Agents and environments

Alexander Letichevsky David Gilbert
Glushkov Institute of Cybernetics Department of Computer Science
National Academy of Sciences of Ukraine City University, UK
let@d105.icyb.kiev.ua drg@cs.city.ac.uk

October 8, 1998

Abstract

A new abstract model of interaction between agents and environments is introduced. It
can be used as a semantical framework for studying interaction as well as for the definition
of inetraction semantics of Action Language studied in the previous paper of the authors.
An interaction of agents and environments is defined in a more strong and more simmetric
way in comparison with this publication. The basic notion used in the paper is the well
known notion of a transition system with divergency and termination. For the definition of
various transition systems constructed in the paper three main forms: recursive algebraic
definitions, equational definitions, and structured operational semantics are used.

1 Introduction

In [6] a general model of computation and interaction has been introduced. This model was
presented as a generic (Parametrised) Action Language (AL) which covers a wide class of
models of interaction. The interaction semantics of AL has been defined in terms of transfor-
mations of environment behaviours and has been used for the definition of a computational
semantics as well. This paper introduces a new and more abstract model of interaction
between agents and environments. It can be used as a semantical framework for studying
interaction as well as for the definition of inetraction semantics of AL. An interaction of
agents and environments is defined in a more strong and more simmetric way in comparison
with [6]. The basic notion used in the paper is the well known notion of a transition system
with divergency and termination. For the definition of various transition systems we use three
main forms: recursive algebraic definitions, equational (rewriting logic [4], ACP [2]) defini-
tions, and (logic) definitions in the form of inference rules of structured operational semantics
(SOS [7]). The last form gives the explicite definition of a transition relation and is also called
a transition definition.

2 Transition systems

Definition 1 ([3]) A transition system over a set of actions A is a set S of states with a
transition relation s — s', s,s' € S, a € A and two subsets Sx and S| called correspondingly
sets of terminal and divergent states.

Definition 2 A binary relation R C S x S is called a partial bisimulation if for all s and t
such that sRt and for alla € A

e s Sh=teSa
o s 5 s =3t St AR
e sgZS =>(tegS AtSt =353 s As'Rs))

This definition is a slight modification of the definition in [1]. A state s of a transition
system S is called a bisimilar approzimation of s’ denoted as sCgs’ if there exists a partial
bisimulation R such that sRs’. Symmetric closure of partial bisimulation is a bisimulation
equivalence denoted s~ps’.

3 Behaviour algebra

A behaviour algebra (or an algebra of behaviours) over an action set A is an algebra with
approximation (poset with a minimal element and continuous operations [5]). It has two
operations, the first being denoted by + is an internal binary aci-operation (idempotent ac-
operation). This operation corresponds to nondeterministic choice. The second operation is
prefixing au, a being an action, u being a behaviour. The minimal element of a behaviour
algebra is denoted L. The empty behaviour A performs no actions and usually denotes the
termination of a process. The impossible behaviour 0 is the neutral element for nondetermin-
istic choice. There is also the impossible action 0 in A denoted in the same way as impossible
behaviour. The operations of a behaviour algebra must satisfy the identities shown in Fig-
ure 1. The symbol 0 in the left hand side of the last relation is an impossible action (not
impossible behaviour).

u+v=v+u
(u+v)+w=u+ (v+w)
u+u=u

u+0=0+u=u
Ou=20
Figure 1: Relations of an algebra of behaviours

The approximation relation of the algebra of behaviours over A is a partial order which
satisfies the relations presented in Figure 2.

1Cu

uCv=ut+wlov+w

uLCov=aulCav

Figure 2: Approximation for behaviours

If all relations of a behaviour algebra are consequences of those presented in Figure 1
and the approximation relation is a minimal partial order satisfying the relations in Figure 2
this algebra is called a free one. The elements of the minimal (initial) sub-algebra Ffi,(A)
of a free behaviour algebra over A that is a sub-algebra generated by the empty behaviour,
the impossible behaviour and the bottom element are called finite behaviours. All other
behaviours (of a free behaviour algebra) are assumed to be the limits (least upper bounds) of
the countable directed sets of finite elements. The free behaviour algebra which includes all
such limits is denoted F'(A). It is defined uniquely up to a continuous isomorphism.

