
Executable LOTOS:
Using PARLOG to implement an FDT ‡

David Gilbert

PARLOG Group
Department of Computing

Imperial College of Science and Technology
180, Queen’s Gate

LONDON SW7 2BZ
UK

Net mail: drg@doc.ic.ac.uk

A practical investigation of the feasibility of implementing core constructs of the LOTOS
specification language in the PARLOG programming language has been made. A program has
been written in PARLOG to translate simple LOTOS specifications into executable PARLOG
code. A single set of these specifications is used to illustrate the techniques employed to re-
express LOTOS constructs as PARLOG procedures and processes. The translator is based on
the LOTOS BNF. A large subset of LOTOS constructs which can be mapped on to PARLOG
is handled by the translator.

1. Introduction

1.1. Aims

The aims of the research reported here were:

(i) to carry out a practical investigation of the feasibility of using the PARLOG programming language
to implement core constructs of the LOTOS specification language.

(ii) to write a translator program which would accept simple LOTOS specifications and generate
executable PARLOG code.

1.2. Motivation

Information systems are often characterised by concurrency and non-determinism, and there exist a variety
of methods for specifying them. A desirable property of such specifications is that they are succinct, can be
analysed mathematically, and permit the rapid prototyping of the product. These prototypes may not be
very efficient, but they can be used to evaluate whether the system performs in the way that the
specification intended. This work accepts as a basis LOTOS as one such specification method. LOTOS is
the Formal Description Technique (FDT) currently being developed by the International Standards
Organisation (ISO). It is being applied internationally now, and its use in specifying the ISO Reference
Model for Open Systems Interconnection (OSI) is likely to increase in the future. Apart from the problem
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of ensuring that descriptions written in LOTOS are "correct", there remains the further difficulty of the
practical implementation of LOTOS specifications.

LOTOS could be implemented by designing a compiler which would produce executable machine code
from the LOTOS source code; this is a long-term project. An alternative approach is to prototype an
implementation of LOTOS using an existing computer language. It might well be that such an
implementation would result in inefficient programs which execute very slowly: however this technique
would allow the testing of protocols in conditions simulating those of the intended application. This would
provide a tool to assist the designers of specifications to discover whether the specification had the intended
result. Hopefully this interface between specification and implementation via rapid prototyping would
result in a more efficient software production cycle.

The approach taken in the work reported here is that of the second alternative, chosing PARLOG as the
practical language in which to implement LOTOS. Systems whose properties include communication and
concurrency can be specified in LOTOS, and an implementation of such a specification should exhibit these
properties. PARLOG is a member of the family of Parallel Logic Programming Languages. It has sound
declarative foundations based on Horn Clause Logic, and incorporates the ability to express concurrency
and communication; for all these reasons it makes an excellent candidate as an implementation language
for LOTOS. PARLOG programs can be written without regard to the underlying hardware on which they
are to be run; hence they may be executed on whatever machine the language has been implemented, either
monoprocessor, multiprocessor or a distributed system, unlike most existing PROLOG implementations.

Work has been carried out previously to create executable descriptions of OSI services and protocols using
PROLOG as the implementation vehicle. Protocol verification using executable logic specifications in
PROLOG has been reported in [SIDHU 1983], and the OSI Transport Service has been specified in
PROLOG to create an executable description [LOGRIPPO et al 1985]. More recent work [BRIAND et al
1986] reports a prototype LOTOS interpreter implemented in YACC/LEX, C and PROLOG. The
properties of PROLOG allow the interpreter to be used for validation of interaction sequences, and
generation of such sequences either randomly or under user control. In practice, the advantage that
PROLOG possesses in using backtracking for the generation of sequences is offset by problems of
efficiency.

The advantage that PARLOG possesses over PROLOG as an implementation language for LOTOS is that it
directly supports non-determinism and concurrency. However, the committed choice feature of PARLOG
is not conducive to direct generation of all possible interaction sequences, and an implementation of a
LOTOS specification in PARLOG would be more suited to providing a runnable version of the
specification. For example, the PARLOG implementation of a gateway protocol could be run on a
multiprocessor, allowing the development of the rest of the system to proceed.

