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Abstract. This paper introduces extended stochastic Petri nets to
model wetlab experiments. The extentions include read and inhibitor
arcs, stochastic transitions with freestyle rate functions as well as several
deterministically timed transition types: immediate firing, determinis-
tic firing delay, and scheduled firing. The extensions result into non-
Markovian behaviour, which precludes analytical analysis approaches.
But there are adapted stochastic simulation analysis (SSA) methods,
ready to deal with the extended behaviour. Having the simulation traces,
we apply simulative model checking of PLTL, a linear-time temporal logic
(LTL) in a probabilistic setting.

We present some typical model components, demonstrating the suit-
ability of the introduced Petri net class for the envisaged application sce-
nario. We conclude by looking briefly at a classical example of prokaryotic
gene regulation, the lac operon case.

1 Motivation

This paper extends the Markovian stochastic Petri nets SPNBio as introduced
in [GHL07] to model and analyse biochemical networks. Related application
scenarios are discussed in [BGHO08], [GBHD09]. Case studies demonstrating
a unifying framework to integrate the qualitative, stochastic and continuous
paradigms can be found in [HGD08], [GHR+ 08], [HDG10]. Thus, SPNBio have
been proven to be useful in systems and synthetic biology. However, there are
limitations in expressivity.

Generally, biologists face the problem to design wetlab experiments to vali-
date or contradict the current understanding of the biochemical network under
investigation. In order to be better able to do so, they ask for the following
advanced features:
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– stochastic and deterministic firing behaviour within one model,
– relative and absolute timing of the transitions’ firing,
– construction of arbitrary schedules of programmed interventions.

Therefore, we are going to extend SPNBio belonging to the Markovian world
by several features supporting the comfortable modelling of wetlab experiments.
The extentions lead to the definition of biochemically interpreted Generalised
Stochastic Petri nets GSPNBio and Deterministic and Stochastic Petri nets
DSPNBio. They include read and inhibitor arcs, stochastic transitions with
freestyle rate functions as well as several deterministically timed transition types:
immediate firing, deterministic firing delay, and scheduled firing.

The extension go beyond the Markov property, which precludes analytical
analysis approaches; but there are adapted stochastic simulation analysis (SSA)
methods, ready to deal with the extended behaviour. Having the simulation
traces we apply simulative model checking of linear-time temporal logic (LTL)
in a probabilistic setting (PLTL). Simulative model checking approximates the
probability of a given temporal logic formula by considering finite sets of finite
paths through the state space. Thus, it works even for systems with infinite state
spaces.

We discuss in detail some typical model components, demonstrating the suit-
ability of the introduced Petri net class DSPNBio for the envisaged applica-
tion scenario. These components will be analysed by checking sets of stochastic
simulation traces against PLTL properties. In doing so, a special category of
properties, the so-called invariant properties, will be used to prove at the same
time the plausibility of the applied simulation algorithm.

We conclude by looking briefly at a classical example of prokaryotic gene
regulation, the lac operon case.

2 Stochastic Modelling

We assume basic knowledge of the standard notions of qualitative place/transi-
tion Petri nets, see e.g. [Mur89], [Rei82], [HGD08]. To be self-contained we start
with recalling the fundamentals of (biochemically interpreted) stochastic Petri
nets, belonging to the Markovian world, before introducing the extended notions
resulting finally into non-Markovian Petri nets.

2.1 The Markovian Case - Stochastic Petri Nets (SPN Bio)

As with a qualitative Petri net, a stochastic Petri net maintains a discrete num-
ber of tokens on its places. But contrary to the time-free case, a firing rate
(waiting time) is associated with each transition t , which are random variables
X t ∈ [0,∞), defined by probability distributions. Therefore, all reaction times
can theoretically still occur, but the likelihood depends on the probability dis-
tribution. Consequently, the system behaviour is described by the same discrete
state space, and all the different execution runs of the underlying qualitative
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Petri net can still take place. This allows the use of the same powerful analysis
techniques for stochastic Petri nets as they are applied for qualitative Petri nets.

For a better understanding we describe the general procedure of a particular
simulation run for a stochastic Petri net. Each transition gets its own local
timer. When a particular transition becomes enabled, meaning that sufficient
tokens arrive on its preplaces, then the local timer is set to an initial value,
which is computed at this time point by means of the corresponding probability
distribution. In general, this value will be different for each simulation run. The
local timer is then decremented at a constant speed, and the transition will fire
when the timer reaches zero. If there is more than one enabled transition, a
race for the next firing will take place. After the firing of the winning transition,
the timers of the others still enabled transitions keep their values or are reset,
depending on the specific type of the net.

Technically, various probability distributions can be chosen to determine the
random values for the local timers. Biochemical systems are the prototype for
exponentially distributed reactions. Thus, for our purposes, the firing rates of
all transitions follow an exponential distribution, which can be described by
a single parameter ! , and each transition needs only its particular, generally
marking-dependent parameter ! to specify its local time behaviour. The follow-
ing definition summarises this informal introduction.

Definition 1 (Stochastic Petri net, Syntax). A biochemically interpreted
stochastic Petri net is a quintuple SPNBio = (P, T, f, v, m 0), where

– P and T are finite, nonempty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– f : ((P × T ) ∪ (T × P)) → IN0 defines the set of directed arcs, weighted by
nonnegative integer values.

– v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby
H :=

⋃
t" T

{
ht | ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ T .

– m0 : P → IN0 gives the initial marking.