Each behaviour u € F(A) can be represented in the form

U= Zaiui +e (1)
el

where a; are nonzero actions, u; are behaviours, I is a finite (for finite elements) or infinite
(but countable) set of indices, e = A, L, A+ 1,0 (termination constants). If all summands in
the representation (1) are different then this representation is unique up to the associativity
and commutativity of nondeterministic choice.

4 Behaviours and transition systems

For each state s € S of a transition system let us consider a behaviour u, (of a system in a
given state) defined as a component of a minimal solution of a system

Ug = Z a;Ug + €4 (2)
PR

where termination constants 5 are defined in a Figure 3.

SESAUS| =e,=0

SESA\SL=es=A

seESI\SA=es=1
sESANS = e, =A+ 1L

Figure 3: Termination constants for the behaviour of a system in a given state

A set U of behaviours is called transition closed if from au+v € U and a # 0 it follows that
also u € U. Each transition closed set U can be considered as a set of states of a transition
system with transitions au +v % u,a # 0, the set of terminal states Un = {u = v + A} and
divergent states U = {u = v+ L}.

It can be proved that sCps’ < us C uy, s~ps’ & us = uy, and u = v & u~pgo.

5 Sequential composition of behaviours

Three representations of definition will be considered.

1. Transition representation.
a ! a, !
U—U = UV UV
u S u = Au S Ad

Terminal states A(v + A), divergent states (u+ L)v, A(v+ L).
2. Algebraic definition (for F'(A) only).

uY = (Z aju; + €,)v = Zai(uiv) + g4V
Au=uA=u,0u=0,1L u=1

3. Equational definition.
(u 4+ v)w = uw + vw

(au)v = a(uwv)

Au=uA=u
Ou=20
1l u=1

All three definitions are equivalent for F'(A).

6 Parallel composition of behaviours

Now the combination of actions a X b is defined on a set of actions, so this set is an algebra
(of actions). The combination of actions is supposed to be a commutative and associative
with impossible action as annulator (a x 0 = 0).

1. Transition definition (Figure 4).

b
uSu, v, axb#0

ullv axp u'l|v’

u S u = ullv S ||v

a ! a, !
v—=v = ulv—=ulv

Figure 4: Transition system representing parallel composition

Terminal states: wl|v is terminal if v = v’ + A and v = v' + A. Divergent states: u||v is
divergent if u = u'+ L or v =o'+ L.

2. Algebraic definition (Figure 5).

3. Equational definition (Figure 6).

All three definitions are equivalent for F'(A), parallel composition is associative and the
extension of behaviour algebra by equations of third definition is conservative.

u = (Z aju; + €y)

v=0>bjv;+ey)
ul|v = Z(ai X ;) (us||vy) Zal (uil|lv) + Zb (ul|vy) + aley,v) + afey, uw) = expand(ul|v)

a(0,2) =0
a(Az) =2z
a(l,z) =1

alA+ L,z) =2+ L
Figure 5: Algebraic definition of parallel composition

7 Interaction of agents with an environment

An abstract agent U over an action algebra A is a transition closed set of behaviours (states)
over A. An agent can be initialized by picking out the set Uy C U of possible initial states
(so that each other state of an agent is reachable from some of the initial ones).

An environment is a tuple (E, A, C,res) where FE is a transition closed subset of behaviour
algebra F'(C') over an algebra of action C' called the behaviour algebra of an environment,
and

res: C x A — 20M0}

or equivalently
res CC x A xC\ {0}

is called a residual function (or relation). The set E is also called a set of behaviour states of
an environment, and its symbol sometimes is used as a symbol of an environment instead of
a four-tuple.

