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Abstract. Modelling biochemical networks can be achieved by itera-
tively analyzing parts of the systems via top-down or bottom-up ap-
proaches. It is feasible to piece-wise model the biochemical networks from
scratch by employing strategies able to assemble reusable components.
In this paper, we investigate a set of strategies that can be employed in a
bottom-up piece-wise modelling framework, to obtain synthetic models
with similar behaviour to the target systems. A combination of evolution
strategies and simulated annealing is employed to optimize the structure
of the system and its kinetic rates. Simulation results of different variants
of those computational methods on a standard signaling pathway show
that it is feasible to obtain a tradeoff between the generation of desired
behaviour and similar and alternative topologies.

1 Introduction

In theoretical chemistry and systems and synthetic biology, time-dependent
chemical concentration data for large networks of biochemical reactions are im-
portant. These data are collected with the purpose to identifying the exact struc-
ture of a network of chemical reactions and their corresponding kinetic rates for
which the identity of the chemical species present in the network is known but
no information is available on the species interactions.

General methods for engineering biochemical networks can be divided into
two main approaches: top-down or bottom-up, which allow the modelling of bio-
chemical systems by manipulating parts of the systems. In the top-down (analyt-
ical) approach, a whole complex biochemical system is segregated into subunits
that can be easily dealt with for further investigation, such as dissecting apop-
totic signals [9] and tuning complex signal cascades [14]. In the bottom-up (con-
structionist) approach, a complex biochemical system is composed from building
blocks where the relationships of involved compounds are investigated, such as
building synthetic oscillators [15] and transplanting synthetic genomes [2]. The



modelling of biochemical networks involves the optimisation of two main at-
tributes: network topology and kinetic rates.

There exist several approaches dealing with inferring biochemical systems,
some of them with limitations and drawbacks [6][12][13]. They mainly include
evolutionary algorithms and genetic programming (from the class of evolution-
ary computation models). Previous research applies a hybrid combining Evolu-
tionary Strategies (ES) and Simulated Annealing (SA) to the optimisation of
topology and the kinetic rates of a biochemical system [20]. In this paper, we
investigate variants of the ES-SA heuristics for bottom-up systems modelling.
Due to the flexibility of these strategies, various combinations of the evolution-
ary operators, evaluation criteria and design principles can be considered. These
variants are presented in detail in Section 4.

2 Biochemical systems

The modelling of biochemical systems has been investigated widely in computa-
tional biology, especially in systems biology. In biochemistry, a chemical reaction
is a process of converting molecules of reactants into products within a specific
time period. The reactants are usually known as substrates. Biochemical systems
are composed of interacting molecules (or molecular species), whose dynamic
evolution is determined by the occurrence of chemical reactions. A biochemical
model is fully characterized by the initial concentration of each molecular species
and the description of the reactions with their kinetic rate laws. The represen-
tation of the dynamics is given by an ordinary differential equation (ODE) as
follows:

dXi

dt
=

∑

j

µij · γj

∏

k

X
fjk

k (1)

where Xi represents one species of the model, for instance metabolite con-
centrations, protein concentrations or levels of gene expression; j represents the
biochemical reaction affecting the dynamics of the species; µij indicates the sto-
ichiometric coefficient; γj indicates rate constants; fjk stands for kinetic orders;
and k denotes the number of species.

Mass action kinetics are used in chemistry and chemical engineering to de-
scribe the dynamics of chemical reactions. The mass action given in equation MA
is used in this work; note that A is the substrate, B the product, E the enzyme
and A|E is the intermediary substrate-enzyme complex.

A + E

k1−→
←−
k2

A|E
k3−→ B + E . (MA)

There are different methodologies employed to describe biochemical systems
in computational biology. Petri nets are one of the existing mathematical mod-
elling structures used for the description of biochemical systems as a reaction-
system behaviour descriptor, and comprise two types of nodes – places and



transitions – connected via edges. The usage of Petri nets in biological systems
comes as a natural solution as biochemical reactions are inherently bipartite,
comprising reactions between biochemical entities [11], which are mapped onto
transitions and places respectively. A continuous Petri net can be represented by
a system of ODEs [8]. We focus on the automatic identification of both network
structure and its corresponding kinetic rates from observed time-domain con-
centrations alone without assuming a given basic structure or any given reaction
kinetics.