2. LOTOS, a Formal Description Technique

The name LOTOS is an acronym for Language Of Temporal Ordering Specification, and is intended to
convey the fact that LOTOS is a formal specification language, belonging to the class of Formal
Description Techniques (FDT). LOTOS is currently defined in [ISO 1987] which contains a tutorial
introduction to the language. It has been used to specify portions of the ISO-OSI model, mostly at the
Transport and Service layer levels [SCOLLO et al 1985], [TOCHER 1985], [ISO 1986a], [ISO 1986b],
[ISO 1986c].

We concentrate on that part of the overall LOTOS language which is used for describing the dynamic
aspects of processes, henceforth referred to as "Dynamic LOTOS" in this work. Although the semantics of
Dynamic LOTOS is based on Milner’s Calculus of Communicating Systems (CCS) [MILNER 1979], many
ideas from Hoare’s Communicating Sequential Processes (CSP) [HOARE 1985] are incorporated.

The ADT part of the LOTOS language does interact with Dynamic LOTOS in the areas of "sort-checking"
and synchronisation conditions. Although we excluded an implementation of the full ADT portion for lack
of time, an outline of methods which could be used to accomplish this is to be found in [GILBERT 1986].
The part played by sort-matching in synchronisation was incorporated into our implementation, and is



D.R.Gilbert Executable LOTOS 3

discussed below.

We base our illustrative LOTOS examples on a subset of the specifications to be found in the LOTOS
Tutorial [ISO 1987]:

Example 1

process buffer [ in-data, out-data ] :=
in-data ? x : data ;
out-data ! x ;
buffer [ in-data , out-data ]

endproc

Example 2

process two-slot-buffer [ in , out ] :=
hide middle in

buffer [ in , middle ]
| [ middle ] |
buffer [ middle , out ]

endproc

Example 3

process duplex-buffer [ in-a , in-b , out-a , out-b ] :=
buffer [ in-a , out-a ]
|||
buffer [ in-b , out-b ]

endproc

The definition of LOTOS has been subject to regular revisions in the past, especially with regard to its
semantics, and recently [ISO 1987] a semantics has been given to the language with respect to the parallel
and associated operators which is accordance with Milner’s latest work [MILNER 1986]. The work
reported here was undertaken with the earlier definition [ISO/BSI 1986], but we include a discussion of the
effects of the recent changes on our implementation.

3. PARLOG

PARLOG is a logic programming language, and its development was influenced by inputs from both
Functional and Logic Programming. This section assumes that the reader has familiarity with the general
concepts of logic programming, and specifically a knowledge of PROLOG. Introductory reading to logic
programming may be found in [HOGGER 1984] and [KOWALSKI 1983]; standard references for
PARLOG are [CLARK and GREGORY 1986] and [GREGORY 1987].

3.1. PARLOG as a Parallel Logic programming language

PARLOG is a language which belongs to the family of committed choice parallel logic programming
languages. It can explicitly express both OR and stream-AND parallelism. Committed choice non-
determinism is implemented by the use of guards which ensure that committal is made to only one clause,
unlike the backtracking ability of PROLOG. These features enable the language to use non-determinism as
an evaluation strategy if required by the programmer, and permit the writing of programs which require the
separate use of both sequential and parallel evaluations.
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The PARLOG syntax used in this article is given in the Table below. Note that variable names start with a
capital letter in the examples presented in this paper.

Table 1 PARLOG syntax

box , center,tab (%) ; cB | cB cB10 | l. Symbol%Meaning =
<-%logical implication _ &%sequential-AND _ %parallel-AND _ ;%sequential-OR _ _ :%guard operator
_ _ ˆ%output mode annotation

Mode declarations are used to specify communication constraints on shared variables, which are declared
to be either ? ("input") or ˆ ("output"), thus acting as communication channels. These declarations are
made once for each relation, and each argument of the relation is annotated:

mode name(a1?,..,akˆ,..)
Messages sent along these channels are incrementally constructed from partially determined data structures,
usually consisting of lists of terms acting as message streams.

