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Abstract 
 
  This paper describes the development of a new method for multiple sequence alignment based on 
fold-level protein structure alignments, which provides an improvement in accuracy compared to the most 
commonly used sequence only based techniques. This method integrates the widely used progressive 
multiple sequence alignment approach ClustalW with the TOPS topology based alignment algorithm. The 
TOPS approach produces a structure alignment for the input protein set by using a topology-based pattern 
discovery program, providing a set of matched sequence regions that can be used to guide a sequence 
alignment using ClustalW.  The resulting alignments are more reliable than a sequence-only alignment, as 
determined by 20-fold cross validation with a set of 106 protein examples from the CATH database, 
distributed in 7 superfold families.  The method is particularly effective for sets of proteins which have 
similar structures at the fold level, but low sequence identity.  The aim of this research is to contribute 
towards bridging the gap between protein sequence and structure analysis, in the hope that this can be used 
to assist the understanding of the relationship between sequence, structure and function.  The tool is 
available at http://balabio.dcs.gla.ac.uk/msat/ 
 

INTRODUCTION 
 
  The number of known structures in the Protein Data Bank (PDB) is increasing rapidly, due in particular 
to structural genomics initiatives (Goldsmith-Fischman and Honig, 2003; Kim, 1998) that aim to populate 
protein fold space using high-throughput experimental technologies.  Most of these projects focus on 
proteins whose fold cannot be easily recognised by simple sequence comparison with proteins of known 
structure (Benner and Levitt, 2000).  Recent research in structural biology has contributed to our 
understanding of the relationships between amino acid sequences and protein structures, and between 
different protein structures (Goldsmith-Fischman and Honig, 2003).  One well-accepted observation is 
that the structure of a protein is more conserved than its underlying amino acid sequence.  Hence, learning 
the similarities (or differences) between protein structures is very important in understanding the 
relationship between protein sequence, structure and function, and for the analysis of possible 
evolutionary relationships.  
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  Several protein structure knowledge bases such as SCOP (Murzin et al, 1995), CATH (Orengo et al, 
1997) and DALI (Holm and Sander, 1997), ranging from being manually curated to fully automated, have 
been created in order to further our understanding about the relationships between protein sequence and 
structure.  Most of these databases classify protein structures in a hierarchical manner: several studies 
have shown that these databases can differ from one another due to differing domain definitions rather 
than by the assignment of the same domain to different folds (Day et al 2003; Hadley and Jones, 1999).  
We have employed the CATH classification scheme and domain assignments as our primary data source, 
but our approach can be adapted to use other structural classification schemes.    
  Experimental protein structure determination is expensive and time consuming; therefore sophisticated 
computational methods have been developed and applied to detect, search for and compare remote protein 
homology at the sequence level in the hope that annotations of proteins of known function can be 
transferred to a protein of unknown function.  Thus methods that are capable of modelling protein families 
are important and useful for protein fold recognition studies as well as for discovering relationships 
between sequences and folds.  There are sufficient protein families at the fold level in the CATH database 
to allow sophisticated analysis to compute over them. Important information for homology modelling is 
provided by identifying those positions within a sequence which are tolerant to mutation.  Moreover 
sequence segments, based on conserved structural features, can be used to predict the structures of more 
distant members of a family (Orengo, 1993).  The general steps for computational methods to model and 
detect protein families are as follows (Mian and Dubchak, 2000): 

(i) Define a protein family where the members usually share sequence and/or structural features 
based on the analysis of multiple sequence alignments 

(ii) Construct a model (pattern) that characterises the family 
(iii) Design a scoring function scheme such that, given a model and a set of positive and negative 