The stochastic hazard function ht defines the marking-dependent transition rate
! t(m) for the transition t , i.e. ht = ! t(m). The domain of ht is restricted to the
set of preplaces of t, denoted by ¥t with ¥t := {p ∈ P |f (p, t) &= 0}, to enforce a
close relation between network structure and hazard functions. Therefore, ! t(m)
actually depends on a sub-marking only.

Stochastic Petri net, Semantics. Transitions become enabled as usual, i.e. if
all preplaces are sufficiently marked. However there is a time, which has to elapse,
before an enabled transition t ∈ T fires. The transition’s firing delay (waiting
time) is an exponentially distributed random variable X t with the probability
density function:

f Xt(" ) = ! t(m) · e(# λt(m)áτ ) , " ≥ 0.
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The firing itself does not consume time and follows the standard firing rule of
qualitative Petri nets. The semantics of a stochastic Petri net (with exponentially
distributed firing delays for all transitions) is described by a continuous time
Markov chain (CTMC). The CTMC of a stochastic Petri net without parallel
transitions is isomorphic to the reachability graph of the underlying qualitative
Petri net, while the arcs between the states are now labelled by the transition
rates. For more details see [MBC+ 95], [BK02], [HGD08].

Based on this general SPNBio definition, specialised biochemically inter-
preted stochastic Petri nets can be defined by specifying the required kind of
stochastic hazard function more precisely. In this paper, we are going to use the
molecule semantics with mass action transition rates. Therefore we deploy the
stochastic mass-action hazard function, which tailors the general SPNBio defini-
tion to biochemical mass-action networks, where tokens correspond to molecules:

ht := ct ·
∏

p" •t

(
m(p)
f (p, t)

)
.

The constant ct is the transition-specific stochastic rate constant, and m(p) is the
current number of tokens on a preplace p of the transition t . The binomial coeffi-
cient describes the number of non-ordered combinations of the f (p, t) molecules,
required for the reaction, out of the m(p) available ones. In the following we
abbreviate this formula by BioMassAction(ct).

See [GHL07] for another example, reading the tokens as concentration levels.

2.2 The Non-markovian Case - Extended Stochastic Petri Nets

We start off with an overview and brief biochemical motivation before introduc-
ing two classes of extended stochastic Petri nets.

There are quite a number of various extensions based on the fundamental
stochastic Petri net class SPN , see e.g. [MBC+ 95], [Ger01]. The most important
additional features concern deterministically timed transitions, or deterministic
transitions for short, which come along in different types. The crucial point is
that the firing delay (waiting time) before an enabled transition fires does not
depend anymore on a random variable, but is specified by a fixed time duration.
To avoid confusion, we will call the transitions with a probabilistic firing delay,
as introduced in the former subsection, stochastic transitions, if necessary. In
summary, our extended stochastic Petri nets support the following features:

– read and inhibitor arcs,
– programmed transitions (freestyle rate functions),
– deterministic firing delay,
– scheduled transitions.

Read and inhibitor arcs. are popular add-ons enhancing modelling comfort.
Read arcs (often also called test arcs) allow to specify positive side-conditions,
e.g., if the occurrence of a subunit depends on the conformation of a protein
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complex, or if a cell’s reaction to a given stimulus depends on the specific phys-
iological conditions of the cell. Contrary, inhibitor arcs allow to specify negative
side-conditions in an abstract way, e.g., if the presence of a given protein or
condition inhibits a specific reaction.

Speaking in technical terms, read and inhibitor arcs are directed arcs, going
always from places to transitions. The standard firing rule needs to be adapted
accordingly. The enabling condition is extended in the following way: if there is
an arc a with a weight w = f (p, t) connecting a place p with a transition t , then
t can be enabled in a marking m if the following conditions are also satisfied:

– a is a read arc ∧m(p) ≥ w,
– a is an inhibitor arc ∧m(p) < w .

The token situation on p is not changed by the firing of t , i.e. m$(p) = m(p) for
m t−→ m$.

Programmed transitions are stochastic transitions with freestyle rate func-
tions. The firing rate can be specified by arbitrary mathematical functions, stored
in lookup tables, if necessary.

To give an example, a popular phenomenon in biology is cooperativity. A
biochemical reaction may be controlled by an highly non-linear, cooperative
mechanism. Simple versions of cooperativity may be represented by complicated
Petri net structures, but there are limits. The kinetic mechanisms of a coop-
erative behaviour are often not completely understood. However, the acquired
understanding must be included in the model to get a coherent system model.

Deterministic firing delay is the outstanding characteristics of deterministic
transitions. The delay is always relative to the time point where the transition
gets enabled. There is one popular special case, the zero delay, for which the
immediate transitions are introduced. Immediate transitions have always highest
priority, which creates a subtle difference between an immediate transition and
a deterministic transition with zero firing delay: if there is a conflict between the
two, the immediate transition gets priority.

We will use the function TimedFiring(delay) to assign the delay constant.

Scheduled transitions belong to the deterministic transitions. The determin-
istic firing occurs according to a schedule specifying absolute points of the simu-
lation time. A schedule can specify just a single time point, or equidistant time
points within a given interval, triggering the firing once or periodically. However,
transitions only fire at their scheduled time points if they are enabled. Scheduled
transitions can dramatically restrict the behaviour, as we will see in Section 4.3,
example EX5.

Scheduled transitions allow to disturb the core model at well-defined time
points as it is done experimentally with the actual biological system under in-
vestigation in the wetlab; see Section 5 for an example.