3 ES-SA metaheuristic for biochemical systems

ES (as well as any of the evolutionary computation methods) are good candi-
dates for evolving biochemical systems. A solution of the ES encodes a Petri
net which is a representation of a biochemical system. SA is a powerful op-
timization method and it is used for optimizing the kinetic rates. The hybrid
method ES-SA applied to biochemical systems is described in detail in [19][20].
We reproduce here the main characteristics. In order to understand the main
constituents of an ES solution, elements such as pattern, component, model and
rules are required. Any complex biochemical reactions can be described by em-
ploying instantiations from the binary patterns. The two general patterns we use
describe how two species form a new species, or how one species is decomposed
into two species:

– binding pattern: two reactants are merged into a complex with a specific
kinetic rate

– unbinding pattern: a complex is disassociated back to reactants, or converted
to a product and an enzyme with a specific kinetic rate.

A component for constructing biochemical models is given by
C = 〈P, T, f, v, m0〉, which is based on the structure of Petri nets, where:

– P is a disjoint set of three continuous Places
– T is a singleton set containing one continuous Transition
– f : ((P × T ) ∪ (T × P )) → R+

0 defines a set of three directed arcs, weighted
by non-negative real numbers, such that there is at least one arc of the form
p→ t and at least one of the form t→ p

– v : T → H assigns a firing rate function to the transition, whereby the set
of all firing rate functions is H :=

⋃
t∈T

{
ht|ht : R|•t| → R

}
, and v(t) = ht

is for the transition t ∈ T

– m0 : P → R+

0 gives the initial marking.

A model of a biochemical system is a generalized form of a component but
with no restrictions on the number of places and transitions. The mathematical
interpretation of both component and model is a system of ODEs, illustrating
the nonlinear relationship among at least three involved biochemical elements.

The ES part of the ES-SA metaheuristic builds models from single compo-
nents by using evolutionary mechanisms for composition operators and rules.



A database has been designed and two libraries developed to store the compo-
nents and models. Components are created at initial stage, according to the pre-
defined patterns. A components library is developed as a table in the database,
to preserve the generated components as atomic building blocks. The library
maintains detailed information of these atomic components, such as labels of
involved species, constants of associated kinetic rates and structures of created
components.

The fitness function for a generated model MG is given by:

f(MG) = dMT ,MG
(Xk) +

1

η

η∑

k=1

Φ(Xk) (2)

where

dMT ,MG
(Xk) =

1

η

η∑

k=1

√√√√
P∑

t=1

(xt
k − x̂t

k) (3)

XT = (X1, X2, ..., XN) represent the behaviour of the N species, P denotes
data points in each time series Xi = (x1i, x2i, ..., xPi), i = 1, ..., N . There are

M time series XG = (X̂1, X̂2, ..., X̂M ) describing the behaviour of M species
in a constructed model MG, and there are P data points for each time series
X̂j = (x̂1j , x̂2j , ..., x̂Pj), j = 1, ..., M . The intersection between MT and MG of
species is defined by XC = XT ∩ XG = (X1, X2, ..., Xn), 1 ≤ n ≤ N . η = n if
the compared species are from the intersection XC and η = n′ if the compared
substrates are from X ′

C , the set which contains the species for behaviour com-
parison specified by the user. The fitness function has to be minimized, therefore
the smaller the evaluated fitness value, the better the generated model.

A set of composition operators are adapted from the evolutionary optimiza-
tion to fine tune the structures of the models:

– addition, represented by ⊕: addition rules add a component to a model
– subtraction, represented by ⊖: subtraction rules remove a component from

a model
– crossover, represented by⊗: crossover rules combine two models. The crossover

rules allow two models be cut and spliced by swapping parts of the models
via a ”cut and splice” approach.

