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ABSTRACT

Systems biology aims to facilitate the understanding of complex interactions between components in
biological systems. Petri nets (PN), and in particular Coloured Petri Nets (CPN) have been demonstrated to
be a suitable formalism for modelling biological systems and building computational models over multiple
spatial and temporal scales. To explore the complex and high-dimensional solution space over the behaviours
generated by such models, we propose a clustering methodology which combines principal component
analysis (PCA), distance similarity and density factors through the application of DBScan. To facilitate
the interpretation of clustering results and enable further analysis using model checking we apply a pattern
mining approach aimed at generating high-level classificatory descriptions of the clusters’ behaviour in
temporal logic. We illustrate the power of our approach through the analysis of two case studies: multiple
knockdown of the Mitogen-activated protein-kinase (MAPK) pathway, and selective knockout of Planar
Cell Polarity (PCP) signalling in Drosophila wing.

1 INTRODUCTION

Systems biology is an interdisciplinary field which aims at a system-level understanding of biological
systems. It focuses on the study of complex interactions (networks) rather than their individual molecular
components. A biological system typically comprises large numbers of different elements which can interact
selectively and nonlinearly to produce complex coherent behaviours. This complexity makes it impossible
to intuitively understand the behaviour of the system.

Mathematical models enable us to investigate the dynamic behaviour of such systems by allowing
the construction of in-silico experiments to test various hypotheses and predict behaviours which can
subsequently be tested in vitro and/or in vivo. Among them, Petri Nets (PN) (Gilbert, Heiner, and Lehrack
2007) not only provide a graphical representation of the system but also enable us to model biological
systems in both qualitative and quantitative settings. PN simulation can generate time series data of the
concentration of each molecular species to be used for a behavioural comparison of different variants of
models created by altering one or more parameters. As the number of these variants increases the analysis
can be too challenging to be handled manually and the development of tools for the automatic analysis
and characterization of model behaviours is becoming essential. In this paper we present a new clustering
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framework for the analysis of time series data generated by computational models of biological systems
in order to detect analogous behaviours of different models.

Unsupervised clustering is helpful to identify groups of similar behaviours; however it does not provide
an explicit description of the characteristics of each class and the semantic meaning of each cluster is
left to subsequent analysis, often performed manually. To facilitate this interpretation, we have developed
a procedure to automatically generate semantic descriptions of the time series belonging to each cluster,
based on the temporal logic language PLTLc (Probabilistic Linear-time Temporal Logic with constraints
– see Donaldson and Gilbert (2008)). The method can be thought of as a Temporal Logic (TL) feature
generation method to identify time series with similar behaviours. The problem of selecting the TL features
which identify time series with similar behaviours has been addressed in Batal et al. (2011). In that work
the most relevant features are selected starting from a complete TL description of the time series. We
instead address the problem of TL feature generation starting from numerical data.

The paper is structured as follows: Section 2 gives a description of the two case studies that we employed
to test the validity of our algorithms. In Section 3 we describe our new clustering methodology and its
validation method, while Section 4 describes PLTLc and the automatic generation algorithm. Section 5
presents the results of the tests on the case studies.

2 MOTIVATIONAL CASE STUDIES

In this paper we illustrate the potential power of our approach by applying it to analyse models of two
biological exemplars, the Mitogen-activated protein kinase (MAPK) pathway and Planar Cell Polarity
(PCP) signalling in Drosophila wing. The first is a benchmark case study which illustrates the complexities
introduced by multiple variants of a single-scale model and we used it to demonstrate the power of our
approach. The second case study integrates spatial scales ranging from the intra-cellular to the tissue
level and has been used to show the applicability of the proposed approach to more complex multiscale
models. The Mitogen-activated protein kinase (MAPK) pathway is one of the most significant intracellular
signal transduction pathways, which passes information from the cell surface to the nucleus. This signal
transduction pathway is involved in a number of core cellular processes, and is constitutively activated by
mutations in many human tumours (Hoshino et al. 1999), hence playing a major role in drug target discovery.
The Hornberg et al. (2005) model that we use describes the MAPK signal transduction pathway starting
from EGF binding at the cellular membrane to the phosphorylation of ERK, and integrates knowledge from
previous models (Kholodenko et al. 1999, Schoeberl et al. 2002). It comprises 148 molecular processes
(reactions) described with mass-action kinetics, and 103 variable molecular species (proteins & complexes).
RNA interference (RNAi) (Morris 2008) is a mechanism which can be used to inhibit the expression of
specific genes, and can be used to investigate the functioning of biochemical networks. Using this method it
is possible to knockdown in a graded manner one or more genes in the MAPK pathway; however the number
of variations to be analyzed rapidly increases with the number of simultaneously knocked down species.
The challenge is to cluster the behaviours of a selected read-out species (e.g. doubly-phosphorylated ERK)
and then to interpret the behaviour of these clusters.