We will use two functions to assign the required values: Fixed-
TimedFiring Single(time point ), FixedTimedFiring Periodic(begin time point ,
repetition , end time point ).
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2.3 Generalised Stochastic Petri Nets (GSPNBio)

Generalised stochastic Petri nets (GSPNBio) are stochastic Petri nets SPNBio

extended by inhibitor arcs and immediate transitions.

Inhibitor arcs are a powerful modelling feature and are known to bring com-
putational completeness. Consequently, Petri nets of the net class GSPN have
the same expressivity as an universal Turing machine [PW03]. However, in
terms of construction of the reachability graph (continuous-time Markov chain),
they do not establish additional challenges for finite state spaces, i.e. bounded
Petri nets.

Immediate transitions are a very special kind of deterministic transitions
with zero firing delay, i.e. they fire immediately after getting enabled, and always
prior to (general) deterministic and stochastic transitions. Consequently, getting
enabled and the firing itself coincide for immediate transitions. A cyclic system
behaviour involving only the firing of immediate transitions corresponds to an
infinite behaviour without time progress; we get a time deadlock.

If a stochastic simulation encounters a situation with more than one imme-
diate transition enabled, one is chosen randomly [Ger01]. However, an analysis
approach will consider all possible choices.

In terms of the reachability graph (continuous-time Markov chain), induced
by a GSPNBio Petri net, we distinguish between transient and non-transient
states. A system never spends time in a transient state before changing into
another state. Thus, the time spent (sojourn time) in transient states is always
zero, and not exponentially distributed anymore.

Consequently, the underlaying semantics is not a continuous-time Markov
chain anymore. However, the transient states can be removed such that the
reduced reachability graph corresponds again to a continuous-time Markov chain.
See [MBC+ 95] for a precise description of the reduction technique and related
formal definitions. In summary this means that GSPNBio can still be analysed
analytically, if the state space, i.e. the continuous-time Markov chain can be
constructed.

2.4 Deterministic and Stochastic Petri Nets (DSPN Bio)

Deterministic and Stochastic Petri Nets (DSPNBio) are generalised stochastic
Petri nets (GSPNBio) extended by deterministic transitions.

Deterministic transitions possess a deterministic firing delay (waiting time),
specified by a nonnegative real value. When a deterministic transition gets en-
abled, a count-down timer is started, initialized with the transition’s firing delay.
If the transition gets disabled before the timer reaches zero, the timer is switched
off, and the transition will not fire. Otherwise, the transition will fire as soon as
the timer reaches zero. The firing itself does not consume time.

If we consider stochastic Petri nets without deterministic transitions, the prob-
ability of two transitions firing at the same time is practically zero. Contrary,
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in stochastic Petri nets with deterministic transitions, it is possible that two
transitions want to fire simultaneously. We already discussed the special case of
two concurrently enabled immediate transitions. To analyse such a system, all
possible choices have to be considered, while in the simulation a random choice
takes place.

Definition 2 (Deterministic and stochastic Petri net). A biochemically
interpreted deterministic and stochastic Petri net is a septuple DSP NBio =
(P, T, f, g, v, d, m0), where

– P und T are finite, nonempty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– The set T is the union of three disjunctive transition sets, i.e.
T := Tstoch ∪ Tim ∪ Ttimed with:
1. Tstoch, the set of stochastic transitions with exponentially distributed

waiting time,
2. Tim, the set of immediate transitions with waiting time zero, and
3. Ttimed, the set of transitions with deterministic waiting time.

– f : ((P × T ) ∪ (T × P)) → IN0 defines the set of directed arcs, weighted by
nonnegative integers.

– g : (P × T ) → IN0 defines the set of directed inhibitor arcs, weighted by
nonnegative integers.

– v : Tstoch → H is a function, which assigns a stochastic hazard function ht

to each transition t ∈ Tstoch, whereby
H :=

⋃
t" Tstoch

{
ht | ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ Tstoch.

– d : Ttimed → IR+ assigns to each deterministic transition t ∈ Ttimed a non-
negative deterministic waiting time.

– m0 : P → IN0 gives the initial marking.

The stochastic transitions correspond to the transitions of the net class SPNBio,
so they have an exponentially distributed waiting time following the definitions
given in Section 2.1.

The net class DSPNBio is a subset of the class eDSPN , introduced in
[Ger01]. For details of the subset relation see [Leh07]. Therefore, the theory,
which has been developed to analyse eDSPN Petri nets, see [Ger01] and [Haa03],
can be deployed to analyse DSPNBio, too.

The remaining two features read arcs and scheduled transitions are not ex-
plicitly mentioned in the definition above, because the just allow a simplified
specification using the orthogonal basic concepts in DSPNBio.

Read arcs do not extend the modelling power as long as an interleaving se-
mantics is considered. A read arc and two opposite arcs are indistinguishable in
terms of the reachability graph (continuous-time Markov chain).

Scheduled transitions can be replaced by net components consisting of imme-
diate and deterministic transitions only; see [Leh07] for construction patterns.
Thus, they do not extend the modelling power.
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3 Stochastic Analysis

The non-Markovian behaviour of DSP NBio precludes the standard analyti-
cal approaches belonging to the Markovian world. However, there are adapted
stochastic simulation methods, ready to deal with the extended behaviour, see
e.g. [Ger01], [Haa03], [Leh07], and many more. A detailed discussion of the nec-
essary adaptions compared to the fundamental Gillespie algorithm [Gil77] is
beyond the given space limitations of this paper. Having the simulation traces,
we apply simulative model checking of linear-time temporal logic (LTL) in a
probabilistic setting (PLTL).