The general form of a PARLOG clause is:
<head> <- <guard> : <body>

Note that <head> is in the form name(a1,..,ak) , where name is the relation name, and a1,..,ak its
arguments. The logical implication symbol is ’ <-’ and ’:’ the guard operator. Both the guard and the body
can be a conjunction of calls, or empty, and the calls are separated by the sequential-AND or parallel-AND
operators. A clause is a candidate for evaluation if both input matching in the head and the evaluation of
the guard succeeds, whereas in a non-candidate clause either of these fail. A clause can be suspended if
either the input matching or guard evaluation suspend waiting for an input variable to become instantiated.
A suspended call may eventually become either candidate or non-candidate. Note that no output bindings
are made until committal has been made to the clause (ie the guard conditions are satisfied), and committal
may be made to only one clause of a procedure.

The search strategy employed by PARLOG is different to that of PROLOG. Firstly the language does not
employ automatic left-to-right evaluation, calls in an AND-conjunction being evaluated concurrently.
Secondly, a depth-first strategy is not used to explore the search tree, but rather all possible paths are
explored concurrently and the first successful answer terminates the search. Finally, if the parallel-OR
operator is specified, clauses within a procedure are not explored in the strict textual order in which they are
encountered: PARLOG will choose one candidate clause at random to evaluate, and only pursue the paths
which arise from that computation. If all the clauses are suspended, then the call itself becomes suspended.
The success of a conjunction is dependent on the success of its constituent parts (calls); if none of its calls
fails but one is suspended, the conjunction suspends. It should be noted that if one call in a conjunction
fails, the evaluation of all the calls in that conjunction must be terminated. The programmer has control
over which clause may be chosen as the candidate by the use of input matching and also guards. Moreover
there are explicit sequential AND and OR operators which enable the programmer to specify the order of
evaluation if desired.

PARLOG provides a facility for metalevel programming, the call primitive, which interprets an argument
term as a relation call. This facility exists as both in a single argument and three argument form
[GREGORY 1987]. We use the former primitive in the work reported here.

3.2. Stream communication

The committed choice aspect of PARLOG give it the ability to express stream communication. This
enables PARLOG to be used constructively in applications where concurrency and process state are of
importance. Although in a logic program a relation call cannot actively change state, but only reduce to
other calls, a relation which calls itself recursively with different arguments can be viewed as a long lived
process which changes its state [GREGORY et al 1985]. Since PARLOG allows more than one call to be
evaluated concurrently, the language permits computations which comprise the execution of several
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concurrent processes.

The basic paradigm of stream communication is that of producers and consumers. PARLOG’s ability to
perform stream-AND-parallelism gives the language the power to express stream communication in a very
simple manner. Shared variables act as communication channels, and messages can be sent by the
incremental construction of partly instantiated data structures such as tuples or lists of terms. This
incremental communication has an analogy with the lazy and eager parallel evaluation of functional
programs. Output variables are produced in an asynchronous manner, but input variables are processed
synchronously if an argument contains a partially instantiated term. Mode declarations mean that in a
situation involving communication only one PARLOG process can be the producer, binding shared
variables, whilst there may be one or more consumers of the communication stream.

An outline program which illustrates this form of stream communication is:

Example 4

mode eager-producer( Streamˆ ).
eager-producer( [ Item | Stream ]) <-
produce( Item ) ,
eager-producer( Stream ).

mode naive-consumer( Stream? ).
naive-consumer( [ Item | Stream ] ) <-
consume( Item ) ,
naive-consumer( Stream ).

mode produce(ˆ).

mode consume(?).

