
Agents and environments

Alexander Letichevsky

Glushkov Institute of Cybernetics

National Academy of Sciences of Ukraine

let@d105.icyb.kiev.ua

David Gilbert

Department of Computer Science

City University, UK

drg@cs.city.ac.uk

October 8, 1998

Abstract

A new abstract model of interaction between agents and environments is introduced. It

can be used as a semantical framework for studying interaction as well as for the de�nition

of inetraction semantics of Action Language studied in the previous paper of the authors.

An interaction of agents and environments is de�ned in a more strong and more simmetric

way in comparison with this publication. The basic notion used in the paper is the well

known notion of a transition system with divergency and termination. For the de�nition of

various transition systems constructed in the paper three main forms: recursive algebraic

de�nitions, equational de�nitions, and structured operational semantics are used.

1 Introduction

In [6] a general model of computation and interaction has been introduced. This model was

presented as a generic (Parametrised) Action Language (AL) which covers a wide class of

models of interaction. The interaction semantics of AL has been de�ned in terms of transfor-

mations of environment behaviours and has been used for the de�nition of a computational

semantics as well. This paper introduces a new and more abstract model of interaction

between agents and environments. It can be used as a semantical framework for studying

interaction as well as for the de�nition of inetraction semantics of AL. An interaction of

agents and environments is de�ned in a more strong and more simmetric way in comparison

with [6]. The basic notion used in the paper is the well known notion of a transition system

with divergency and termination. For the de�nition of various transition systems we use three

main forms: recursive algebraic de�nitions, equational (rewriting logic [4], ACP [2]) de�ni-

tions, and (logic) de�nitions in the form of inference rules of structured operational semantics

(SOS [7]). The last form gives the explicite de�nition of a transition relation and is also called

a transition de�nition.

2 Transition systems

De�nition 1 ([3]) A transition system over a set of actions A is a set S of states with a

transition relation s

a

! s

0

; s; s

0

2 S; a 2 A and two subsets S

�

and S

?

called correspondingly

sets of terminal and divergent states.

1

De�nition 2 A binary relation R � S � S is called a partial bisimulation if for all s and t

such that sRt and for all a 2 A

� s 2 S

�

) t 2 S

�

� s

a

! s

0

) 9t

0

:t

a

! t

0

^ s

0

Rt

0

� s 62 S

?

) (t 62 S

?

^ (t

a

! t

0

) 9s

0

:s

a

! s

0

^ s

0

Rs))

This de�nition is a slight modi�cation of the de�nition in [1]. A state s of a transition

system S is called a bisimilar approximation of s

0

denoted as sv

B

s

0

if there exists a partial

bisimulation R such that sRs

0

. Symmetric closure of partial bisimulation is a bisimulation

equivalence denoted s�

B

s

0

.

3 Behaviour algebra

A behaviour algebra (or an algebra of behaviours) over an action set A is an algebra with

approximation (poset with a minimal element and continuous operations [5]). It has two

operations, the �rst being denoted by + is an internal binary aci-operation (idempotent ac-

operation). This operation corresponds to nondeterministic choice. The second operation is

pre�xing au, a being an action, u being a behaviour. The minimal element of a behaviour

algebra is denoted ?. The empty behaviour � performs no actions and usually denotes the

termination of a process. The impossible behaviour 0 is the neutral element for nondetermin-

istic choice. There is also the impossible action 0 in A denoted in the same way as impossible

behaviour. The operations of a behaviour algebra must satisfy the identities shown in Fig-

ure 1. The symbol 0 in the left hand side of the last relation is an impossible action (not

impossible behaviour).

u+ v = v + u

(u+ v) + w = u+ (v + w)

u+ u = u

u+ 0 = 0 + u = u

0u = 0

Figure 1: Relations of an algebra of behaviours

The approximation relation of the algebra of behaviours over A is a partial order which

satis�es the relations presented in Figure 2.

?v u

u v v) u+ w v v + w

u v v) au v av

Figure 2: Approximation for behaviours

2

If all relations of a behaviour algebra are consequences of those presented in Figure 1

and the approximation relation is a minimal partial order satisfying the relations in Figure 2

this algebra is called a free one. The elements of the minimal (initial) sub-algebra F

fin

(A)

of a free behaviour algebra over A that is a sub-algebra generated by the empty behaviour,

the impossible behaviour and the bottom element are called �nite behaviours. All other

behaviours (of a free behaviour algebra) are assumed to be the limits (least upper bounds) of

the countable directed sets of �nite elements. The free behaviour algebra which includes all

such limits is denoted F (A). It is de�ned uniquely up to a continuous isomorphism.