Each state u € Up of an agent U defines a continuous function u[.] : E — F(C) on
the set of states of an environment E which describes the interaction of an agent with an
environment. Three definitions of this function are the following.

1. Transition definition. State of a transition system is an expression u[v]. Presented in
the Figure 7. A state u[v] is terminal if u = v’ + A and v = v’ + A and divergent if u = u'+ L
orv=uv'+ L.

2. Algebraic definition. Figure 8.

3. Equational definition (Figure 9). The function interact is defined in the following
way.

interact(a,v) = {(d,v")|3(c,v"). v = ' + 0" Aec S d}

A function (u,v) — u[v] describes the insertion of an agent U in a state u to the environ-
ment F in a state v. This operation can be used in two ways:

1. To build a new agent W with the set of states {u[v]} over C. This new agent can be
later inserted to another environment.

ullv =u X v+ ul|v+v||u

TXY=yXzx

(x4+y)Xxz=zxz+yxz
(az) x (by) = (a x b)(zly)

exx=0

(z+y)llz ==zllz+yllz

az|ly = a(z(ly)

ellz = ale, x)

Figure 6: Equational definition of parallel composition

Figure 7: Interaction of an agent with an environment, transition representation

2. To build a new environment with the same set of states and use this environment for
the insertion of another agents.

8 Action Language

Syntactical presentation of agents.

Prog::= Act | TermConst | ProcCall | (Prog+ Prog) | (Prog||Prog) | (Prog;Prog) |
Loc(SetVar, Prog)

TermConst are some of termination constants (at least Stop for A should be used). We
distinguish between simple programs which contains no Loc construction, and programs with
local progrm components that is constructions of the type Loc(X, P). Intensional semantics of
a simple program is an agent which can be obtained by means of unfolding procedure calls and
defining transitions on a set of program states similar to [6] (Figure 10 presents this agent as

u = (Z aju; + €y)

v = (Z bjvj + ey)
upl= Y0 dlwlul)+ Y0 dlwll)+ Y d(ufvs]) + euled]
deres(bj,a;) d€res(0,a;) deres(b;,0)

Ale] =¢, L] =0[L] =L, 0[A]=0[0]=0
Figure 8: Interaction of an agent with an environment, algebraic representation

a transition system considering (unfolded) programs up to assciativity and commutativity of
nondeterministic choice and parallel composition and assciativity of sequential composition).
Interaction semantics of simple programs can be defined for program agents as above.

To define an intensional semantics of a program with local components one must extend
the set of actions to show explicitely local variables actions depend on. Extended actions will
be denoted as act X (a) where X C Var, a € Act. Now to define intensional semantics the
reductions and transitions of Figure 11 must be added. Here o is a protected renaming, Y
and Z are correspondingly changed sets of local variables.

8.1 A store

To define an interaction semantics for programs with local components we introduce the
notion of a store over a set of variables V' and actions A (V-A-store). It is a tuple

(S,V, A, Fvar,Reng,Reny, T')
where

e S is the set of states of a store;

V' is the set of variables;

A is the set of actions (with zero action 0);

Fvar: SU A — V, is a function which computes the set of free variables for states and
actions;

Reng : S x ¥ — S and Reny : A X ¥ — A are the renaming functions for S and
A correspondingly, where ¥ is the set of one-to-one transformations of V' (renaming
substitutions or renamings);

e T is the transition relation T C S x A x S.

The set S of states of a store is a transition system over A with transition relation T and
we write s — s’ for (s,a,s') € T. We also write so (ac) for Reng(s,o) (Reny(a,c)). All
attributes of a store must satisfy the following axioms:

e €Y s =>s5028 50,

ufv] = ux [v] +ul[[v] + [v]{[u

(u+u') x [v] =u x] +u" x [v]

(az) x [v] = > d(ulv'])
(d,v')Einteract(a,v)
ex]l=ux[]=0
(w+u)|L[v] = ull[v] + v’ [[[v]
aul[[v] = > d(ufv])

deres(0,a)
Allle] =«

L [l =0[[L) =L
Ol[[A] =0[[[0] =0
[v+llu = [v]|[u +v'||u
bo]llu=" > d(ul])

deres(b,0)

[e]llw =0

Figure 9: Interaction of an agent with an environment, equational definition

e (Vz € Fvar(y) o(z) = o'(z)) = yo = yo'.