Note that we do not give the code for the procedures produce and consume, as these are not relevant to this
particular algorithm; we assume that produce is ’eager’ (asynchronous). The eager-producer process can
run ahead of the consumer by an arbitrary amount, and we assume the existence of system buffers to permit
this.

The PARLOG programmer is, however, able to utilise the completely synchronous communication
facilities offered by the language. This is achieved by back-communication which can take two forms.

Firstly, the mode of the producer may be reversed, causing it to become "lazy". In this case, the consumer
has the output mode on the shared variable, and the producer is declared input on that argument. The
consumer than sends the producer a list of variables to be instantiated as messages; unable to run ahead of
the consumer, the producer’s eagerness is constrained by that process. Lazy evaluation can produce quite
succinct algorithms, but often a considerable amount of transformation has to be made to an "eager"
algorithm in order to create a "lazy" version which produces the overall desired result. Moreover, the
transformed algorithms may themselves not be so easily understood as the original "eager" versions or
those using back-communication. Mode reversal was not a technique employed in the research reported
here for these reasons.

The second, analogous to "rendez-vous", is that of the co-operative construction of binding terms. The
producer sends a stream (eg a list) of tuples, each of which contains two arguments, one the data item to be
sent and the other a variable; the use of the sequential-AND operator then forces the producer to wait until
the consumer instantiates the variable to an agreed message using the <= primitive. Note that <=

instantiates its left argument, which must be a variable, to the right argument (one way unification). The
example code below illustrates this; we use message(Item,Reply) for the message tuple, and assume the
procedures produce and consume as above.
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Example 5

mode synchronous-producer( Streamˆ ).
synchronous-producer( [ Message | Stream ] ) <-
produce( Item ) ,
synch-send( Item , Message ) &
synchronous-producer( Stream ) .

mode synchronous-consumer( Stream? ).
synchronous-consumer( [ Message | Stream ] ) <-
synch-receive( Message , Item ) ,
consume( Item ) ,
synchronous-consumer( Stream ).

mode synch-send( item? , messageˆ ) .
synch-send( Item , message( Item , Reply ) ) <-

wait( Reply ) .

mode synch-receive( message? , itemˆ ) .
synch-receive( message( Item , Reply ) , Val ) <-

Val <= Item ,
Reply <= ok .

mode wait(?).
wait( ok ).

As an example, a non-terminating invocation would be:
synchronous-producer( Stream ) , synchronous-consumer( Stream ).

In the above example, synchronous-producer may only produce one message tuple at a time, and is forced
to wait until the Reply argument has been instantiated by the call to wait in synch-send. The overall
sequencing of the communication is achieved by the sequential-AND operator in synchronous-consumer

between the call to synch-send and the self recursive call. Note that the input mode on wait ensures that the
call to this procedure will suspend until its argument is ground, and that synch-receive will only ground
Reply to ok after it has output Item.

Reformulating in PARLOG the LOTOS algorithms presented earlier, we employ back communication and
the cooperative construction of binding terms, and make use of the procedures for synch-send, synch-

receive and wait (above). One problem is to fully capture the operational semantics of the original LOTOS
specification.

Example 6

mode buffer( in-channel? , out-channelˆ ).
buffer( [] , [] ) .
buffer( [ In-Message | In-Channel ] , [ Out-Message | Out-Channel ] ) <-

synch-receive( In-Message , Item ) &
synch-send( Item , Out-Message ) ,
buffer( In-Channel , Out-Channel ) .

The reader should note that the inclusion of the first clause of the buffer procedure implements a buffer
which terminates after it receives the last message in the In-Channel. In this respect it behaves more like
the LOTOS definition of a buffer given below, where eot indicates an end-of-transmission message:



D.R.Gilbert Executable LOTOS 7

Example 7

process terminating-buffer [ in , out ] :=
in ? x : data ;
out ! x ;
buffer [ in , out ]

[]
in ? y : eot ;
exit

endproc

Example 8

mode two-slot-buffer(in-channel? , out-channelˆ ).
two-slot-buffer( In-Channel , Out-Channel ) <-

buffer( In-Channel , Middle ) ,
buffer( Middle , Out-Channel ) .