Each behaviour u 2 F (A) can be represented in the form

u =

X

i2I

a

i

u

i

+ " (1)

where a

i

are nonzero actions, u

i

are behaviours, I is a �nite (for �nite elements) or in�nite

(but countable) set of indices, " = �;?;�+ ?; 0 (termination constants). If all summands in

the representation (1) are di�erent then this representation is unique up to the associativity

and commutativity of nondeterministic choice.

4 Behaviours and transition systems

For each state s 2 S of a transition system let us consider a behaviour u

s

(of a system in a

given state) de�ned as a component of a minimal solution of a system

u

s

=

X

s

a

!s

0

a

i

u

s

0

+ "

s

(2)

where termination constants "

s

are de�ned in a Figure 3.

s 62 S

�

[S

?

) "

s

= 0

s 2 S

�

n S

?

) "

s

= �

s 2 S

?

n S

�

) "

s

=?

s 2 S

�

\ S

?

) "

s

= �+ ?

Figure 3: Termination constants for the behaviour of a system in a given state

A set U of behaviours is called transition closed if from au+v 2 U and a 6= 0 it follows that

also u 2 U . Each transition closed set U can be considered as a set of states of a transition

system with transitions au+ v

a

! u; a 6= 0, the set of terminal states U

�

= fu = v +�g and

divergent states U

?

= fu = v+ ?g.

It can be proved that sv

B

s

0

, u

s

v u

s

0

, s�

B

s

0

, u

s

= u

s

0

, and u = v , u�

B

v.

5 Sequential composition of behaviours

Three representations of de�nition will be considered.

3

1. Transition representation.

u

a

! u

0

) uv

a

! u

0

v

u

a

! u

0

) �u

a

! �u

0

Terminal states �(v +�), divergent states (u+ ?)v, �(v+ ?).

2. Algebraic de�nition (for F (A) only).

uv = (

X

a

i

u

i

+ "

u

)v =

X

a

i

(u

i

v) + "

u

v

�u = u� = u; 0u = 0;? u =?

3. Equational de�nition.

(u+ v)w = uw + vw

(au)v = a(uv)

�u = u� = u

0u = 0

? u =?

All three de�nitions are equivalent for F (A).

6 Parallel composition of behaviours

Now the combination of actions a � b is de�ned on a set of actions, so this set is an algebra

(of actions). The combination of actions is supposed to be a commutative and associative

with impossible action as annulator (a� 0 = 0).

1. Transition de�nition (Figure 4).

u

a

! u

0

; v

b

! v

0

; a� b 6= 0

ukv

a�b

! u

0

kv

0

u

a

! u

0

) ukv

a

! u

0

kv

v

a

! v

0

) ukv

a

! ukv

0

Figure 4: Transition system representing parallel composition

Terminal states: ukv is terminal if u = u

0

+� and v = v

0

+�. Divergent states: ukv is

divergent if u = u

0

+ ? or v = v

0

+ ?.

2. Algebraic de�nition (Figure 5).

3. Equational de�nition (Figure 6).

All three de�nitions are equivalent for F (A), parallel composition is associative and the

extension of behaviour algebra by equations of third de�nition is conservative.

4

u = (

X

a

i

u

i

+ "

u

)

v = (

X

b

j

v

j

+ "

v

)

ukv =

X

(a

i

� b

j

)(u

i

kv

j

) +

X

a

i

(u

i

kv) +

X

b

j

(ukv

j

) + �("

u

; v) + �("

v

; u) = expand(ukv)

�(0; z) = 0

�(�; z) = z

�(?; z) =?

�(�+ ?; z) = z+ ?

Figure 5: Algebraic de�nition of parallel composition

7 Interaction of agents with an environment

An abstract agent U over an action algebra A is a transition closed set of behaviours (states)

over A. An agent can be initialized by picking out the set U

0

� U of possible initial states

(so that each other state of an agent is reachable from some of the initial ones).

An environment is a tuple hE;A;C; resi where E is a transition closed subset of behaviour

algebra F (C) over an algebra of action C called the behaviour algebra of an environment,

and

res : C �A! 2

Cnf0g

or equivalently

res � C �A� C n f0g

is called a residual function (or relation). The set E is also called a set of behaviour states of

an environment, and its symbol sometimes is used as a symbol of an environment instead of

a four-tuple.

Each state u 2 U

0

of an agent U de�nes a continuous function u[:] : E ! F (C) on

the set of states of an environment E which describes the interaction of an agent with an

environment. Three de�nitions of this function are the following.