Planar cell polarity (PCP) is a mechanism which controls the orientation of cells within a sheet of cells
and occurs in most cell types and tissues. Defects in PCP in vertebrates are responsible for developmental
abnormalities in multiple tissues including the neural tube, the kidney and the inner ear (reviewed in Simons
and Mlodzik (2008)). The signalling mechanisms underlying PCP have been studied most extensively in
the epithelia of the fruit fly Drosophila melanogaster including the wing, the abdomen, the eye, and
the bristles of the thorax. The adult Drosophila wing comprises approximately 30,000 hexagonal cells
each of which contains a single hair pointing in an invariant distal direction. This hair is extruded from
the membrane at the distal edge of each the cell during pupal development, at the conclusion of PCP
signalling. The proteins involved are thought to mediate the cell-cell communication that is part of the
core machinery of PCP signalling and to be involved in establishing the molecular asymmetry within
and between cells which is subsequently transformed into distal polarisation of the wing hairs (reviewed
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in (Strutt 2002)). The mechanism of PCP can be investigated in-vivo by studying the disruptive effect on
hair polarity by the introduction of certain mutations into areas (clones) in the wing by mutagenesis. When
modelling this situation we need to consider a sufficiently large number of cells and we use the Flamingo-
Frizzled-Dishevelled complex (FFD) as a proxy for the hairs. In (Gao et al. 2011) we have constructed
a multiscale hierarchically coloured Petri net (HCPN) model to generate an in-silico patch (tissue) based
on a honeycomb grid of 112 cells. Each cell is sub-divided into one central and 6 sub-membrane virtual
compartments in order to model intracellular locality, see Fig.2. The underlying unfolded continuous PN
model comprises 8,624 species (places) and 9,184 reactions (transitions), and thus the system of ordinary
differential equations (ODEs) to be analysed comprises 8,624 equations, because each species is modelled
by one equation. As in the previous case study, we wish to cluster and interpret the behaviour of the variant
models representing the 6∗112 = 672 sub-membrane compartments.

3 CLUSTERING MODEL BEHAVIOURS

In this section we describe the clustering technique used to automatically identify sets of homogeneous
model behaviours. We assume that the system behaviour is described by (possibly multivariate) time series
obtained through simulation. These unlabeled time series could comprise monitoring data collected during
different periods t = 1 . . .T from a particular process (m = 1) or from more than one process (m > 1). A
time series X(t) is a series of observations, xi(t), i = i . . .m, t = 1 . . .T , made sequentially through time,
univariate when m = 1 or multivariate when m > 1.

Clustering algorithms consider a set D of n unlabeled data tuples D = X j(t), j = 1...n, t = 1..T , where
X j(t) is the time series (univariate or multivariate) represented by the jth element of D. The purpose of
clustering is to identify structure in D by objectively organizing data into homogeneous groups. Here
the notion of homogeneity means that the within-group-object similarity and the between-group-object
dissimilarity are maximised.

Various algorithms have been developed to cluster different types of time series data, see (Liao 2005).
We can roughly divide time series clustering approaches into two categories: those which try to modify the
existing algorithms for clustering static data in such a way that time series data can be handled, in this case
the main effort consists in the definition of suitable distance/similarity measures for time series, and those
which convert time series data into a feature vector of lower dimension so that the existing algorithms for
clustering static data can be directly used. Our algorithm follows the latter approach, by using a feature
reduction method before applying a density-based clustering method.