ES builds solutions, i.e. biochemical systems represented by Petri nets, in a
piece-wise manner by applying the operators above to the components library.
In this way, ES optimises the topology of the biochemical system. The kinetic
rates of the reactions encoded in the Petri net are optimized using simulated
annealing. In order to evaluate an ES-SA solution, the fitness function includes
both the topology and the kinetic rates. The topology part of the fitness function
gives the number of common species and their interactions in the evolved model
compared to the target one. Some of the target model species and interactions
may be missing from the generated model, as well as extra species not in the



target topology could be generated. For the optimization of the kinetic rates, we
employed the BioNessie [10] platform to simulate the model and generate time
course data as a set of target behaviour of species in the model. The measure-
ment of behavioural distance is obtained by employing the Euclidean distance
function. This part of the fitness involves solving the system of ODEs associated
with the reactions. More details on the implementation of the two methods and
all the parameters involved can be found in [19][20].

4 ES-SA variants for biochemical systems modelling

Due to a large variety of ways in which evolutionary methods can be designed
in terms of performing genetic operators, comparing species behaviour and eval-
uating generated models during the construction process, we have carried out
an empirical investigation of the advantages and disadvantages of some variants
for the piecewise modelling, with an emphasis on the effect of genetic operators
and evaluation criteria. Five sets of specific modelling variants are compared and
general descriptions of these variants are given in what follows.

1. Methods of driving model composition:

– Fixed: behaviour of a fixed set of species to be compared
– Dynamic: behaviour of a dynamic set of species to be compared

Time series data presenting behaviour of species in a target biochemical
system is used to drive the modelling process via reducing the behaviour
distance between generated and target model. Given a target biochemical
system and a generated model which consist of N and M species respectively,
there are two sets of time series data describing species behaviour in the
target and generated model. It is easy to deduce that species to be compared
can be selected via a fixed or a dynamic method.
In the fixed method, the species in a fixed set are specified by users at the
initial stage. They are referred to the target biochemical system. Therefore,
all the information (names, concentrations and behaviour in time series data
format) of these species is provided without uncertainty. Regarding the pro-
cess of piecewise modelling, a model which is constructed at initial stages or
evolved by mutation after many generations could only consist of less species
than the target model. Thus some of the species could be absent.
In the dynamic method, the species for comparison are generated and pre-
served in a dynamic set according to the existence of species in both gener-
ated and target models. The number of species is a dynamic variable in a
range of [0, N ], N denoting the number of species in the target model.

2. Methods of survival selection:

– SES: standard (1+1)-evolution strategy
– PES: probabilistic (1+1)-evolution strategy, probabilistically accept a

worse model

A probabilistic evolution strategy (PES) is proposed, which differs from the
standard evolution strategy (SES) in the sense that it can accept worse



models by a probability while searching the solution space. This may be
helpful in avoiding local optima.
The SES method is the standard evolutionary process, selecting model candi-
dates as offsprings for further evolution in following generations. The criteria
for survival models is based on fitness value. The PES method introduces an
acceptance probability into the stages of choosing survival models, which is
integrated within the normal model selection stages of SES.

3. Methods of implementing the mutation operator (mutation consists in adding
and/or subtracting a component to/from the topology):
– Fixed: a fixed frequency of switching the addition/removal of a compo-

nent to/from the model
– Random: a random way of switching the addition/removal of a compo-

nent to/from the model
In the fixed method, the two mutation operators can be performed alterna-
tively.
In the random method, addition and subtraction are applied to models at
every generation in a random manner.

4. Methods of performing crossover operator:
– Best: each individual mates with the best individual in the population
– Random: each individual mates with a randomly selected individual from

the population
The crossover operator mates two individual models under construction by
a cut and splice method. New offspring are generated from the combination
of parental models in terms of components (reactions and species). Parents
and offspring compete and only one of them can be preserved as a model
candidate in the population of the next generation. We consider two ways
to performing the crossover operator: best and random methods.
In the best method, each model under construction from the population is
recombined with the model with best fitness. It is inspired by the elitism
based individual selection in genetic algorithm.
In the random method, each model in the population will be crossed over
with another model chosen randomly.