1. Transition de�nition. State of a transition system is an expression u[v]. Presented in

the Figure 7. A state u[v] is terminal if u = u

0

+� and v = v

0

+� and divergent if u = u

0

+ ?

or v = v

0

+ ?.

2. Algebraic de�nition. Figure 8.

3. Equational de�nition (Figure 9). The function interact is de�ned in the following

way.

interact(a; v) = f(d; v

0

)j9(c; v

00

): v = cv

0

+ v

00

^ c

a

! dg

A function (u; v)! u[v] describes the insertion of an agent U in a state u to the environ-

ment E in a state v. This operation can be used in two ways:

1. To build a new agent W with the set of states fu[v]g over C. This new agent can be

later inserted to another environment.

5

ukv = u� v + ubbv + vbbu

x� y = y � x

(x+ y)� z = x� z + y � z

(ax)� (by) = (a� b)(xky)

"� x = 0

(x+ y)bbz = xbbz + ybbz

axbby = a(xky)

"bbx = �("; x)

Figure 6: Equational de�nition of parallel composition

u

a

! u

0

; v

c

! v

0

; c

a

! d

u[v]

d

! u

0

[v

0

]

v

c

! v

0

; c

0

! d

u[v]

d

! u[v

0

]

u

a

! u

0

; 0

a

! d

u[v]

d

! u

0

[v]

Figure 7: Interaction of an agent with an environment, transition representation

2. To build a new environment with the same set of states and use this environment for

the insertion of another agents.

8 Action Language

Syntactical presentation of agents.

Prog ::= Act j TermConst j ProcCall j (Prog+ Prog) j (ProgkProg) j (Prog; Prog) j

Loc(SetVar; Prog)

TermConst are some of termination constants (at least Stop for � should be used). We

distinguish between simple programs which contains no Loc construction, and programs with

local progrm components that is constructions of the type Loc(X;P). Intensional semantics of

a simple program is an agent which can be obtained by means of unfolding procedure calls and

de�ning transitions on a set of program states similar to [6] (Figure 10 presents this agent as

6

u = (

X

a

i

u

i

+ "

u

)

v = (

X

b

j

v

j

+ "

v

)

u[v] =

X

d2res(b

j

;a

i

)

d(u

i

[v

j

]) +

X

d2res(0;a

i

)

d(u

i

[v]) +

X

d2res(b

j

;0)

d(u[v

j

]) + "

u

["

v

]

�["] = "; ? ["] = 0[?] =?; 0[�] = 0[0] = 0

Figure 8: Interaction of an agent with an environment, algebraic representation

a transition system considering (unfolded) programs up to assciativity and commutativity of

nondeterministic choice and parallel composition and assciativity of sequential composition).

Interaction semantics of simple programs can be de�ned for program agents as above.

To de�ne an intensional semantics of a program with local components one must extend

the set of actions to show explicitely local variables actions depend on. Extended actions will

be denoted as act X(a) where X � Var; a 2 Act. Now to de�ne intensional semantics the

reductions and transitions of Figure 11 must be added. Here � is a protected renaming, Y

and Z are correspondingly changed sets of local variables.

8.1 A store

To de�ne an interaction semantics for programs with local components we introduce the

notion of a store over a set of variables V and actions A (V -A-store). It is a tuple

hS; V;A; Fvar; Ren

S

; Ren

A

; T i

where

� S is the set of states of a store;

� V is the set of variables;

� A is the set of actions (with zero action 0);

� Fvar : S [A! V , is a function which computes the set of free variables for states and

actions;

� Ren

S

: S � � ! S and Ren

A

: A � � ! A are the renaming functions for S and

A correspondingly, where � is the set of one-to-one transformations of V (renaming

substitutions or renamings);

� T is the transition relation T � S �A� S.

The set S of states of a store is a transition system over A with transition relation T and

we write s

a

! s

0

for (s; a; s

0

) 2 T . We also write s� (a�) for Ren

S

(s; �) (Ren

A

(a; �)). All

attributes of a store must satisfy the following axioms:

� � 2 �; s

a

! s

0

) s�

a�

! s

0

�,

7

u[v] = u� [v] + ubb[v] + [v]bbu

(u+ u

0

)� [v] = u� [v] + u

0

� [v]

(ax)� [v] =

X

(d;v

0

)2interact(a;v)

d(u[v

0

])

"� [v] = u� ["] = 0

(u+ u

0

)bb[v] = ubb[v] + u

0

bb[v]

aubb[v] =

X

d2res(0;a)

d(u[v])

�bb["] = "

? bb["] = 0bb[?] =?