The input dataset in our examples comprises raw data generated by simulation runs in the form of time
series of a fixed (possibly very large) number of time points. Clustering directly on this raw data would
be computational demanding and subject to a high degree of noise. In order to overcome this problem
our clustering methodology is based on calculating the degree of similarity using Principal Component
Analysis (PCA), distance similarity and density factors.

3.1 Background on Principal Component Analysis

Principal Component Analysis (PCA) is an exploratory multivariate statistical technique for simplifying
complex data sets represented by a matrix X ∈ℜN×T . It is aimed at finding R new variables (called Principal
Components), where R� the original number of variables T . In the case of time series, T represents the
total time and N is the number of elements observed during that time.

Each principal component is a linear combination of the original variables and is derived in such a
manner that its successive component will account for a smaller portion of variation in X. The derivation
of the new components is based on the covariance matrix CX of X . Each eigenvector (e j) provides the
component weight ai j of the Yj component and the corresponding eigenvalues (λ j) provide the variance
of this component. Therefore, we can sort the eigenvalues λ j in descending order and retain only the
first R whose corresponding variables will account for as much as possible of the variance present in the
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original T -dimensional dataset, while remaining mutually uncorrelated and orthogonal. R is chosen as the
minimum value which satisfies minR : ∑

R
i=1 λi

∑
T
j=1 λ j

≥ τ , where τ is usually 90% or 95%.

3.2 Density-based clustering

To the best of our knowledge, three categories of clustering methods, i.e. partitioning methods, hierarchical
methods, and model-based methods, have been utilised directly or modified for time series clustering (Golay
et al. 1998, Van Wijk and Van Selow 1999). Partitioning and hierarchical methods suffer from the inability to
identify non-spherical clusters, and their performance is usually affected by noisy data. This is particularly
true when analysing biological data, as highlighted in (Fersini et al. 2010). Model-based approaches,
instead, assume that each time series has been generated by some kind of stochastic model or by a mixture
of underlying probability distributions. A visual inspection of our data showed that clusters of common
behaviours were characterised by non-spherical shapes. Moreover, our time series exhibit rather smooth
behaviour, partly due to being the results of deterministic simulation. Therefore the application of clustering
procedures belonging to the above categories did not lead to any useful results as shown in Section 5.

This problem can be overcome by another category of clustering methods, called Density-based methods,
which analyse the cluster detection space, looking for areas where the density (number of elements or data
points) exceeds some threshold. For these reasons we focused on a density-based method called DBScan
(Density-Based Spatial Clustering of Applications with Noise) (Ester et al. 1996) which is well suited
to cluster data of arbitrary shape. The concept of density is based on two parameters, which define the
neighbourhood of a point: the radius E ps of the neighbourhood and the minimum number of points MinPts
needed to consider a neighbourhood as dense. The neighbourhood is defined as the set of points NE ps
which are distant E ps or less from a point p.

In order to find a cluster, DBScan starts with an arbitrary point p; if NE ps(p) has at least MinPts points,
then p is labeled as a “core” point and the algorithm iterates over the points in its neighbourhood. In this
way, DBScan generates a set of core points connected by their neighbourhood, which is considered as a
cluster. If a point is not labeled as “core”, but is in the neighbourhood of a core point, then it is labeled
as a “border” point and included in the cluster. When all the points have been examined, and a point is
not yet part of any cluster then it will be labeled as a “noise” point and treated as an outlier.

Please refer to (Ester et al. 1996) for further details on DBScan.

3.3 Cluster evaluation

It is generally accepted that a good clustering algorithm should aim at maximising both the separation
between the clusters and the compactness within clusters. Nevertheless, different clustering algorithms may
lead to qualitatively different results whose significance is difficult to evaluate. The application domain and
its specific requirements have to be taken into account for define an appropriate cluster validity evaluation
index. Several validity indexes appear in literature which are well suited in cases when the cluster shape
is spherical (or hyper-spherical), including the validity index by Dunn (1974) and the Silhouette validation
technique (Rousseeuw 1987). They approximate the measure of compactness and separation through the
definition of a cluster centre and therefore fail to capture the validity of the results when the dataset contains
clusters with arbitrary shape, which is the case in our study. Halkidi and Vazirgiannis (2008) introduced
a new validity index, called CDbw (Composed Density between and within clusters) which measures the
quality of the clusters by considering multiple representative points per cluster and therefore accommodates
non hyper spherical cluster geometry. The validity index CDbw is defined as the product of three main
indices, namely compactness, cohesion and separation.