Simulative model checking follows the idea of Monte Carlo sampling and
handles large or even infinite state spaces through approximating results by
analysing only a subset of the state space – a finite set of finite outputs (traces)
from a stochastic simulation algorithm (SSA), e.g. Gillespie’s exact SSA or any
other suitable variations of it.

A natural choice of logic to describe properties of sets of traces is linear-time
logic. A linear-time logic operates over sets of linear paths through the state
space, equivalent to operating on simulation outputs. A given property holds if
it holds in all possible paths. Consequently, there are no path quantifiers.

We apply PLTL, a probabilistic linear-time temporal logic [DG08], [MC208].
This logic extends standard Linear-time Temporal Logic (LTL) [Pnu81] to a
stochastic setting with a probability operator and a filter construct, defining the
initial state of the property. LTL is the fragment of full Computational Tree Logic
(CTL*) [CGP01] without path quantifiers, implicitly quantifying universally over
all paths. To be self-contained we briefly recall the PLTL basics.

Syntax. PLTL is a logic to create path formulae # and to ask for their proba-
bilities. The grammar given in Table 1 defines a PLTL formula $ .

Semantics. The semantics is defined over finite sets of finite linear traces of
temporal behaviour, in our case by stochastic simulation runs. Each trace is
evaluated to a Boolean truth value, and the probability of a property holding
true is computed by the fraction of true values in the set over the whole set. It
goes without saying, the choice of simulator and simulation parameters used to
compute the sequence of states can affect the semantics of the PLTL property
and the correctness of the result.

P!x is any inequality comparison of the probability of the property holding
true, for example P%0.5. The expression P=? returns the value of the probability
of the property holding true. Equality testing of the probability, P= x, is not
supported for obvious reasons.

PLTL allows the use of filters over top-level LTL expressions, denoted by
{AP }, similar to those used in Probabilistic Computational Tree Logic (PCTL)
[HJ94] and Continuous Stochastic Logic (CSL) [ASSB96]. This permits specifica-
tions to refer to the state or states that the property is checked from, rather than
default to the initial state. This means that for a query of the form # {AP }, # is
checked from the first state that AP is satisfied. This can be a different one for
each stochastic run. The temporal operators follow the standard LTL semantics:
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Table 1. PLTL syntax. Please note that the square and curly brackets are part of
PLTL.

ψ ::= P!x[ φ ]
| P!x[ φ {AP} ] .

φ ::= Xφ | Gφ | Fφ | φ U φ | φ R φ
| ¬ φ | φ ∨ φ | φ ∧ φ | φ ⇒ φ
| AP .

AP ::= ¬ AP | AP ∨ AP | AP ∧ AP | AP ⇒ AP
| value comp value
| true | false .

comp ::= = | $= | ≥ | > | < | ≤ .

value ::= value op value
| variable | max(variable) | d(variable)
| Int | Real .

op ::= + | − | ∗ | / ,

with ! ∈ {<,≤,≥, >}, x ∈ [0, 1]. P!x can be replaced by Px=?.

– Next (X) - The property must hold true in the next time point.
– Globally (G) - The property must hold true always 1.
– Finally (F) - The property must hold true sometime in the future.
– Until (U) - The first property must hold true until the second property

holds true.
– Release (R) - The second property can only ever not hold true if the first

property becomes true.

The meta term variable stands for any variable in the model, Int is any integer
number and Real is any real number. In our case of stochastic Petri net analysis,
a variable is going to be a place name, and the formulae refer to the number of
tokens on a place in a given state. Additionally, there is a predefined variable
time, referring to the simulation time points. Thus we can, for example, express
properties which occur after some simulation time has elapsed.

The function max operates over all the token values of a place to return the
maximum in the given simulation runs, thus the peak of a species’ concentration,
modelled by a place, can be checked, e.g. P rotein = max(P rotein ). The function
d operates on each place in each state individually to return the derivative, thus
increasing token numbers can be checked, e.g. d(P rotein ) > 0.

This approach to simulative model checking incorporates two approx-
imations. The truth value of a single trace is approximated by operating over
a finite sequence of states only; and the probability of the property is approx-
imated through sampling a finite number of traces only. Thus, a subset of the
model’s behaviour is considered only. However, there are two special categories
1 To be precise, in the given setting of model checking by finite traces, globally means

’always –as far as known’.
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of properties, where definitive, i.e. non-approximating answers are possible by
simulative model checking.

– Monotone properties comply with the following condition: if the property
is satisfied in any path through the state space, then it is satisfied in any
extension of the path [HLMP04]. Formulae without the Globally operator
are monotone properties. The Globally operator and semantically equivalent
descriptions by the other operators are incompatible with the monotony
property. Considering longer paths can only increase the probability.

– Invariant Properties have to hold true in every state in every path. Thus
they comply with the following condition: if the property is satisfied in any
path through the state space, then it is satisfied in any other path. Their
probability is independent of the number of considered paths. They are often
used as consistency checks, and so do we in this paper.

PLTL may be considered as a linear-time counterpart to CSL. It can easily be
used to formalise the visual evaluation of diagrams as generated by determinis-
tic/stochastic simulation runs or by recording experimental time series. In the
following chapter we are going to use PLTL to analyse sets of stochastic simu-
lation traces of extended stochastic Petri nets, which have been constructed to
illustrate the expressiveness of DSP NBio.