Example 9

mode duplex-buffer( in-a? , out-aˆ , in-b? , out-bˆ ).
duplex-buffer( In-a , Out-a , In-b , Out-b ) <-

buffer( In-a , Out-a ) ,
buffer( In-b , Out-b ) .

One of the major difficulties with the above PARLOG programs is that channel names cannot be
parameterised due to the lack of a Renaming facility in the language. Moreover, the derivation of such
PARLOG programs from the LOTOS specifications is not straightforward and certainly not easy to
mechanise. For these reasons we chose to attempt a more formal translation from LOTOS into PARLOG.

3.3. PARLOG in the light of Milner’s interpretations

We note some correspondences between the concepts Milner expresses in his recent paper [MILNER 1986]
and those implemented in PARLOG. The interested reader is referred to [BECKMAN 1986] and
[BECKMAN, GUSTAVSON and WAERN 1986] for an analysis of concurrent logic programming
languages in a CCS formalism, and to [ELLIS 1986] for a discussion of the translation of PARLOG into
CCS.

The "naive" form of communication in PARLOG (asynchronous producer, synchronous receiver) relies on
buffering within the system, and does not conform to Milner’s Principle 1; co-operative construction of
binding terms is excluded for the same reason that Milner discounts the ’rendez-vous’ of Ada. However,
reverse-mode communication can be considered to conform to the first principle of Milner if we recognise
that in a practical programming language there must be some physical means by which processes can
communicate.

Due to the ability of a PARLOG computation to permit the existence of more than one concurrent process,
the language may be used in a manner which broadly conforms to Principle 2, although PARLOG
computational style is not limited to the process view alone. Because of the semantics of logic programs, a
PARLOG query which is a conjunction of calls can only succeed when all the calls succeed, and if
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programming by side-effects is excluded then Principle 3 is satisfied.

Milner ’s Principle 4 (Conjunction) is partly satisfied by PARLOG’s stream-AND operator when
considering the synchronous communication expressible in the language. However the language only
supports a 1 to N form of communication (one producer and many consumers). Moreover, multi-way
synchronisation is not the natural paradigm in the language, and it must be enforced by programming
techniques, hence making it difficult to incorporate Milner’s Principle 9 (Simultaneity) into the analysis of
PARLOG. However, Principle 9 is supported to the extent that a PARLOG process may synchronise with
more than one other process by the use of several communication channels. Encapsulation (Principle 5) is
achieved to the extent that the scope rules of Logic Programming which ensure that calls made within the
body of one clause are not "visible" to a procedure which calls that clause. Disjunction (Principle 6) is
reflected by the parallel-OR operator in PARLOG, which coupled with the use of guards and input
matching can be used to ensure either exclusive clause choice or to allow the system to arbitrarily select
one clause for committal if the choice is non- exclusive. Principle 7 (Renaming) is not realisable in
PARLOG. Naturally, as a language orientated towards system programming, PARLOG incorporates
explicit sequencing operators to allow for such a control where needed, for example in enforcing
synchronousity or in i/o operations (Principle 8).

4. Implementing LOTOS in PARLOG

4.1. Source-to-source translation: preliminary considerations

The method used to translate one high level computer language into another may be broadly described by
the label "source-to-source translation". LOTOS is very similar to a conventional computer language in its
overall design, and is thus a candidate for such a translation process.

One technique that can be used to effect source-to-source translation is compiler-like translation. This
consists of the derivation from algorithm A in language L, of an algorithm A´ in language L´, each distinct
component of A´ being semantically equivalent to the corresponding component in A. In its most low-level
form, constructs from the original language are mapped directly into constructs in the target language. One
of the advantages of this method is that a "building-block" approach to translation can be used. Little or no
"intelligence" is required of the translator process once the low level components have been successfully
mapped from A to A´. Implementation of the translator itself as a computer program is thus facilitated.
For the reasons given above, we employed compiler-like translation as the method of implementing
LOTOS specifications in PARLOG.