CDbw = Compactness ·Cohesion ·Separation
where Compactness measures the density within each cluster, Cohesion measures the changes of density

distribution within clusters, and Separation measures the separation of clusters (for more details, refer
to (Halkidi and Vazirgiannis 2008)). The higher the CDbw value, the better the quality of clusters. CDbw
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offers a valuable support in evaluating clustering results and we employ this measure both for tuning the
proposed clustering algorithm and for a comparative evaluation of different clustering techniques.

4 TEMPORAL LOGIC DESCRIPTIONS

Temporal Logics are systems of rules and symbols which can be used to represent and reason about
propositions qualified in terms of time. In particular, classical propositional and predicate logic, which have
truth-functional logical operators (¬, ∨, ∧ →) can be extended with temporal modal operators. Linear-time
Temporal Logic (LTL) (Pnueli 1981) is the fragment of full Computational Tree Logic (CTL*) (Clarke,
Grumberg, and Peled 2001) without path quantifiers, implicitly universally quantifying over all paths. LTL
has been introduced in a probabilistic setting in (Baier 1998), and extended by numerical constraints over real
value variables in (Fages and Rizk 2007). PLTLc (Donaldson and Gilbert 2008) combines both extensions,
complemented by the filter construct as used in Probabilistic Computational Tree Logic (PCTL) (Hansson
and Jonsson 1994) and Continuous Stochastic Logic (CSL) (Aziz, Sanwal, Singhal, and Brayton 1996).
The syntax and semantics of PLTLc have been described in (Donaldson and Gilbert 2008); here we give
a short summary of those features which we have used in this research. The temporal operators employed
in PLTLc are:

• Next: Xφ : φ holds at the next state.
• Until: φUψ: ψ holds at the current or a future position in time, and φ holds until that time.
• Release: φRψ: φ releases ψ if ψ is true until the first position in time in which φ is true (or forever

if such a position does not exist).
• Finally: Fφ : φ eventually holds (somewhere on the subsequent path).
• Globally: Gφ : φ holds for the entire path from the current state onwards.

LTLc provides the ability to define any function returning a real or integer value. We have chosen to
use d(Variable), parameterised by a state, which returns the derivative of the Variable in each state, thus
increasing and decreasing species values can be expressed: d(Protein)> 0 and d(Protein)< 0 respectively.

PLTLc enhances LTLc by the inclusion of a probability operator and filter construct. The top-level
definition of PLTLc is ψ ::= P�x[ φ ], where φ is an LTLc expression. Given that � ∈ {>,≥,<,≤} and
x ∈ [0,1], P�x is any inequality comparison of the probability of the property holding true, for example
P≥0.5. We also permit the expression P=? which returns the value of the probability of the property holding
true.

The semantics of PLTLc is defined over a finite set of finite paths through the system’s state space –
stochastic or deterministic simulations, or time series data recorded in wet lab experiments. In this work
we consider only results of deterministic simulations; however these are typically derived from multiple
model variants due to the nature of our case studies, each variant generating one trace. Because we do not
average over the variant traces but consider them together as a set, we exploit the probabilistic capabilities
of PLTLc which permit model checking over sets of traces rather than single traces; the probabilities are
used during the evaluation process (see Section 4.1 below).

4.1 Automatic generation of temporal logic descriptions

In order to semantically decode the clusters obtained containing time series which exhibit similar be-
haviours, we developed a pattern learning algorithm to automatically generate formal statements in PLTLc
characterizing each cluster. To enable the adequate description of a cluster, a PLTLc statement should be
general enough to describe all the time series in the cluster, and simultaneously discriminative enough to
distinguish between time series of different clusters.

Let φ(C) denote a statement for describing a single cluster C, then the optimal statement φopt should
maximise P=?[φ (C) ] while minimising P=?[φ (¬C) ], where ¬C denotes the set of time series not belonging
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to C.We start by defining a set of property patterns, which act as templates needed to describe the behaviour
of one time series:

• Trend: describes the trend of a time series as a sequence of directions, increase, steady and decrease
determined respectively by derivatives d[X ]> 0, d[X ] = 0 and d[X ]< 0. The Trend is a chain of
directions connected by the temporal operator Until (U). The last direction continues until the end
of the time series, therefore to describe it we use the operator Globally (G).

