
Journal of Integrative Bioinformatics 2007 http://journa l.imbio.de/

Supplementary material:
Prediction of protein-protein interactions using one-cla ss

classification methods and integrating diverse biological data
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S1 - Description of one-class classification (OCC) methods

OCC methods can be classified according to the way in which they analyze, describe and gen-
erate a model for the separation of targets and outlier examples [S1]. Two types of OCC were
employed in this reseach:Density estimation methods based in the estimation of the probability
density distribution of the training data using some probabilistic model (i.e. Gaussian distribu-
tion), then a threshold is selected and then used to compare with the density of new objects in
order to classify them; AndBoundary methods, based in the generation of a frontier or bound-
ary around the target objects, which is optimized to accept most of the target examples and at
the same time reject most of the outliers. Boundary approaches are mainly focused on those
examples objects which are located near the boundary. Here we present a detailed description
of the four OCC approaches evaluated in this research:

Gaussian density estimation:

This is the simplest of the OCC density approaches. The examples of the target class used for
training are modeled as a Gaussian distribution. In the ddtools implementation the complete
density estimation is not obtained and just the Mahalanobisdistance is employed and calculated
for each exampleX as:

f(X) = (X − µ)T
−1∑

(X − µ) (1)

where the meanµ and the covariance matrix
∑

are estimated from the whole sample of objects
used. Thef(X) value for new objects is then compared against a thresholdθ and classified as
a target iff(X) ≤ θ or else as an outlier.

Mixture of Gaussian density estimation:

In this case a linear combination of several (i.e.N) different Gaussian distributions is employed
to model the target class examples used for training, obtaining a more flexible model compared
with the single Gaussian distribution approach. The training data is divided intoN different
clusters, each of which is modeled by a single Gaussian distribution. The distance function
f(X) changes in this case to the form:

f(X) =
N∑

i=1

αi exp(−(X − µi)
T

−1∑

i

(X − µi)) (2)
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whereαi are the mixing coefficients. The parameters of each clusterµi,
∑

i, andαi are opti-
mized using the EM algorithm. A thresholdθ is fixed again and used to classify new objects
as in the previous case. For this approach it is possible to include outlier objects in the training
phase, setting independent mixture of Gaussian distributions for both target and outlier exam-
ples, consideringNtarget andNoutlier different clusters. The number of clusters considered for
target and outlier data should be fixed and can be varied in order to obtain the optimal perfor-
mance of the generated model.

Parzen density estimation:

In Parzen density estimation an independent Gaussian distribution is considered for each one
of theT target objects used for training a model for this class. Consequently in this case the
distances to all training objects have to be considered. In the ddtools implementation of this
approach the functionf(X) is as follows:

f(X) =
T∑

i=1

exp(−(X − Xi)
T h−2(X − Xi)) (3)

The smoothing parameterh, commonly called theParzen width, is introduced here and is re-
lated to the width of a regionR (in a Gaussian space) generated around each object in order to
separate the target from outlier zones. The rest of the classification process follows in a similar
manner to those in the previous approaches. The value ofh can be varied in order to find an
optimal performance related to the specific task conditions.

Support vector data description(SVDD):

This technique is a boundary approach based on the support vector machines (SVM) theory,
which aim to create a closed hyper-spherically shaped boundary around the examples used to
train the model of the target class. Following the description in [S1, S2] the hyper-sphere is
characterized by the centrea and radiusR and is supported for several objects as in the case
of SVMs. The objective then is to minimize the volume of the sphere which is possible by
minimizing the value ofR2. This minimization problem is similar to that in the SVM approach
and consequently it is possible to generate the same kind of approximation solution, with the
advantage of employing a more flexible feature representation using kernel functions (i.e. lin-
ear, polynomial and Gaussian kernels). This approach permits the use of outlier examples in
the training stage in order to generate a more tight description of the hyper-spherical boundary.
The kernel type and its respective parameters can be varied in this implementation in order to
obtain the optimal performance conditions.

S2 - Difference between the AUC and AUC-50 analysis

In this research we observed that while the AUC-50 analysis presents substantial differences
between the diverse learning methods evaluated, the comparison of AUC scores shows that
there is no appreciable significant difference between themon these specific conditions. The
difference between the AUC and AUC-50 analysis can be clearly appreciated from the ROC
curves of the different learning methods evaluated. Figure1(a) shows an example of the ROC
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curves for the different learning techniques used for evaluation of one validation subset. There
are no apparent important differences between these curves, although it is possible to observe
that in this case the DT curve performs slightly better than the other methods. However when
zooming in on these ROC curves and considering only the portion of them related with the
AUC-50 region, presented in Figure 1(b), it is possible to appreciate that there is a noticeable
difference in the performance of the diverse methods and also that parzen OCC method clearly
outperform the rest of the conventional learning approaches evaluated.
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Figure 1: Example of ROC curve analysis: (a) Whole ROC curvesfor the different learning meth-
ods evaluated. (b) Partial ROC curves for the different learning methods evaluated, showing the
region related to AUC-50. The vertical line on (b) indicatesthe point where approximately the
first 50 false-positive examples are reached.

S3 - Evaluation of feature importance

Finally we evaluated the individual effect of the differentbiological features used in this re-
search on the performance of the parzen OCC approach. For this we made the following proce-
dure for each one of the features: We first removed one of the attributes from the original data
set, then we train and test a parzen OCC model on this reduced scenario estimating AUC and
AUC-50 scores, finally we compared these performance measures with the obtained when all
available biological information is used.

Table 1 shows the results of the application of this procedure to the different features. We
observed that the major effect on the performance of parzen OCC method is produced when
functional similarity and m-RNA expression data is removed. This is consistent with previous
reported studies which considered these type of biologicalinformation as the most important
for this task [S3, S4, S5]. On these cases AUC-50 scores decreased drastically up to one half of
the baseline value. In relation to overall AUC scores, a significantly decrement is only noticed
when functional similarity data is removed.

The elimination of essentiality and high-throughput information seems to have a reduced impact
on AUC-50 scores, but it is interesting to observe that the overall AUC performance increase
slightly when high-throughput information is removed which can be explained due the high
false-positive and false-negative rates attributed to this kind of features.
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Table 1: Evaluation of the individual effect of the different biological attributes in the performance
of the OCC parzen approach

Feature description AUC AUC-50

ALL features 0.9801± 0.0075 0.4010± 0.0282
GO removed 0.9186± 0.0121 0.2094± 0.0189
MIPS removed 0.9412± 0.0135 0.1983± 0.0225
Expression removed 0.9775± 0.0050 0.1883± 0.0238
Essentiality removed 0.9800± 0.0081 0.3380± 0.0273
High-throughput removed 0.9887± 0.0037 0.3463± 0.0261
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