4 Typical Components

We present some typical model components, controlling a network’s inflow and
outflow, and thus demonstrating the suitability of the introduced Petri net class
DSP NBio for the envisaged application scenarios of model-based design of wet-
lab experiments. We use the following abbreviations introduced in Section 2:

– BioMassAction(ct),
– TimedFiring(delay),
– FixedTimedFiring Single(time point ),
– FixedTimedFiring Periodic(begin time point , repetition , end time point );

and we apply the following drawing conventions:

– read arcs: identified by a black dot,
– inhibitor arcs: identified by a hollow dot,
– stochastic transition: hollow square,
– deterministically timed transition: black square,
– immediate transition: black rectangle.

We are going to examine the behaviour of each component by simulative PLTL
model checking over 100 (1,000) simulation runs. The individual runs are inde-
pendent, so generally different. We confine ourselves deliberately on introductory
formulae to illustrate the key ideas, increasing at the same time our confidence
in the accuracy of our simulation algorithm for the non-Markovian setting.
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4.1 Time-Controlled Inflow/Outflow

EX1. In our first example we consider a closed system, consisting of one
reversible reaction A ↔ B , modelled by the two transitions t1 (BioMass-
Action(0.11)) and t2 (BioMassAction(0.1)). The two deterministically timed
transitions input (FixedTimedFiring Periodic(11,1,20)) and output (Fixed-
TimedFiring Periodic(31,1,40)) are responsible for the absolutely timed inflow
and outflow of tokens, see Figure 1.

The transition input does not have preplaces, thus it fires for sure at the
time points 11, 12, . . . , 20, producing each time 1,000 additional tokens on place
A. Contrary, the transition output removes 1,000 tokens from place B at the
time points 31, 32, . . . , 40, provided there are enough tokens to enable the firing.
Figure 2 shows the first 100 time units of a single simulation run.

We give some introductory samples of temporal-logic formulae (queries), for-
malising the visual inspection of the simulation output as it might be done by
the expert evaluating former or designing the next wetlab experiments. We ap-
ply these queries to a set of 100 stochastic (single) simulation traces. The ratio
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t1

t2

input output

1000 1000

Fig. 1. First example of time-controlled inflow/outflow (EX1)
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Fig. 2. Simulation result of the network given in Figure 1 (single run) (EX1)
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of traces where the formula holds to the total number gives us a rough estimate
of a formula’s probability.

We check over exact Gillespie traces, i.e. all single events are logged. There
are generally no ”even” time points (like 30.000000 for 30). However, the firing
of scheduled transitions at absolute time points (e.g. 20 in this example) causes
exact time points in the simulation traces. We have to keep this in mind when
refering to absolute time points in the following queries.

Please remember, all place names are read as integer variables in the following
formulae; and the predefined variable time relates to the simulation time. The
probabilities as computed by simulative model checking are given in brackets.

– Maxima (probabilities: 1.0, 0.95).
P=? [ G(A < 7550) ]
P=? [ G(B < 5350) ]

– Peaks (probabilities: 0.9, 1.0).
P=? [ F(time = 20 ∧ A > 0.9·max(A) ∧ (3000 < B ∧ B < 3500)) ]
P=? [ F((29 < time ∧time < 30)∧(5000 < A ∧A < 5400)∧B > 0.9·max(B )) ]

– Steady state, relative statements (probabilities: 0.03, 0.59, 0.8, 0.91).
P=? [ time ≥ 50 ⇒ G(A < B ) ]
P=? [ time ≥ 55 ⇒ G(A < B ) ]
P=? [ time ≥ 60 ⇒ G(A < B ) ]
P=? [ time ≥ 70 ⇒ G(A < B ) ]

– Steady state, absolute statements (probabilities: 0.39, 1.0).
P=? [ time ≥ 50 ⇒ G((1500 < A ∧ A < 1800)∧ (1600 < B ∧ B < 2000)) ]
P=? [ time ≥ 60 ⇒ G((1500 < A ∧ A < 1800)∧ (1600 < B ∧ B < 2000)) ]

EX2. We vary the pattern of our first example to remove repeatedly all currently
available tokens on place B at equidistant time points, see Figure 3.

The immediate transition output consumes all tokens on place B , while there
is a token on place output on. The token on place output on is controlled
by the deterministically timed transition switch output on (FixedTimedFir-
ing Periodic(20,20, SimEnd)) and the immediate transition switch output off.
The transition switch output on initiates every 20 time units the cleaning pro-
cess. The immediate transition switch output off switches off the outflow as soon
as the place B is clean; otherwise each token arriving on B would be instantly
removed and no token accumulation would be possible anymore. A single simu-
lation run is given in Figure 4. We analyse a set of 100 of such stochastic traces
by the following temporal-logic queries (all yield probability 1.0).

– If the output is switched on, B is cleaned immediately.
P=? [ G(output on = 1 ⇒ B = 0) ]

– Cleaning of B at time point 20.
P=? [ F(time = 20 ∧ B = 0) ]
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Fig. 3. Second example of time-controlled inflow/outflow (EX2)
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Fig. 4. Simulation result of the network given in Figure 3 (single run) (EX2)

– Cleaning of B at time point 20, ensuring that B does not get cleaned earlier.
P=? [ F(B > 0 ∧ (B > 0 U (time = 20 ∧ B = 0))) ]

– Cleaning of B at time point 40, ensuring that B remains marked inbetween
as soon as it got a token.
P=? [ F(time = 20∧B = 0)∧F(B > 0∧ (B > 0 U (time = 40∧ B = 0))) ]

4.2 Token-Controlled Inflow

We discuss two examples and start again with a reversible reaction A ↔ B ,
modelled by the two stochastic transitions t1 (BioMassAction(0.1)) and t2 (Bio-
MassAction(0.005)), which we consider as a closed system, challenged by exper-
imental interventions.