0bb[�] = 0bb[0] = 0

[v + v

0

]bbu = [v]bbu + v

0

jbu

[bv]bbu =

X

d2res(b;0)

d(u[v])

["]bbu = 0

Figure 9: Interaction of an agent with an environment, equational de�nition

� (8x 2 Fvar(y) �(x) = �

0

(x))) y� = y�

0

.

The de�nition of a store covers the notions of memory (state is a function from V to data

domain), constraint store (states are sets of constraints of some constraint system considered

up to the equivalence), data and knowledge bases.

8.2 Programs over store

A store is a special type of an (internal) environment of a program and interaction of a program

with this environment de�nes a program agent over store. The states of an environment are

the states of a store and the function interact is de�ned in the following way:

interact(act X(a); [s]) = fh(X; s; a; s

0

)js

a

! s

0

g

where [s] is the behaviour of a store in a state s, h is a hiding function which means that

Fvar(h(X; s; a; s

0

)) \X = ;.

Transition de�nition of this agent is presented in the Figure 12 (we assume that res(0; a) =

res(a; 0) = ;). We write Loc(X;P; s) for (Loc(X;P))[s].

An action program inserted to a local store as an environment is considered as an agent

which later can be inserted into an external environment to de�ne a global interaction se-

mantics of a program.

8

a

a

! �

P

a

! Q

P +R

a

! Q; (P ;R)

a

! (Q;R); PkS

a

! QkS

P

a

! Q;P

0

a

0

! Q

0

; a� a

0

6= 0

PkP

0

a�a

0

�! QkQ

0

Figure 10: Intensional semantics of simple programs

Loc(X;P) +Q! Loc(Y; P� +Q)

Loc(X;P)kQ! Loc(Y; P�kQ)

(Loc(X;P);Q)! Loc(Y; (P�;Q))

Loc(X; Loc(Y; P))! Loc(X [Z;P�)

P ! Q) Loc(X;P)! Loc(X;Q)

P

a

! Q) Loc(X;P)

act X(a)

! Loc(X;Q)

P

�

! Q; Q

a

! R

P

a

! R

Figure 11: Reductions and transitions of local program components

9 Examples

1. Let C = A, a

b

! a� b if a� b 6= 0, 0

a

! a, and a

0

! a. Then

P [�] = P

P [Q[�]] = PkQ

2. Let C = A [feg, e

a

! a, res(a; b) = ; if a 6= e. Let v

0

= ev

0

. Then

P [v

0

] = Pv

0

Q[P [v

0

]] = PQv

0

3. To get CCS one can de�ne renaming and restriction as procedure calls, use Milner

action algebra for combination (a � a = �; a � b = 0 if b 6= a), and apply to an environment

of the �rst example. Unfolding relations for the restriction are:

(P +Q) n L = P n L+Q n L

(PkQ) n L = expand(PkQ) n L

9

Loc(X;P)

act Y (a)

! Loc(Y;Q); s

a

! t

Loc(X;P; s)

h(Y;s;a;t)

! Loc(Y;Q; t)

Figure 12: Program agent over store

(aP) n L = a(P n L); a; a 62 L

(aP) n L = 0; a 2 L _ a 2 L

Unfolding relations for renaming:

(P +Q)[f] = P [f] +Q[f]

(PkQ)[f] = P [f]kQ[f]

(aP)[f] = f(a)(P [f])

Note that there is no sequential composition in CCS. If P is a procedure call then

P n L = unfold(P) n L

P [f] = unfold(P)[f]

4. To get �-calculus one should use a store with substitutions for variables as states.

References

[1] S. Abramsky. A domain equation for bisimulation. Information and Computation,

92(2):161{218, 1991.

[2] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Infor-

mation and Control, 60(1/3):109{137, 1984.

[3] D.M.R.Park. Concurrency and automata on in�nite sequences. In Proc. 5th GI Conf,

volume 104 of Lecture Notes in Computer Science. Springer-Verlag, 1981.

[4] J.Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical

Computer Science, 96:73{155, 1992.

[5] A. A. Letichevsky. Algebras with approximation and recursive data structures. Kiber-

netika, (5):32{37, September-October 1987.

[6] A. A. Letichevsky and D. R. Gilbert. A general theory of action languages. Kibernetika,

(1):16{36, January-February 1998.

[7] G. Plotkin. A structured approach to operational semantics. Technical report, Tech.Rep.

DAIMI FN-19, Computer Science Dept., Aarhus University, 1981.

10