φ1U(φ2U(. . .U(φm−1U(G(φm))) . . .))

where m is the number of directions in the time series, and φ j = d(X)�0 (where � is {=,<,>}).
• Time: identifies the series of m time points when the time series changes its direction.
• Extrema: represents the sequence of value and time of occurrence of all the local minima and

maxima of a time series. We used the temporal operator Future (F) to describe this property.
• Steady State: is the value of the time series steady state (if any). A time series has a steady state

if its last local trend is steady.

Now we can derive the properties of a cluster Ci of time series by generalizing the properties above
in such a way that (almost) all the time series in the cluster can be represented by these properties.

• Trend(Ci): to define the trend Trend(Ci) of a cluster Ci we compute the Trend(X) of all the time
series X ∈Ci, and order them by their frequency. We denote by F0

i the most frequent trend in Ci,
with F1

i the second most frequent and so on. We denote by C j
i the set of time series X ∈Ci such

that Trend(X) = F j
i . Trend(Ci) is given by F0

i ∨F1
i ∨·· ·∨F j

i . . . .
• Time(Ci): time series in Ci having the same Trend may have different Time patterns because the

direction changes can occur at different times. Therefore, for each C j
i ∈Ci we compute for each

direction change the time interval which contains all the times in which the change may occur. The
result is, for each trend F j

i of Ci, a set of intervals (ťl , t̂l), with l = 1 . . .m.
• Extrema(Ci): is defined as the sequence of time and value intervals, (ťk, t̂k) and (X̌k, X̂k) respectively,

which represent the lower and upper bounds of the k ordered extrema of the time series X j ∈C0
i .

• Steady State(Ci): To define the steady state of a cluster, we consider the range of steady state
values of all the time series X ∈C0, which we denote by the interval (š, ŝ).

The PLTLc description for each cluster Ci is then generated using the following procedure:

1. Consider cluster Ci and the set of remaining clusters ¬Ci. We compare the most frequent trend F0
i

of Ci with the most frequent trend F0
¬i of ¬Ci. If these trends are different, the PLTLc statement is

generated using the description of all the trends F j
i in Ci, connected by the symbol ∨.

φopt(Ci) = F0
i ∨F1

i ∨·· ·∨F j
i . . .

=
∨

j(φ1(F
j

i )U(φ2(F
j

i )U(. . .U(φm j−1(F
j

i )U(G(φm j(F
j

i ))) . . .)))

where φl(F
j

i ) : d(X)�0∧Time≥ ť j
l ∧Time≤ t̂ j

l . Else, continue to step 2.
2. If F0

i == F0
¬i, then we consider the times when the time series changes direction, i.e. Time(Ci) and

Time(¬Ci), and we compute two series of l time intervals (ťCi
l , t̂Ci

l ) and (ť¬Ci
l , t̂¬Ci

l ) which represent
the average of the lower and upper bounds of the values in Time(Ci) and Time(¬Ci). If their
difference is greater than a threshold ηtime for at least one l, then the PLTLc statement is:

φopt(Ci) = F0
i ∨F1

i ∨·· ·∨F j
i . . .

=
∨

j(φ1(F
j

i )U(φ2(F
j

i )U(. . .U(φm j−1(F
j

i )U(G(φm j(F
j

i ))) . . .)))
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as in step 1. Else, continue to step 3.
3. In this step we compare Extrema(C0

i ) with Extrema(¬C0
i ). Note that, we consider only the extrema

of the most frequent trends, which by construction must have the same number of extrema equal
to K. For each extremum k, we compute the average value of (X̌k, X̂k) for Ci and ¬Ci. If their
difference is greater than a threshold ηex for at least one k, then the PLTLc statement is:

φopt(Ci) = F(ψ1)∧F(ψ2)∧·· ·∧F(ψ p)∧φ1(F0
i ) . . .

where ψk : X ≥ X̌k∧X ≤ X̂k∧Time≥ ťk∧Time≤ t̂k. Otherwise, continue to step 4.
This procedure ensures a good tradeoff between specificity and generality for the resulting PLTLc
statements. Indeed, the all-against-all comparison of trends F j would be not only computationally
demanding but would also generate too general PLTLC statements.