EX3. In our first example of token-controlled inflow, the tokens on place A
are raised by 50 as soon as the token amount drops below the threshold 30,
see Figure 5. This behaviour is implemented by the immediate transition input ,
the firing of which is prevented by an inhibitor arc testing A. The weight 30
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Fig. 5. First example of token-controlled inflow (EX3)
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Fig. 6. Simulation result of the network given in Figure 5 (single run) (EX3)

of the inhibitor arc prevents the firing of input until the token amount drops
below 30. 50 tokens are added to place A as soon as the inhibition condition
becomes invalid, preventing again further inflow until the next drop occurs.
Figure 6 shows a single simulation run. We analyse a set of 1,000 runs against
the following formulae.

– The tokens on A never fall below the threshold 30 (probability: 1.0).
P=? [ ¬ F(A < 30) ]

– The transition input tries to keep the tokens on A between 30 and 80.
But there are always some tokens on place B , which may return to A
(probabilities: 0.946, 0.996, 0.999).
P=? [ F(A = 30 ∧ G(30 ≤ A ∧ A ≤ 80)) ]
P=? [ F(A = 30 ∧ G(30 ≤ A ∧ A ≤ 82)) ]
P=? [ F(A = 30 ∧ G(30 ≤ A ∧ A ≤ 84)) ]

– There is a constant inflow due to the transition input , and the rate of
t1 is (significantly) higher than of t2. Therefore, B increases permanently and
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Fig. 7. Second example of token-controlled inflow (EX4)
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Fig. 8. Simulation results of the network given in Figure 7 (single run). The input is
switched on/off (place input on) in dependence on the token situation on A (EX4).

without limits. This is true in the averaged case only, e.g. 100 runs. d(B )
specifies the derivative.
P=? [ G(d(B ) ≥ 0) ]

EX4. Our second example of token-controlled inflow is given in Figure 7. The
transitions t1 (BioMassAction(0.2)) and t2 (BioMassAction(0.1)) form again
the reversible reaction A ↔ B . We add the deterministically timed transition
output (FixedTimedFiring Periodic(5,5, SimEnd)) to get a significant consump-
tion of tokens. Each time output gets activated, it removes 10 tokens from B .

If the token amount on place A drops below 10, the deterministically timed
transition input (TimedFiring(0.5)) starts working and adds by each firing 5
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Fig. 9. Simulation results of the network given in Figure 7 (100 runs). A and B oscillate
due to the repeated switching between inflow on/off (EX4).

tokens with 0.5 units waiting time inbetween, until there are at least 30 tokens
on A. This behaviour is controlled by the immediate transitions switch on and
switch off, and the two places input on and input off, forming a 1-P-invariant1.
Switch on can only fire if there are less than 10 tokens on A, and switch off can
only fire, if there are at least 30 tokens on A.

We give two related diagrams. The single run in Figure 8 shows how the
input is switched on/off (place input on) in dependence on the token situation
on A. Figure 9 gives the average of 100 runs. It highlights the oscillation of A
and B , caused by the repeated switching between inflow on/off. We analyse the
token-controlled inflow component by the following formulae (1,000 runs) (the
first three yield probability 1.0).

– The two places input on and input off form a 1-P-invariant.
P=? [ G((input on = 1∧ input of f = 0)∨(input on = 0∧ input of f = 1)) ]

– The transition input is switched on/off if the token amount on A crosses
the threshold 10 or 30, respectively.
P=? [ G(A < 10 ⇒ input on = 1) ]
P=? [ G(A ≥ 30 ⇒ input of f = 1) ]

– There is a delay of 0.5 time units between the on/off switch and the reaction
of the actual inflow transition. E.g., after having switched off the input, 5
additional tokens will arrive by the already triggered firing of the transition
input . Thus, even a weaker range than specified by the threshold values does
not get probability 1 (probability: 0.995).
P=? [ G(5 ≤ A ∧ A ≤ 40) ]

1 Exactly one of both places carries a token at any point of time.
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4.3 Switch between Deterministic and Stochastic Transitions

The following two networks demonstrate how to switch between deterministic
and stochastic transitions. We start off with a time-controlled switch, before
discussing a token-controlled switch.

In both cases we consider a non-reversible reaction A → B , which is neverthe-
less modelled by two transitions: the stochastic transition t stoch (BioMassAc-
tion(0.1)) and the deterministically timed transition t det (TimedFiring(0.25)).
The chosen net structure ensures that always one of these two transitions only
is able to transfer tokens from place A to place B ; with other words: the to-
ken flow occurs either stochastically or deterministically. The mutually exclusive
firing is implemented by the two places stochastic on and det on, forming a
1-P-invariant and establishing side-conditions for t stoch or t det, respectively.

EX5. The actual time-controlled switch is performed by two determin-
istically timed transitions: switch to det (FixedTimedFiring Single(10)) and
switch to stoch (FixedTimedFiring Single(30)), which fire (each once!) at the
absolute time points 10 or 30, respectively, causing a switch in the other oper-
ation mode, see Figure 10. In summary, the modelled reaction A → B behaves
deterministically between the time points 10 and 30, and stochastically else.

A

1000

B

stochastic_on

det_on

t_stoch

t_det

switch_to_detswitch_to_stoch

Fig. 10. Example of time-controlled switch between deterministic and stochastic
behaviour. The semantic functions assigned to the transitions switch to det and
switch to stoch allow them to fire only once (EX5).

