal compartment, see Fig. 14:
P=? [time > 0→ G(D2 < P2)]

Moreover, the trace of D2 exhibits a peak followed
by a trough, which is not true for P2:
P=?[F (d(D2) > 0 ∧ F (d(D2) < 0 ∧ F (d(D2) > 0)))]

However the cells immediately proximal to the
clone exhibit behaviour similar to wild-type cells,
i.e. the middle distal compartment is always higher
than the middle proximal compartment (Fig. 15). The
concentration of FFD in all the clone cells is zero at
all time points.

Model checking, primary data, Vang- clone. All the
non-boundary cells within the clone have zero FFD
at all time points, however the clone cells directly
adjacent to the clone boundaries do exhibit some
accumulation of FFD in those compartments directly
abutting wild-type cells; this is to be expected because
of the formation of FFD can take place with partici-
pation of Vang from the adjacent wild-type cells.

As in the wild-type cells, the concentration of FFD
in the middle distal compartment of the cells distally
neighbouring to the clone is always higher than that
of the middle proximal compartment, but this latter
is always zero. The trace for the distal compartment
exhibits a peak and a trough, see Fig. 16.
P=?[(time > 0→ G(D2 > P2)) ∧G(P2 = 0)]
P=? [F (d(D2) > 0∧F (d(D2) < 0∧F (d(D2) > 0)))]

The behaviour of the cells immediately proximal
to the clone is similar to wild-type cells, in that
middle proximal compartment is always higher than

the middle distal compartment, while the latter is
always zero (Fig. 17).
P=?[(time > 0→ G(P2 > D2)) ∧G(D2 = 0)]

P=? [F (d(P2) > 0 ∧ F (d(P2) < 0 ∧ F (d(P2) > 0)))]

Model checking, secondary data, Fz- clone. All
biased models with the Fz- clone (BFXFz, BFTFz and
BFXTFz) always exhibit a relatively higher cumulative
signal in the middle proximal compartment compared
to the middle distal compartment in those cells dis-
tally directly next to the Fz- clone (see Fig. 20 for
model BFXFz):
P=? [time > 0→ G(CD2 > CP2)]

In this case the range γ = 72, indicating a severe
loss of polarising signal.

The wild type cells in the tissue (i.e. away from the
clone area) display behaviour similar to the wild type
cells in the BFXWt model (Fig. 19).
P=?[time > ε→ G(CD2 > CD1 ∧CD1 = CD3± δ ∧

CD1 > CP1 ∧ CP1 = CP3 ∧ CP1 > CP2)]

where ε = 50 and δ = 0.2

The clustering technique is highly sensitive, and
over-identifies clusters. However, the cumulative be-
haviour of the wild-type cells proximally adjacent to
the Fz- clone (Fig. 21) is very similar to that of the
wild-type cells in the BFXWt model (Fig. 19). All clone
cells within the Fz- clone have zero accumulation of
FFD in all compartments because there is no supply
of Fz to form the FFD complex.

Model checking, secondary data, Vang- clone. In
contrast to the Fz- clone, for all Vang- clone models
(BFXVang, BFTVang and BFXTVang) the cumulative
signal in the proximal cells next to the clone is al-
ways higher in the middle proximal compartment
compared to the middle distal compartment, and the
latter is always zero (see Fig. 23 for the BFXVang
model):
P=?[(time > 0→ G(CP2 > CD2)) ∧G(CD2 = 0)]

In this case the range over the difference in the max-
imum and minimum cumulative signals between the
compartments is given by γ = 421 over compartments
CP1 and CP3 as the maxima and CD2 as the minima
indicating strong polarisation in the opposite direction
to the Wt cells.

The behaviour of the distal cells next to the clone
(Fig. 22) exhibits a similar trend to that of the wild-
type cells; however the cumulative value for FFD
in the middle proximal compartment is always zero,
and the values in the upper and lower proximal
compartments are lower than in the wild-type cells.
This is because the knockout of Vang in the adjacent
cells in the clone causes the lack of FFD in the distally
neighbouring cells.
P=?[(time > 0→ G(CD2 > CP2)) ∧G(CP2 = 0)]

In this case γ = 472, indicating very strong polari-
sation in the normal (Wt) direction.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

Remark. Our findings regarding the analysis of
the secondary data are consistent with observations
reported in the literature, for example [3], namely
that PCP disturbance is reported in cells distal to Fz-
clones, whereas the disturbance is on the proximal
side of Vang- clones. The cause of this disturbance
is indicated by the cumulative plots for these cells,
where there is a lack of an orienting signal in the
distal neighbours to the Fz- clone (Fig. 20), and the
near-zero values in the distal compartments for the
proximal neighbours to the Vang- clone (Fig. 23).