4.2. Source-to-source translation: the LOTOS - PARLOG problem.

An initial examination of the syntax and semantics of LOTOS and PARLOG suggests that there might exist
some ready similarities between the two languages, making the translation from the former to the latter
relatively simple. This is indicated by a comparison of the operators from both languages:

Table 2 Initial correspondences between the operators of LOTOS and PARLOG

center , box ,tab (%) ; cB s| cB s lB l| lB l. LOTOS%PARLOG = ;%action-prefix operator%&%sequential-
AND _ >>%enable%&%sequential-AND _ ||%% |[..]|%parallel operator%,%parallel-AND |||%% _
[]%choice% %OR-search _ [..]->%guarded expression%:%guard-conditions _ [..]%selection predi-
cate%:%guard-conditions _ l s| l s. process abstraction%procedure declaration _ process instantia-
tion%procedure call
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However, such a naive approach possesses many difficulties which originate from the different semantics of
the languages. The major problem in translating from LOTOS to PARLOG is that the former language
draws heavily on constructs from both CCS and CSP, whilst PARLOG originated as a logic language.
LOTOS has inherited constructs from its "parent" languages which are not immediately translatable into
PARLOG. Examples are the LOTOS choice and parallel operators, which do not correspond directly to the
PARLOG operators bearing the same names, and atomic events, which do not exist in PARLOG. The
major work of creating a source-to-source translator from LOTOS to PARLOG lies in the definition of
PARLOG algorithms which mirror those constructs.

4.3. Compiler-like translation.

In this section we briefly discuss the implementation of PARLOG process which emulate basic LOTOS
constructs.

The basic building block of a LOTOS specification is the atomic event which is used to express the
synchronised interaction between communicating processes. Thus the atomic event is the first item in the
repertoire of LOTOS that requires the attention of the designer of a translation system. Closely associated
with atomic events are event gates, or interaction points, referred to in the literature on LOTOS as abstract
resources shared by processes [ISO/BSI 1986]. In implementing LOTOS specifications in PARLOG, these
abstract resources must be represented as PARLOG processes whose run-time behaviour simulates the
properties of those resources. This in turn implies that the processes derived from the concept of
interaction points will be quite complex. A run-time system incorporating these is necessary to enable
LOTOS specifications implemented in PARLOG to be executed.

A complete implementation of LOTOS in PARLOG must also implement operators from the former
language as processes in the target language if there is no direct correspondence between operators in both
languages. While LOTOS’s sequential operators, action-prefix and enable, are equivalent to PARLOG’s
sequential-AND operator, difficulties exist in the implementation the choice, parallel and disable operators.

Since ACT-ONE was not a target for implementation in PARLOG, the existence of sort definitions has been
taken for granted in this work.

Event offers and synchronisation in LOTOS were implemented in PARLOG by the technique of back-
communication using the co-operative construction of binding terms, resulting in code which is easy to
reason about due to the declarative nature of PARLOG. A signal program produces a message tuple of the
form:

message( send(Gate,Val,Sort,Condition), Reply , Ok )

or

message( receive(Gate,Val,Sort,Condition) , Reply , Ok)

The parallel operators are mapped into a par program, written in PARLOG, which emulates the right-
bracketing properties of the operators defined in [ISO/BSI 1986] and incorporates hiding and selection of
gates. Changes can be made to the par process to incorporate modifications to the operational syntax of the
parallel operators, for example the latest definition of the parallel operator which is associative and does not
automatically include hiding [ISO 1987]. Each PARLOG process representing a LOTOS behaviour
expression produces a stream of synchronisation signals which are available to an environment, usually
represented as a par process. Every par process consumes two streams of synchronisation signals
(produced either by processes representing behaviour expressions, or by other par processes), and produces
a stream of synchronisation signals.