4. In this step we compare Steady State(Ci) and Steady State(¬Ci). We compute the average value
of (š, ŝ) for Ci and ¬Ci. If the difference is greater than a threshold ηss, we define the PLTLc
statements as:

φopt = φ1(F0
i )U(φ2(F0

i )U(. . .U(φm−1(F0
i )U(G(φm(F0

i )))) . . .))

where φm(F0
i ) : d(X) = 0∧X ≥ š∧X ≤ ŝ. Otherwise, it means that we cannot discriminate between

Ci and the other clusters.

Note that the effectiveness of the PLTLc generation algorithm depends on the cluster’s quality rather
than on the number of time series, because it is affected by the variety in the number and times of the
direction changes of the time series. Moreover, the effectiveness is affected by the thresholds ηtime, ηex
and ηss, whose values have to be chosen empirically.

To evaluate φopt(Ci) we use the probability P=?[φopt (Ci) ] that the statement correctly classifies the time
series belonging to Ci, and we associate a confidence level Conf to this probability value defined as:

Conf(φopt(Ci)) =
P=?[φopt (Ci) ]

1+max j 6=iP=?[φopt (C j) ]

which represents the capability of a statement φ to discriminate between Xl ∈Ci and Xl ∈C j with j 6= i.
Conf can vary between 0 (for an entirely wrong statement) and 1 (for an entirely correct statement).

In order to evaluate the quality of PLTLc statements, we employed the simulative model checking tool
MC2 (Donaldson and Gilbert 2008) to compute the probability that a statement correctly describes the
behaviour of each cluster Ci. We developed the machine learning procedure, and performed the evaluation
of the model checking results using MATLAB (2010). The model for the first study was directly encoded
in MATLAB while the model for the second case study was developed in coloured Petri nets using the
Snoopy (Heiner et al. 2012) tool.

5 RESULTS

5.1 EGF-induced MAPK cascade model

In order to demonstrate the feasibility of our approach, we first chose the EGF signaling cascade, described
in Section 2, analysing the behaviours of the model under different perturbations by inducing diverse
knock-downs to the signalling pathway. This case study is thus an example of a uniscale model with
many variants which exhibit a set of complex behaviours. We analysed the behaviours of the model under
different perturbations by inducing diverse knock-downs to the signalling pathway. The molecular species
chosen to knock down are listed in Table 1. We used the initial settings of molecular species and parameter
values given in (Hornberg et al. 2005) to set up our PN model. In order to investigate the effect of gene
knock-downs, we first manipulated single knock-downs of 11 selected molecular species by decreasing the
initial concentration (marking) of a particular species at 11 different levels, ranging from 50% to 100%
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with a step of 5%, thus obtaining a dataset of 121 time series in total. To reduce computational complexity,
double knock-downs were implemented by simultaneously reducing the concentrations of a pair of any two
selected species in Table 1 at 3 different levels, 50%, 75% and 100%, resulting in a total of 495 time series.
All simulations were run over 6,000 time units reported at 6,000 time points. The time span represented
1 hour of EGF signalling in-vitro.

Table 1: List of molecular species chosen to knock down.

Molecular species
EGFR RasGDP Shc Phosphatase1

Raf Phosphatase2 MEK ERK
SOS Phosphatase3 Grb2

We applied our analysis to each time series as described in Section 3. By applying PCA we obtained
R=3 at 95% of the total eigenvalue sum, and from the representation of the time series in 3-dimensional
space it was clear that both single-knockdown and double-knockdown datasets present non-spherical shapes
and a high degree of noise. As discussed in Section 3, partitioning and hierarchical methods work better
if the clusters are spherical, but their performance degrades for non-spherical clusters. In Table 2 we give
the results of the cluster validation, in terms of the CDbw index, obtained by comparing DBScan with two
classical implementation of K-means and agglomerative hierarchical algorithms, with respect to different
configurations (parameter settings). In particular, we considered different values of K (number of clusters)
for K-means and hierarchical clustering, and for DBScan we considered values of MinPts ranging from 1
to 5 and values of Eps (radius of the neighbourhood) ranging from 0.25 to 5.