The definition of a store covers the notions of memory (state is a function from V' to data
domain), constraint store (states are sets of constraints of some constraint system considered
up to the equivalence), data and knowledge bases.

8.2 Programs over store

A store is a special type of an (internal) environment of a program and interaction of a program
with this environment defines a program agent over store. The states of an environment are
the states of a store and the function interact is defined in the following way:

interact(act X (a),[s]) = {h(X,s,a,s")|s = s}

where [s] is the behaviour of a store in a state s, h is a hiding function which means that
Fvar(h(X,s,a,s')) N X = (.

Transition definition of this agent is presented in the Figure 12 (we assume that res(0,a) =
res(a,0) = (). We write Loc(X, P, s) for (Loc(X, P))[s].

An action program inserted to a local store as an environment is considered as an agent
which later can be inserted into an external environment to define a global interaction se-
mantics of a program.

a3 A
P%Q
P+ R Q,(P;R) = (Q;R),P|IS = QIS

PgQ,P’gQ’,axa’yﬁO
PP % Q@'

Figure 10: Intensional semantics of simple programs

Loc(X,P) + @Q — Loc(Y, Po + Q)
Loc(X, P)||Q — Loc(Y, Po||Q)
(Loc(X, P); Q) — Loc(Y, (Po; Q))
Loc(X,Loc(Y, P)) — Loc(X U Z, Po)
P — Q = Loc(X, P) — Loc(X, Q)

P % Q= Loc(X,P) 2t X (@) Loc(X, Q)

P5Q, Q%R
PY%R

Figure 11: Reductions and transitions of local program components

9 Examples

1. Let C=A,ai>a><bifa><b760,Oga,andaga. Then
P[Al=P
PIQ[A]] = Pll@
2. Let C = AU{e}, e % a, res(a,b) = 0 if a # e. Let vy = evg. Then
Plvg] = Py

Q[P[vo]] = PQuo

3. To get CCS one can define renaming and restriction as procedure calls, use Milner
action algebra for combination (a x @ = 7,a x b = 0 if b # @), and apply to an environment
of the first example. Unfolding relations for the restriction are:

(P+Q\L=P\L+Q\L

(Pl@)\ L = expand(P[|Q) \ L

Loc(X, P) aCt—1>/(a) Loc(Y,Q), s>t

Loc(X, P, s) "5 Loc(Y, Q,)

Figure 12: Program agent over store

(@P)\L=a(P\L), a,a¢l
(aP)\L=0, a€LVaelL
Unfolding relations for renaming;:

(P +Q)[f1 = Plf1+ Qlf]

(PlQ)f] = PlANQLS]
(@P)[f] = f(a)(P[f])

Note that there is no sequential composition in CCS. If P is a procedure call then
P\ L =unfold(P)\ L

P[f] = untold(P)[/]

4. To get m-calculus one should use a store with substitutions for variables as states.

References

1]

2]

S. Abramsky. A domain equation for bisimulation. Information and Computation,
92(2):161-218, 1991.

J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Infor-
mation and Control, 60(1/3):109-137, 1984.

D.M.R.Park. Concurrency and automata on infinite sequences. In Proc. 5th GI Conf,
volume 104 of Lecture Notes in Computer Science. Springer-Verlag, 1981.

J.Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96:73-155, 1992.

A. A. Letichevsky. Algebras with approximation and recursive data structures. Kiber-
netika, (5):32-37, September-October 1987.

A. A. Letichevsky and D. R. Gilbert. A general theory of action languages. Kibernetika,
(1):16-36, January-February 1998.

G. Plotkin. A structured approach to operational semantics. Technical report, Tech.Rep.
DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

10