examples, a score is returned for the examples covered by the model. 
  Most computational tools developed for protein fold prediction are primarily based on sequence 
similarity. If a new protein sequence with an unknown structure has high sequence similarity to a protein 
of known structure, then the new protein may share a similar fold with this structure.  Closely related 
proteins can be detected by comparing their sequences, using standard bioinformatics tools such as 
BLAST (Altschul et al, 1990), PSI-BLAST (Altschul et al, 1997) and FASTA (Pearson and Lipman, 
1988).   
  In order to obtain the maximum benefit from the wealth of known protein structures, fast and sensitive 
methods should be used to classify the Protein Databank into fold families.  Unfortunately, structure 
comparison based on 3D coordinates is expensive in terms of computational power and time.  In order to 
reduce the computational time, several heuristic methods have been proposed in the literature.  TOPS is 
one such approach that employs machine learning and heuristic algorithms to discover common structural 
patterns (or motifs), and enables these patterns to be matched to a set of TOPS descriptions (Gilbert et al 
1999; Gilbert et al 2001; Viksna and Gilbert 2001).  The advantage of this system is the simplicity 
representation of the protein structure in topological model, where in this level of abstraction only the 
sequence of secondary structure elements, SSEs (i.e. strands and helices) and the spatial relationships 
between SSEs (i.e. hydrogen bonds and chirality) are considered.  The performance of the TOPS system 
has been evaluated over the SCOP database entries and has proved to be much faster than the usual 
atom-coordinates driven algorithms (Gilbert et al, 2001).  Also, the accuracy of the TOPS system 
approaches that of pure 3D structure driven methods, and much better than sequence-based approaches 
(Gilbert et al, 2001).  A principal disadvantage of this system is the lack of detailed explanatory power (i.e. 
amino acid residues) required for the understanding of the relationship between protein sequence, 
structure and function.  The addition of sequence information to TOPS descriptions, for example as in the 
work described in this paper, will greatly improve the effectiveness of the TOPS system. 
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  The objective of the research reported in this paper is to generate TOPS based multiple sequence 
alignments for sequences that have low sequence similarity (< 10%) but share common topology or fold.  
In order to make good use of the TOPS system and to increase its usefulness for biologists, this research 
combines the properties of sequences and structure alignments in the MSAT program (Multiple Sequence 
Alignment tool based on TOPS).  The system can generate structure alignments of a set of proteins along 
with their underlying sequences; evolutionary relationships among the sequences in each identified 
“structure segment” can then be revealed by a sequence-driven multiple alignment tool.  MSAT multiple 
sequence alignments can then be used, for example, to make HMM profiles.   As work in progress, not 
reported here, we are constructing a database of such profiles for fold families and developing a system to 
search a query protein sequence against these profiles in order to perform fold assignment. 
 
 

BACKGROUND 
TOPS 
  Protein structure can be described at a highly simplified ‘ topological’  level using TOPS cartoons 
(Sternberg and Thornton, 1977). These are schematic abstractions of protein three-dimensional structures 
in two dimensions.  A sample cartoon for 2bopA0 is shown in Figure 1(b) (for comparison a Rasmol 
cartoon is given in Figure 1(a)).  The TOPS cartoon shows the secondary structure elements (SSEs) - 
β-strands (depicted by triangles) and -helices (depicted by circles).  TOPS cartoons were originally 
drawn manually; subsequently an algorithm that automatically produces cartoons from protein structures 
has been devised and implemented (Flores et al., 1994; Westhead et al, 1998, 1999). 
 

 
Figure 1: (a) Rasmol (Sayle and Milner-White, 1995) cartoon view of 2bop (b) TOPS cartoon 

 
  Although the cartoons do not explicitly display the information about hydrogen bonding between strands 
or chirality connections between SSEs, the cartoon generation program outputs a data structure 
containing, among other things, the information about these bonds and connections.  We refer to this 
richer representation as a TOPS diagram (Figure 4); it is from this form that the cartoons are produced, 
which can then be stored in graphical format, for example as postscript or gif files.   
 
Multiple sequence alignment 
  Multiple sequence alignments are usually inferred from amino acid sequences alone. Biologists produce 
high quality multiple sequence alignments by hand using their expert knowledge of protein sequence 
evolution. They must consider many issues to generate a good alignment, such as highly conserved 
residues, the influence of secondary and tertiary structure, etc. Obviously, the manual construction of 
multiple alignments is laborious and the development of automatic multiple sequence alignment methods 
has become an active topic of research for the Bioinformatics community.  The most widely used method 
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in molecular biology to align sets of nucleotide or amino acid sequences, is to build up a multiple 
alignment progressively.  In this iterative process, the most closely related sequences are aligned together, 
keeping the early alignments fixed.  There are two main strategies when considering the alignments 
between two protein sequences: global alignment (Needleman and Wunsch, 1970) and local alignment 
(Smith and Waterman, 1981).  Figure 2 shows a multiple sequence alignment of four haemoglobin 
sequences generated by ClustalW (Thompson et al, 1994) which is based on progressive pairwise global 
alignments. 
 

 
Figure 2: An example of ClustalW multiple sequence alignment 

 
A multiple alignment of sequences S1, S2, … Sk is a series of strings S1’ , S2’ , …Sk’  such that 

1.  |S1’ | = |S2’ | = … = |Sk’ | 
2.  Sj’  is an extension of Sj, obtained by insertion of gaps        Def .1 
 
 

METHODS 
 
  We have devised MSAT (Multiple Sequence Alignment tool based on TOPS) that integrates TOPS 
generated alignments of secondary structures with multiple sequence alignments from tools such as 
ClustalW.  The MSAT package incorporates two existing programs: the TOPS alignment program 
(Gilbert et al, 2001) and ClustalW v1.83 (Thompson et al, 1994), and requires as input the amino-acid 
sequence and the 3D protein structure description for each member of the protein family under 
consideration.  MSAT generates the model by the following steps:  

(i) Generate TOPS descriptions from 3D coordinate data, using the DSSP program and the TOPS 
cartoon generation program. 