Table 2: Results of DBScan, K-Means and Hierarchical clustering algorithms in terms of CDbw, for Single-
and Double- Knockdown datasets

Single-Knockdown Double-Knockdown
DBScan K-Means Hierarchical DBScan K-Means Hierarchical

MinPts Eps CDbw K CDbw K CDbw MinPts Eps CDbw K CDbw K CDbw
1 2.35 0.24 2 0.01 2 0 1 0.95 0.19 5 0.01 5 0.00
2 0.85 0.14 3 0.09 3 0.19 2 0.85 0.23 6 0.01 6 0.00
3 0.35 0.14 4 0.07 4 0 3 0.65 0.34 7 0.02 7 0.00
4 0.35 0.14 5 0.04 5 0 4 0.65 0.34 8 0.00 8 0.03
5 0.45 0.13 6 0.03 6 0.14 5 0.65 0.33 9 0.00 9 0.05

7 0.06 7 0 10 0.01 10 0.04
8 0.06 8 0.12 11 0.01 11 0.00

DBScan outperforms both the alternative algorithms, and the difference in performance is even more
pronounced for the double-knockdown dataset, because the clusters contain more noise and are less spherical-
shaped. The best outcomes of DBScan comprises a set of 4 clusters for single-knockdown and 10 clusters
for double-knockdown, represented in Fig.1.

We used the algorithm shown in Sec.4 to generate PLTLc statements which describe the behaviour of
the time series in the clusters. The results in Table 3 represent the quality of these statements in terms of
confidence value and percentage of time series in cluster Ci which fulfill the statements.

Almost all the statements in the single-knockdown dataset have higher confidence values compared to
the double-knockdown dataset, which is due to the high degree of noise in the latter. The only exception
is S1, which wrongly classifies some time series belonging to C2 and C4 as belonging to C1, because the
latter consists of time series with heterogeneous behaviours, some of which are similar to those of C2 and
C4.

The results for the double-knockdown dataset, despite the noise and the higher number of elements,
show that a good number of statements unambiguously describe their cluster (S3, S4, S5, S7, S8, S9, S10).
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Table 3: Evaluation of the quality of the generated PLTLc statements. The performance is measured in
terms of confidence value and percentage of time series recognized.

Single-Knockdown Double-Knockdown
PLTLc Statements S1 S2 S3 S4 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

PφOpt (Ci) 1 1 0.82 1 1 1 1 1 1 1 0.73 0.91 1 0.98
Con fφOpt (Ci) 0.67 0.99 0.82 1 0.61 0.65 1 1 1 0.52 0.73 0.91 1 0.98

(a) Single-Knockdown dataset (b) Double-Knockdown dataset

Figure 1: DBScan clustering results with the best performance in terms of CDbw index.

We note that the S6 and S8 do not discriminate well between C6 and C8, which is because C6 and C8 have
similar behaviours. The time series in C1 are highly heterogeneous, and therefore S1 is too general and
wrongly classifies as belonging to C1 some of the time series belonging to C2,C9 and C10.

For demonstration purposes, we give one example of PLTLc statements generated by our method, and
its biological interpretation:

C2 single-knockdown: “Transient to sustained behaviour — the concentration of ERKPP increases, with
a slight perturbation between time 2 to 15, reaching a peak between time 25 to 41 after which it remains
constantly high.”
P=?[d[ERKPP]> 0 U(Time≥ 2∧Time≤ 2∧d[ERKPP]< 0 U(Time≥ 3∧Time≤ 3∧d[ERKPP] = 0

U(Time≥ 12∧Time≤ 15∧d[ERKPP]> 0
U(Time≥ 25∧Time≤ 41∧d[ERKPP] = 0∧G(d[ERKPP] = 0))))))]

The members of this cluster exhibit behaviours which display sustained signalling effects. Because
the magnitude and duration (transient versus sustained) of ERK activation decides which type of cellular
response is stimulated by MAPK signalling (Simon J. Cook and McMahon 1999) (Marshall 1995), the
knockdowns in this group may provide a potential approach to switch between different cellular processes
controlled by the MAPK cascade.