The mode declaration of the par program is:

mode par( instream-1? , instream-2? , selected-gates? , hidden-gates? , out-streamˆ )

Messages with gate names not in the selected or hidden lists are immediately exported via the out-stream.
Those with gate names on the hidden list may never be exported to the environment via the out-stream, and
those not on the selected list can never be candidates for matching in that particular par process.
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All three synchronisation classes of LOTOS are supported in the implementation, as are selection
predicates. The par process consumes two message streams and performs matching of signals according to
the synchronisation classes. The selection predicates of LOTOS are translated as condition relations,
(Condition in the message tuples) which are evaluated in the par process using PARLOG’s call primitive.
Val is instantiated in the case of the SEND tuple, but uninstantiated in the RECEIVE tuple when these tuples
are produced by signal. In the case of a SEND-RECEIVE match, the value of the RECEIVE Val is
instantiated to that of the SEND Val. A SEND-SEND match requires the two Vals to evaluate to the same
value, whilst in a RECEIVE-RECEIVE match, a common value is negotiated according to the restrictions
imposed by the Conditions of each tuple. Moreover only if the gate names and sort names of two signals
match and their condition relations evaluate to true will any match be successful and synchronisation take
place. Ok is the synchronisation variable on which the signal process suspends until it is successfully
ground to the constant ok by the matching process.

Process abstraction was mapped on to PARLOG relation declaration, and instantiation of processes on to
goal calls. Relations are parameterised by gate-names, value parameters and export lists as in LOTOS.
Thus the buffer process would be translated as:

Example 10

mode buffer( gates? , value-parameters? , exportsˆ , streamˆ )
buffer( [ In , Out ] , [] , [] , [ Receive , Send | Stream] ) <-
signal( receive( In , Val , data , true ), Receive) &
signal( send( Out , Val , data , true), Send ) &
buffer( [ In , Out ] , [] , Exports , Stream).

Note that since the original LOTOS specification did not use selection predicates, these appear as true in
the translation. The only procedure which produces signals not included in the message stream is that
representing the stop process in LOTOS.

The two-slot-buffer is translated thus:

Example 11

mode two-slot-buffer( gates? , value-parameters? , exportsˆ, stream).
two-slot-buffer( [ In, Out] , [] , [] , Stream-out) <-
buffer( [ In , middle ] , [] , Exports-1, Stream-1) ,
buffer( [ middle , Out] , [] , Exports-2, Stream-2) ,
par( Stream-1, Stream-2, [middle], [middle], Stream-out).

Note that the middle gate is both selected and hidden as in the original specification. In contrast, the
LOTOS duplex-buffer specification is translated as:

Example 12

mode duplex-buffer( gates? , value-params? , exportsˆ , streamˆ)
duplex-buffer( [ In-a , In-b , Out-a , Out-b ] , [] , [] , Stream-out) <-

buffer( [ In-a , Out-a ] , [] , Exports-1 , Stream-1 ),
buffer( [ In-b , Out-b ] , [] , Exports-2, Stream-1 ) ,
par( Stream-1 , Stream-1 , [] , [] , Stream-out) .

In this program, the empty lists in the third and fourth arguments of par indicate that no selection or hiding
of gate names has been made.

The action-prefix and enable operators of LOTOS are supported. They map directly onto PARLOG’s
sequential-AND operator. Successful termination (exit) maps onto PARLOG’s successful return from a
query. The export of values on exit from a process is implemented by listing the relevant items in the
export-list argument of the PARLOG predicate head.
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LOTOS’s choice operator is not implemented using PARLOG’s clause search because the use of PARLOG
guards does not produce the output binding necessary for the implementation of synchronisation chosen.
Instead, a list of synchronisation choice messages is sent in the message tuple to the par process which
matches them with those from the corresponding process in the communication. The originator is informed
which tuple successfully matched via the Result argument of the message tuple. Thus the LOTOS
expression:

a ! 3 ; exit [] b ? x : nat [ x < 5] ; exit

would produce a choice list in the message tuple of the form:

message( [ send( a , 3 , nat , true ) , receive( b , X , nat , less( X , 5 ) ) ] , Result , Ok )

Guarded expressions are implemented by PARLOG guards; when used in combination with the choice
operator they are mapped onto guard conditions and OR-parallel search in PARLOG.