5. Methods of evaluating solutions (models):
– ED: the objective function represents the Euclidean distance function
– ED+RP: the objective function is a combination of a reward and penalty

mechanism and the Euclidean distance function
The difference between generated and target model is calculated by employ-
ing an objective function. In the objective function, there are two methods
of evaluating the composed models: Euclidean distance (ED) based method,
and Euclidean distance with a reward and penalty mechanism (ED+RP)
based method. ED is an ordinary distance between two points on the time
series data representing the species behaviour from generated and target
model. The inclusion of the reward and penalty in an objective function
is intended to prioritize individuals whose components are among the ones
existing in the target model. For instance, if a species is generated in a syn-
thetic model and the species is also among the ones existing in the target
model, fitness will be improved by giving a reward value.



5 Evaluation metrics

In order to evaluate the synthetic model structures quantitatively, two measures
are employed: Compression and Coverage. Both measures vary from 0 (worst)
to 1 (best). If either compression or coverage is low for a particular model, it
indicates the topology of the generated model is very different from the target
biochemical system, even if their behaviours are similar.

Compression (adapted from [3] and [7]) measures the percentage of matched
common arcs between synthetic and target model and it is given by:

Compression =
|Intersection|

Max(|Target| , |Generated|)

where |Intersection| represents the number of matched arcs between target
and generated topology, |Target| is the number of arcs in the target topol-
ogy, |Generated| denotes the number of arcs in the generated topology, and
Max(|Target| , |Generated|) is the maximum number of arcs in either of the
target and generated model.

Coverage calculates the ratio of matched arcs in the target model and it is
given by:

Coverage =
|Intersection|

|Target|

where |Intersection| represents the number of matched arcs between target
and generated topology, and |Target| is the number of arcs in the target topology.

6 Experiments and comparisons

In order to quantitatively study the modelling variants, we performed statistical
analysis of the performance by comparing fitness values, compression and cov-
erage scores. One of the most important and intensively studied signaling path-
ways is ERK pathway (the Ras/Raf-1/MEK/ERK signaling pathway) which
transfers the mitogenic signals from the cell membrane to the nucleus [17]. The
ERK pathway is de-regulated in various diseases, ranging from cancer to im-
munological, inflammatory and degenerative syndromes and thus represents an
important drug target. A brief illustration of regulations among proteins and
complex based on signaling transduction in the ERK pathway is given as fol-
lows. Ras is activated by an external stimulus, via one of many growth factor
receptors; it then binds to and activates Raf-1 to become Raf-1*, or activated
Raf, which in turn activates MAPK/ERK Kinase (MEK) which in turn activates
Extracellular signal Regulated Kinase (ERK). Cell differentiation is controlled
by following cascade of protein interactions: Raf-1→ Raf-1* → MEK → ERK.
The effect of regulation is dependent upon the activity of ERK. The Raf-1 ki-
nase inhibitor protein (RKIP) inhibits the activation of Raf-1 by binding to it,
disrupting the interaction between Raf-1 and MEK, thus playing a part in regu-
lating the activity of the ERK pathway [18]. A number of computational models



have been developed in order to understand the role of RKIP in the pathway
and ultimately to develop new therapies [4][5].

Due to the space limitation we present the analysis of a single signaling
pathway but other examples could be found in [19].

Figure 1 shows a Petri net of the RKIP signaling pathway. Figure 2 displays
the behaviour of all the species in the model of ERK signaling pathway regulated
by RKIP, which is generated by simulation on a set of given ODEs and a group
of original kinetic rates.

Raf−1Star RKIP

Raf−1Star_RKIP

ERK−PP

MEK−PP_ERK

Raf−1Star_RKIP_ERK−PP
RKIP−P_RP

MEK−PP ERK RKIP−P RP

r1 r2

r3 r4

r6 r7 r9 r10r5

r8

r11

Fig. 1: A Petri net of the RKIP signaling pathway. Initial markings are taken from [21]

6.1 Simulation settings

There are five pairs of ES-SA variants compared and investigated. Details of
simulation settings are given in Table 1.