EX6. We keep the basic principle for the token-controlled switch, but replace
the transitions switching between the operation modi by immediate transitions,
which depend on the token situation in place A. The immediate transitions
switch to det and switch to stoch fire each once as soon as the token amount
on place A drops below 700 or 500, see Figure 12. In summary, the modelled
reaction A → B behaves deterministically for token amount between 500 and
700, and stochastically else.

The diagrams in Figure 11 and 13 show the behaviour of the two patterns for
a single run each. For both we confirm the mutually exclusive operation mode
of the stochastic and deterministic behaviour by the following query.
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Fig. 11. Simulation result of the network given in Figure 10 (single run). There is a
deterministic token flow from A to B between time points 10 and 30, and stochastic
flow else (EX5).
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1000 B

det_on

stochastic_on

t_stoch

t_det

switch_to_det

switch_to_stoch
700

500

Fig. 12. Example of token-controlled switch between deterministic and stochastic be-
haviour. The additional preplaces of the immediate transitions bring the equivalence
to the net component in Figure 10; i.e. the immediate transitions fire only once (EX6).

– The two places stochastic on and det on form a 1-P-invariant.
P=? [ G((stochastic on = 1 ∧ det on = 0) ∨

(stochastic on = 0 ∧ det on = 1)) ]

We conclude the analyses with checking the range of deterministic versus stochas-
tic behaviour for the two discussed patterns.

– Deterministic token flow from A to B between time points 10 and 30.
P=? [ (10 ≤ time ∧ time < 30) ⇒ det on = 1 ]
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Fig. 13. Simulation result of the network given in Figure 12 (single run). There is a
deterministic token flow from A to B for a token amount on A between 500 and 700,
and stochastic flow else (EX6).

– Stochastic token flow from A to B from 0 up to time point 10, and starting
at time 30 again.
P=? [ (time < 10 ∨ 30 ≤ time ) ⇒ stochastic on = 1 ]

– Deterministic token flow from A to B for a token amount on A between 500
and 700.
P=? [ (500 ≤ A ∧ A < 700) ⇒ det on = 1 ]

– Stochastic token flow from A to B for a token amount on A less than 500 or
greater or equal 700.
P=? [ (A < 500 ∨ 700 ≤ A) ⇒ stochastic on = 1 ]

All these properties are invariant properties, i.e. they yield probability 1.0, in-
dependently of the number and the length of considered simulation traces.

5 Lac Operon Model

We conclude by looking briefly at a classical example of prokaryotic gene regu-
lation, the lac operon case. We follow the simplified version discussed in [Wil06]
and specified there by a set of reaction equations and in an SBML-shorthand
notation. We keep all naming conventions and the initial conditions, and trans-
late the textual representation into a (qualitative) Petri net, reflecting explicitly
the inherent structure of the regulatory network, compare Figure 14. Finally, we
assign the rate equations as specified in the SBML code, and we get a stochastic
Petri net.
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Fig. 14. Lac operon model according to [Wil06]. Macro transitions (drawn as two
centric squares) indicate reversible reactions.

The core model of the network under consideration is extended by a
special transition – an event in SBML terminology – modelling a timed in-
tervention in a wetlab experiment. The transition Intervention (FixedTimed-
Firing Periodic(50000,50000, SimEnd)2) introduces 10,000 molecules of Lactose
every 50,000 time units, compare Figure 15.

To increase our confidence in the model we start with a preliminary structural
analysis and compute the P-invariants and T-invariants3. There are input tran-
sitions, so the net can not be covered by P-invariants. However, there are three
P-invariants, inducing mass-conserving subnetworks (modules) and enjoying ob-
vious biological meaning. The preserved species is given first in the following
short-hand notation:

– pi1 = {Idna},
– pi2 = {Rnap, RnapOp},
– pi3 = {Op, IOp, RnapOp}.

Contrary, T-invariants do cover the net, which is a common consistency criteria
for well-formed net structures, allowing e.g. a steady state behaviour. Each T-
invariant induces a self-contained, state-repeating subnetwork (module). Besides
the expected three trivial T-invariants for the three reversible reactions:
2 Here we differ from the model given in [Wil06], where the modelled intervention

occurs only once at a specified point of time.
3 For all notions used in this section, but note introduced in this paper, see [HGD08].
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Fig. 15. Simulation result of the lac operon model: Lactose

– ti 1 = {LactoseInhibitorBinding, Lac toseInhibitorDissociation },
– ti 2 = {InhibitorBinding , InhibitorDissociation },
– ti 3 = {RnapBinding, RnapDissociation },

we get the following six non-trivial T-invariants, each input/output behaviour is
made of:

– ti 4 = {InhibitorT ranscription, I nhibitorRnaDegradation },
– ti 5 = {InhibitorT ranslation, InhibitorDegradation },
– ti 6 = {InhibitorT ranslation, Lac toseInhibitorBinding,

LactoseInhibitorDegradation },
– ti 7 = {Intervention, Conversion },
– ti 8 = {RnapBinding, T ranscription, RnaDegradation },
– ti 9 = {T ranslation, ZDegradation }.

There are four transitions (underlined), which are not involved in non-trivial
T-invariants. However, they are crucial for the regulation mechanism between
Z and Lactose. Please note, each T-invariant is given in a short-hand notation,
enumerating the T-invariants’ transitions in an order, which they may follow to
reproduce a state, or what has to happen to get the system back in the steady
state after some disturbences.