7 REPRODUCIBILITY

All Petri net models in this paper were constructed
with Snoopy [34], recently extended to support
coloured Petri nets [27], [26], which can be ob-
tained from http://www-dssz.informatik.tu-cottbus.
de/DSSZ/Software/Snoopy.

Simulations were done with Snoopy’s built-in con-
tinuous simulators, simulation traces have been writ-
ten to csv files, which have then been further pro-
cessed by Matlab R©7.11.0 [31] and MC2 [10] for model
checking. Clustering analysis techniques have been
developed in Matlab. DBScan for Matlab was taken
from [9]. The models in Snoopy format and high
resolution diagrams, the simulation data, clustering
routines and model checking queries can be found at
http://people.brunel.ac.uk/∼cspgqqg/.

Thus, all our results can be easily reproduced by
the interested reader.

8 CONCLUSIONS

In this paper, we have presented our work applying
Petri net techniques to construct a family of multiscale
computational models in order to explore the mech-
anisms that drive Planar Cell Polarity in Drosophila
wing tissue. We have shown that our family of models
recapitulates signalling phenomena known to occur
in wild-type and mutant clones, and in this paper we
have focussed on the the effect of morphogen factor
X on PCP. Our approach has involved developing
sophisticated patterns of communication over hier-
archically organised components. We have demon-
strated the power of the new concept of hierarchically
coloured Petri nets and associated analysis techniques
(cluster analysis and simulative model checking of
primary and secondary data) which we have devel-
oped. Our computational experiments have been over
very large underlying models each comprising about
150,000 ODEs.

The behaviour of our models reflects the fact that
the major accumulation of actin (from which the hairs
are formed) occurs in the most distal part of wild-
type cells, corresponding to the location of the prehair
formation in wing cells of Drosophila. Moreover our
models confirm that the introduction of mutant clones
disrupts the pattern of actin accumulation and hence

hair orientation in wild-type cells on the distal side of
a Fz- clone and the proximal side of a Vang- clone.

Our HCPN models and the software required to
simulate and analyse them are freely available, thus
ensuring that our results are reproducible by the
scientific community.
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Fig. 9. Clustering for continuous simulation of unbi-
ased and BFXWt models.
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Fig. 10. Clustering for continuous simulation of model
BFXFz.
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Fig. 11. Clustering for continuous simulation of model
BFXVang.
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Fig. 12. Unbiased model, continuous simulation for a
representative of cluster 3 (see Fig. 9).
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Fig. 13. BFXWt model, continuous simulation for a
representative of cluster 3 (see Fig. 9).
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Fig. 14. BFXFz model, continuous simulation for a
representative of cells distally adjacent to the Fz clone
(cluster 10, see Fig. 10).
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Fig. 15. BFXFz model, continuous simulation for a
representative of cells proximally adjacent to the Fz
clone (cluster 9, see Fig. 10).
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Fig. 16. BFXVang model, continuous simulation for
a representative of cells distally adjacent to the Vang
clone (cluster 12, see Fig. 11).
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Fig. 17. BFXVang model, continuous simulation for a
representative of cells proximally adjacent to the Vang
clone (cluster 11, see Fig. 11).
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Fig. 18. Unbiased model, cumulative signal for a
representative cell, relating to Fig. 12.
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Fig. 19. BFXWt model, cumulative signal for a repre-
sentative cell, relating to Fig. 13.
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Fig. 20. BFXFz model, cumulative signal for a rep-
resentative of cells distally adjacent to the Fz clone,
relating to Fig. 14.
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Fig. 21. BFXFz model, cumulative signal for a repre-
sentative of cells proximally adjacent to the Fz clone,
relating to Fig. 15.
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Fig. 22. BFXVang model, cumulative signal for a
representative of cells distally adjacent to the Vang
clone, relating to Fig. 16.
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Fig. 23. BFXVang model, cumulative signal for a
representative of cells proximally adjacent to the Vang
clone, relating to Fig. 17.