The hybrid ES-SA platform calls the subtraction operator at every two gen-
erations, Sub@Ge=2; SA is called to optimize kinetic rates at every 25 gener-
ations, OptRate@Ge=25; reward ε1 and penalty ε2 values are 0.01 and 1000
respectively.The number of generations in one run of ES is 100, GeSi=100; the
number of individuals is 50, PopSi=50. Initial SA system temperature is 10,
Tini=10; cooling rate of SA system is 0.8, CoRate=0.8; minimum temperature
for stopping simulation is 1, Tmin=1; number of iterations at each temperature
is 10, Iter=10. The mean µ and standard deviation σ of Gaussian distribution
N(µ, σ) are 0 and 0.00001, µ=0 and σ=0.00001. Other properties of the simula-
tion setting during the modelling process are fixed without modification except
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the two compared modelling variants, which allows a fair comparison between
two modelling variants in each pair in terms of performance on generation of
synthetic models.

We investigate both alternative topologies and similar topologies. By ana-
lyzing the number of reactions in target pathway to the ones existing in the
model generated by our method, we can quantitatively measure the difference
between the alternative topology compared to the target one. A similar topology
contains parts identical to the ones in the target network, but it could as well
contain parts which are absent in the target network. An alternative topology
has a different structure for the network, for instance could contain the same
reactants as the target one, but the arcs between them are different.

Table 1: Simulation settings for running modelling variants.

Modelling Variants Hybrid Modelling ES SA Gaussian N(µ, σ)

Data Driven: ♯Runs = 10 GeSi = 100 Tini = 10 µ= 0
Fixed vs Dynamic Sub@Ge= 2 PopSi = 50 CoRate = 0.8 σ= 0.00001
Survival Selection: OptRate@Ge = 25 Tmin = 1
SES vs PES ε1=0.01 Iter = 10
Mutation: ε2=1000
Fixed vs Random
Recombination:
Best vs Random
Fitness Function:
ED vs (ED+RP)



6.2 Statistical analysis

Two statistical measures in the R packages [16], ‘var.test(X, Y)’ and ‘t.test(X,
Y)’, are employed to perform the statistical analysis.

Fitness values, compression and coverage scores are used to calculate the P-
value in ‘var.test(X, Y)’ and ‘t.test(X, Y)’ for further statistical analysis. The
P-value is compared with a traditional significant level ‘p=0.05’, and the ratios
of variances among generated models are also compared (see Tables 2, 3, 4).
Results over 10 independent runs are summarized.

Table 2: Statistical analysis of average fitness sets

NO. X vs Y
var.test(X, Y) t.test(X, Y)

P-value rV ariances P-value X̄ Ȳ

1.1 DriF ixed vs DriDyn 0.0229 0.6309 < 2.2e-16 3.1602
1.2 SES vs PES 0.4574 1.1616 0.837 4.2289
1.3 MF ixed vs MRan 0.6821 0.9208 0.0262 4.2474 4.035
1.4 ⊗Ran vs ⊗Best 1.07e-03 1.9448 0.5737 4.2019
1.5 ED vs (ED+RP) < 2.2e-16 6.15e-06 < 2.2e-16 348.78

Table 3: Statistical analysis of average compression.

NO. X vs Y
var.test(X, Y) t.test(X, Y)

P-value rV ariances P-value X̄ Ȳ

1.1 DriF ixed vs DriDyn 0.0096 0.4713 < 2.2e-16 0.025
1.2 SES vs PES 0.0461 1.7802 6.78e-16 0.0361
1.3 MF ixed vs MRan 0.75 1.0958 0.0296 0.0526 0.0567
1.4 ⊗Ran vs ⊗Best 1.60e-06 0.2387 < 2.2e-16 0.1033
1.5 ED vs (ED+RP) 1.25e-05 3.6546 0.0004 0.0469

Table 4: Statistical analysis of average coverage.