Remarkably, the net fulfills the Deadlock Trap Property (DTP), however is
beyond the structural net class extended simple. In summary this allows the
conclusion that there is no reachable dead state, in which any further sys-
tem activities would be prevented. Actually, we expect the model to be live,
which can not be proven with the analysis techniques available for (qualitatively)
unbounded Petri nets.
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Fig. 16. Simulation result of the lac operon model: Z

However, there are property-preserving reduction rules downsizing the net
structure, which are supported by the Integrated Net Analyser INA [SR99].
Applying these structural reduction rules, we get a smaller network, consisting
of 2 places and 4 transitions. Liveness becomes obvious for this reduced network;
see the supplementary material for more details.

The place Z models the enzyme %-Galactosidase; its reaction to the repeatedly
sudden increase of Lactose molecules is shown in Figure 16. We analyse for the
first intervention how a peak of Lactose triggers a peak of Z .

– The intervention causes Lactose to peak at time point 50,000 (probabilities
1.0, 1.0, 0.65).
P=? [ (49, 999 ≤ time ∧ time < 50, 000) ⇒ Lactose≤ 0.01·max(Lactose) ]
P=? [ time = 50, 000 ⇒ Lactose≥ 0.99·max(Lactose) ]
P=? [ (52, 000 ≤ time ∧ time < 52, 001) ⇒ Lactose≤ 0.1·max(Lactose) ]

– Z is highly likely to be at low concentration at time point 50,000 (probability
0.9).
P=? [ time = 50, 000 ⇒ Z ≤ 0.1·max(Z ) ]

– Z will rise to at least 80% of its maximal value within 2,000 time units
(probability 0.925).
P=? [ F ( (50, 000 < time ∧ time < 52, 000)∧ Z ≥ 0.6·max(Z ) ) ]

– In summary, a peak of Lactose triggers a peak of Z within 2,000 time units
(probability 0.925).
P=? [ time = 50, 000∧ Lactose≥ 0.99·max(Lactose) ∧ Z ≤ 0.1·max(Z )

⇒ F (Z ≥ 0.8·max(Z ) ∧ time < 52, 000) ]
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6 Tools

The Petri net components and the lac operon model have been constructed using
Snoopy [Sno08], [HRS08], a tool to design and animate or simulate hierarchical
graphs, among them qualitative and continuous Petri nets, and the extended
stochastic Petri nets as used in this paper. Snoopy provides export to various
analysis tools as well as import and export of the Systems Biology Markup
Language (SBML) [HFS+ 03].

The qualitative analyses of the lac operon model have been made with the
Petri net analysis tool Charlie [Cha08], complemented by the structural reduc-
tion rules supported by the Integrated Net Analyser INA [SR99]; see the corre-
sponding log files in the supplementary material.

The quantitative analyses have been done by the cooperation of two tools:
Snoopy’s build-in simulation algorithm for extended stochastic Petri nets to
generate the sets of simulation traces, and MC2 [MC208], a model checker by
Monte Carlo sampling, for the simulative PLTL model checking. MC2 reads sets
of simulation traces as, e.g., generated by Snoopy and expects additionally a file
with the temporal-logical formulae.

As a proof of concept, we confined ourselves to rather small sets of 100 (1,000)
runs only, allowing at the same time an affordable repetition of all computational
experiments by the reader. A general recommendation is to start with smaller
sets of simulation runs, just to check whether one got a formula right, before
analysing larger sets, which could actually be done in parallel. None of the com-
putational experiments for the typical components required more than 6 minutes
per net example on a standard machine. Simulative model checking of the lac
operon model is slightly more expensive. The traces have been generated on a
workstation (2.83 GHz, 64 bit). The 100 exact traces (simulation time interval:
300,000) require about 5 GB. The model checking itself consumes less than 30
minutes on a standard machine.

Snoopy, Charlie as well as the data and analysis files of the discussed Petri
net examples are available at

www-dssz.informatik.tu-cottbus.de/examples/xspn-components.

7 Summary

This paper extends the Markovian stochastic Petri nets SPNBio as introduced
in [GHL07] to model and analyse biochemical networks. The extensions lead to
the definition of Generalised Stochastic Petri nets GSPNBio and deterministic
and stochastic Petri nets DSPNBio. They include read and inhibitor arcs as well
as several time-dependent transition types, which in summary preclude standard
Markovian analysis approaches. Therefore we applied simulative model checking,
approximating the probability of a given temporal logic formula by considering
finite sets of finite paths through the state space. These paths are generated by
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stochastic simulation algorithms, adjusted to deal with the extended modelling
features.

We discussed some typical net components demonstrating the usability of
DSPNBio for the envisaged application scenario of model-based experiment
design and evaluation. These components have been analysed by checking sets of
stochastic simulation traces against PLTL properties. Invariant properties have
been used to prove at the same time the plausibility of the applied simulation
algorithm. We concluded with briefly looking at the lac operon case study, one
of the classical examples of prokaryotic gene regulation.

Currently we consider some further extensions of our modelling formalism;
among them are variable deterministic firing delays specified by an interval or an
arbitrary marking-dependent function, reset and equal arcs as well as marking-
dependent arc weights.

Simulative model checking is an extremely powerful tool. By way of intro-
duction we have deliberately deployed some basic features of PLTL only. There
is an interesting extension, PLTLc [DG08], supporting free variables, and thus
allowing richer and more elegant properties, which however are also more com-
plicated to write and to interpret. Thus, demonstrating these advanced features
to more sophisticated users is beyond the scope and space limits of this paper.
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