Internal events are implemented as synchronisation signals which are always satisfied in the match
procedure, but leave the corresponding matching signal to be retried for matching against subsequent
signals. In this way, the use of internal events and the choice operator in LOTOS to describe combinations
of deterministic and non-deterministic choice can be mapped into PARLOG.

The disable operator is not directly mapped into PARLOG constructs; algorithms using this operator must
be rewritten using the choice and sequential operators using the expansion method described in the
Provisional LOTOS Tutorial [ISO 1986a]. An example expansion is from :

a ; b ; exit [> c ; exit

to:

( a ; ( b ; exit [] c ; exit ) ) [] c ; exit

Disruption of infinite behaviours specified recursively may be expanded by the same method.

5. The Translator

The translator was implemented for a substantial subset of the mappings using PARLOG as the language to
write all the necessary modules. It incorporates a tokeniser and parser which together conform to the BNF
of LOTOS that was available at the time. Future changes to the BNF can easily be incorporated into the
tokeniser and parser since they are written in PARLOG itself. The parser itself was hand-written, but it
could be generated using a PARLOG program. The code generator does not implement ACT-ONE and
thus does not perform translation-time type-checking. Moreover some of the mappings described in the
previous section are not incorporated in the code generator, notably the choice operator in any context other
than guarded expressions. This is because of the difficulty of determining at which level of process nesting
the choice is offered [GILBERT 1986]. A run-time environment to support block-structured declarations of
variables is not implemented: the LOTOS programmer is encouraged to declare explicitly as input all
variables needed in any process.

6. Conclusion

LOTOS and PARLOG are languages which have different theoretical bases. The former is a Formal
Description Technique with the ability to utilise Abstract Data Types (ACT-ONE), and inherits a formalism
derived from CCS and CSP (Dynamic LOTOS). PARLOG is a Parallel Logic Programming language with
foundations in Horn Clause logic and influenced by ideas from functional programming.
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LOTOS possesses the ability to specify communication systems using general methods which can be
adapted to specific situations. It relies heavily on the concept of event-gates. The use of these as input
parameters to process instantiations facilitates the construction of systems built out of communicating
processes.

The stream communication model employed by PARLOG requires the programmer to explicitly link
processes which intercommunicate, linkage being achieved by the use of the logical variable. In order to
achieve the flexibility inherent in LOTOS, a PARLOG implementation must create complex software
entities which perform the redirection and synchronisation of message streams. These entities are
implemented as PARLOG relations. They can cause the execution of the PARLOG code to be inefficient as
the messages in the synchronisation streams are routed to the intended destination. The inefficiency is
exacerbated by the complex operational semantics of some of the LOTOS operators when used in
combination, notably the parallel and hiding operators. However, the question of inefficiency could be
overcome by implementing these relations as PARLOG primitives.

Despite the apparent differences between the two languages, mappings into PARLOG from some core
constructs in Dynamic LOTOS were made successfully, and a translator implemented. The declarative
nature of PARLOG made the accomplishment of these these tasks relatively straightforward, and changes
in the semantics of LOTOS are easy to incorporate into the system. We used the software described to
translate some simple LOTOS specifications into the PARLOG system. The system is not yet fully
developed, and would be improved by debugging tools and other aids. However, given the complex nature
of the task, we are satisfied that such a tool described here is useful in the development of system
specifications using LOTOS.

A final remark

The execution of this project has inevitably raised the question of whether a logic language like PARLOG
might be used to formulate the original specifications. Some work has already been done in this area
[BRODA and GREGORY 1984], [GREGORY et al 1985], [RINGWOOD 1984]. The indications are that
PARLOG is suitable for the task, but that considerable further work would need to be done to produce
PARLOG specifications of large and complex systems.
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