NO. X vs Y
var.test(X, Y) t.test(X, Y)

P-value rV ariances P-value X̄ Ȳ

1.1 DriF ixed vs DriDyn 6.74e-12 8.4369 < 2.2e-16 0.0731
1.2 SES vs PES 0.4961 1.2161 0.0261 0.2065
1.3 MF ixed vs MRan 0.062 1.7147 6.63e-05 0.2322 0.2765
1.4 ⊗Ran vs ⊗Best 0.3373 1.3178 0.1888 0.2174
1.5 ED vs (ED+RP) 9.39e-05 0.3163 1.05e-14 0.3967

Table 5 shows a comparative example of the reactions obtained in a model
generated by ES-SA strategies compared with the ones in the real (target) model.



In the case presented here, four reactions marked with a star in target RKIP

pathway are generated in the synthetic model. The synthetic model consists of
12 reactions, four of them being identical to the ones in RKIP pathway. The ES-
SA metaheuristics can obtain alternative topologies exhibiting similar behaviour
to the target ones.

Alternative topologies in synthetic models illustrate target biochemical sys-
tem in a different way, providing templates to biologists in wet-lab for further
experimental examination at the properties of the biochemical systems.

Table 5: Comparison of one synthetic model with RKIP pathway.

Reactions in RKIP pathway Reactions in One Generated Model

*Raf1 + RKIP
k1
−→ RKIP |Raf1 ERK|RP

r1
−→ ERKP + RP

*RKIP |Raf1
k2
−→ Raf1 + RKIP ERKPP |MEKPP

r2
−→ ERKPP + MEKPP

RKIP |Raf1 + ERKPP
k3
−→ ERKPP |RKIP |Raf1 ERK|RP + ERKPP |RKIPP

r3
−→ ERK|ERKPP |RKIPP |RP

ERKPP |RKIP |Raf1
k4
−→ RKIP |Raf1 + ERKPP ERK + RKIP |Raf1

r4
−→ ERK|RKIP |Raf1

ERKPP |RKIP |Raf1
k5
−→ Raf1 + ERK + RKIPP *RKIP + Raf1

r5
−→ RKIP |Raf1

*ERK + MEKPP
k6
−→ ERK|MEKPP *ERK + MEKPP

r6
−→ ERK|MEKPP

*ERK|MEKPP
k7
−→ ERK + MEKPP ERKPP |MEKPP + MEKPP |RKIPP

r7
−→ ERKPP |MEKPP |RKIPP

ERK|MEKPP
k8
−→ MEKPP + ERKPP RKIP + ERK|RP

r8
−→ ERK|RKIP |RP

RKIPP + RP
k9
−→ RKIPP |RP *RKIP |Raf1

r9
−→ RKIP + Raf1

RKIPP |RP
k10
−−→ RKIP + RP ERK|MEKPP

r10
−−→ ERKP + MEKPP

RKIPP |RP
k11
−−→ RKIPP + RP RKIP |Raf1 + ERKP

r11
−−→ ERKP |RKIP |Raf1

*ERK|MEKPP
r12
−−→ ERK + MEKPP

6.3 Discussion

Details of the advantage and disadvantage of applying ES-SA variants to con-
struct models are described below, each pair being considered separately.

Fixed vs Dynamic - Data driven For generating desired behaviour and al-
ternative topologies, dynamic variant, is better than fixed one, but for generating
similar topologies, the fixed variant is better than dynamic one.

Figure 3a shows that the dynamic version converges more quickly in terms
of fitness function than the fixed one.

SES vs PES - Survival selection For generating desired behaviour, the exper-
iments do not show any difference between SES and PES; for generating similar
topologies, SES is better than PES and for generating alternative topologies,
SES is better than PES.