5.2 Planar Cell Polarity

In the following, we demonstrate the power of our approach in handling multiscale models by using Planar
Cell Polarity (PCP) as an example, where we wish to model the influence of changes at the genetic level
on changes in physiology at higher levels.

We used our HCPN model to generate an in-silico tissue (patch) consisting of 112 hexagonal cells.
In particular, we modeled the effect on neighbouring wild-type cells of a mutant clone with cells lacking
the molecular species Frizzled (Fz) by completely knocking out the concentration and transport of the
corresponding places in our model. We produced a mutant clone of Fz- inside our in-silico patch, comprising
seven cells. We used the concentration of Flamingo-Frizzled-Disheveled (FFD) as our target species in
order to analyse the behaviour of each of the six cell membrane compartments, and all simulations were
run over 500 time units reported at 500 time points. The original T variables represent all time points
from all six time series (3000 variables in total), and we applied PCA to generate a new set of R variables
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(a) (b)

Figure 2: (a) Left: A patch of cells is structured as an hexagonal grid (black coordinates refer to cell
positions), and Right: each cell is subdivided into compartments (red coordinates refer to compartments).
(b) The clustering results identify the mutant clone and its effect on neighbouring wild-type cells.

summarising the information of the multiple time series. In order to identify cells with similar behaviours in
all six cell membrane compartments we applied DBScan with different settings of MinPts values (ranging
from 1 to 5) and Epsilon values (ranging from 0.05 to 2). The solution, which contains 5 clusters, has
been obtained by using the performance measure CDbw as described in Sec. 3.3.

To compare our analytical results with images obtained from bio-laboratory, there was a need to provide
a clear visual representation of our clustering results which assigns a single colour to cells within one
cluster along the tissue. We used a hexagonal grid to represent the tissue and coloured each cell according
to the cluster which it belongs to. Our approach is capable of identifying cells in the mutant clone (in red),
as well as neighbouring cells distally adjacent to the clone (see Figure 2). These distally adjacent cells
exhibit three types of behaviours according to their positions.

The primary results show that there are compartments sharing some time series with similar behaviour.
In order to generate PLTLc descriptions of each compartment we decided to compute a new set of clusters
considering each of the six compartment separately and then apply the algorithm given in Sec. 4.

By analysing the results we discovered some important properties:

• Cells in the mutant clone are assigned to one cluster and all compartments exhibit the same behaviour,
where the concentration of FFD equals to zero all the time.

• In clusters comprising cells distally adjacent to the mutant clone, differences mainly occur in
compartment (1,1) (proximal top compartment) & (3,1) (proximal bottom compartment), see Fig. 2a,
right. Compared to wild-type cells, the cells in the yellow cluster differ only for compartment (1,1),
the cells in the brown cluster differ only for compartment (3,1), and the cell in the blue singleton
cluster differs for both compartment (1,1) and (3,1).

For demonstration purpose we give the PLTLc statement describing one specific compartment:
Non-wild-type behaviour: “The concentration of FFD increases from time zero, reaches its peak

between time 30 and 31, and then becomes steady till the end”.
P=?[d[FFD]> 0 U(Time≥ 30∧Time≤ 31∧d[FFD] = 0 ∧G(d[FFD] = 0)))]

6 CONCLUSION

In this paper we have described a machine learning approach for the analysis and interpretation of the
simulation results of a system biology model which combines unsupervised clustering and the automatic
generation of semantic descriptions of clusters. The method can be considered as a TL feature generation
method to identify time series with similar behaviour and automatically generate logic statements to describe
them semantically. The validity of these statements is evaluated using a model checking technique and a
confidence index.
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This methodology has been successfully validated on two case studies, a uniscale model of a cell and
a multiscale model of a tissue composed of many cells. In the first model, our technique allowed us to
automatically analyse the behaviour of the cell when subjected to different perturbations, and we showed
that our algorithms maintain high performance as the number of time series grows. The second case study
demonstrated the applicability of our methodology to a multiscale model, where we need to characterise
the behaviour of many different time series at once. In both cases, the PLTLc statements produced to
describe the clusters show high discriminative power.
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