Figure 3b shows that SES and PES have a similar performance regarding the
convergence of fitness values.
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Fig. 3: Fitness convergence of ES-SA variants (the number of generations is shown on
the X-axis and the average fitness values on the Y-axis): (a) variants for data driven,
Fixed vs Dynamic; (b) variants for survival selection, SES vs PES; (c) variants for
applying mutation operator, Fixed vs Random; (d) variants for applying crossover
operator, Best vs Random; (e) variants for models estimation, ED vs ED+RP.

Fixed vs Random - Mutation operator For generating desired behaviour
and similar topologies random variant is better than fixed one; and for alternative
topologies random variant is the same as fixed one.

Figure 3c shows the convergence of the fitness values for the fixed and random
variant.



Best vs Random - Crossover operator For generating desired behaviour
and similar topologies, a random selection of mate for recombination works the
same as the selection of the best individual but selection of best individual
for recombination is better than the random selection for generating alternative
topologies. Figure 3d shows the convergence of the fitness values. In Table 2 (1.4)
and Table 4 (1.4), the two P-values of t.test() are both larger than the significant
level 0.05, indicating that the mean fitness and coverage values of the random
variant are the same as the ones of the best variant. This suggests that the
best and random mechanisms of selecting individual for crossover have the same
performance.

ED vs ED+RP For generating similar topologies, ED+RP variant is better
than ED but ED is better for generating alternative topologies. In Table 2 (1.5),
the P-value is much smaller than 0.05, indicating a significant difference between
ED and ED+RP. Figure 1(e) presents the convergence of the fitness value for
ED and ED+RP. The average coverage value is larger for the models estimated
by ED+RP which suggests that the ED+RP variant can be better than the
ED variant in terms of generating similar topologies. However the P-value of
var.test() in Table 3 (1.5) is smaller than 0.05 and the ratio of variances is larger
than 1.

Note that some of the ES-SA variants are not directly comparable, because
the statistical values are not in the same measurement scale. For instance, the ED
and ED+RP are not comparable in terms of fitness values, since the mechanism
of reward and penalty generates a different fitness scale.

We are aware that sometimes small amendments to the original methods
could have an impact upon the final results; this is what we tried to prove in
this paper, but with the aim of selecting those forms of operators and evaluation
procedures would best fit the biochemical network design. The probabilistic ES
makes no difference to the standard one (it is even worse in certain situations)
which shows that accepting worse solutions will not bring additional exploration
of the search space. The manner in which mutation is performed helps if addi-
tional information is known about the problem to be solved. In the case presented
in this paper, the imposition of a certain number of steps for adding a compo-
nent or removing a component is not helpful. This could work better than in
the random case if more interaction is provided, i.e. remove a component every
certain fixed number of steps only if the size of the network is too big. The step
size of the application of an addition or a subtraction is also important, but that
requires extra analysis. Elitism plays an important role and in our case it helped
in selection the individuals for crossover.

Table 6 shows the overall pair-wise comparison of all the five variants in terms
of topologies generation and behaviour.



Table 6: A summary of performance between compared modelling variants.

Desired Similar Alternative
Modelling Variants Behaviours Topologies Topologies

Data Driven:
Fixed vs Dynamic Dynamic Fixed Dynamic

Survival Selection:
SES vs PES = SES SES

Mutation:
Fixed vs Random Random × =

Recombination:
Best vs Random = × Best

Fitness Function:
ED vs (ED+RP) × ED+RP ED

Notes: ’×’ means not comparable; ‘=’ means the same.

7 Summary and conclusions

The work described in this paper focuses on the empirical analysis of piece-
wise modelling approaches of signalling pathways, comparing performance of
different Evolutionary Strategies – Simulated Annealing variants. Alternative
topologies of synthetic models obtained in silico can be taken as general guides
for biologists to examine and understand biochemical systems by experimental
techniques in wet-lab. Moreover, these can be used as templates for researchers
in synthetic biology to develop specific functions of biochemical systems. The
research presented here aims at guiding biomodel engineers in deciding the com-
putational setup and selecting the right parameters. Our analysis of some of the
combinations which could be considered helps in developing models that are use-
ful for further construction with respect to specific characteristics of modelling
biochemical systems.
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