(ii) Generate a structural alignment for all the members of a family using the TOPS alignment 
program. 

(iii) Divide the aligned sequences of the family members into several segments corresponding to 
the common secondary structure elements indicated by the TOPS alignments;  

(iv) Generate a multiple sequence alignment for those segments using ClustalW;  
(v) Concatenate the segments to produce the full length alignment;  

 
  This section is divided into two parts.  Firstly we describe the representation of TOPS diagrams, TOPS 
patterns and the theory behind the production of a TOPS alignment.  Secondly we describe the sequence 
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segmentation stage and the usage of ClustalW.   We briefly describe the underlying formal basis of each 
program and direct interested readers to the relevant references for a detailed explanation of each 
technique.
 
MSAT 
  Figure 3 illustrates the general architecture of the MSAT system.   Protein domains can be selected from 
the CATH hierarchy.  TOPS descriptions of the input set of proteins are retrieved from a relational 
database and passed to the TOPS pattern discovery program to produce a TOPS alignment of secondary 
structure elements.  Next the amino-acid sequences of input set are divided into several sequence 
segments according to the aligned SSEs.  These segments are then aligned by ClustalW and concatenated 
together to make the full-length sequence alignments.  We have also used T-Coffee (Notredame et al, 
2000) to produce the multiple sequence alignments, but found that it performed less well then ClustalW in 
our evaluations. 
 

 
Figure 3: Architecture of MSAT 

 
TOPS diagrams and pattern discovery 
  Formally, a TOPS diagram is a triple ),,( CHST =  where S = S1,S2,…,Sn is a sequence length n of 
secondary structure elements (SSEs), H is a set of topological representations of hydrogen bonds, and C is 
a set of chirality connections.  The loop regions between each SSE are implicitly represented in the 
sequence, e.g. there is a possible loop region between any Si and Si+1, as well as before S1 and after Sn.   We 
keep a record of which amino acid residue is at the start and end of each SSE, and hence we also have a 
record of the residues corresponding to the start and end of each loop region.  In this TOPS description an 
“H-bond”  refers to a ladder of individual hydrogen bonds between adjacent strands in a sheet, and 
chiralities are a subset of those generated by Slidel’s algorithm (Slidel and Thornton, 1996).  TOPS 
descriptions are generated from atom coordinate files via DSSP (Kabsch and Sander, 1983) and the TOPS 
cartoon generation program (Westhead et. al., 1999).   
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Figure 4: (a) TOPS diagram for 2bopA0. (b) Linearised TOPS diagram for 2bopA0. 

 
 A TOPS pattern is a generalisation that describes a set of TOPS diagrams which conform to some 
common topological characteristics.  The form of a TOPS pattern P= (SP,HP,CP) is similar to a TOPS 
diagram, except that SP = I0-S1-I1-S2-I2-…-In-1-Sn-In is a TOPS sequence pattern of length 2n+1, where Si 
is a pattern SSE and I i is an insert.  An insert describes those SSEs that are common to some but not all of 
the diagrams in the input set, as well as representing the loop regions between the SSEs.  There is an insert 
in the pattern between each pair of SSEs in the pattern, as well as at each end of the SSE sequence (i.e. at 
both the N-terminus and the C-terminus).  We say that the length of a TOPS pattern is the number of SSEs 
in the sequence pattern SP.  The TOPS pattern discovery algorithm operates by discovering patterns of 
H-bonds and chiralities based on the properties of sheets for TOPS diagrams; it also derives TOPS 
sequence patterns, SP, i.e. the associated sequences of SSEs. For more details of the pattern discovery 
algorithm, see (Viksna and Gilbert, 2001). 

 

 
 

Figure 5: Making a TOPS alignment 
 

  For example, given three TOPS diagrams )1,1,1(1 CHSD = , )2,2,2(2 CHSD = , )3,3,3(3 CHSD =  and 
a least general common pattern ),,( CPHPSPP =  (Figure 5), we can make a structural alignment of these 
domains by matching P with D1, D2 and D3 respectively.  If there are n SSEs and hence n+1 insert 
positions in the pattern P, then there are 2n+1 corresponding blocks in each of D1, D2 and D3.  For 
example in Figure 5 the common pattern for the three domains contains 4 strands, and hence there are 4 
aligned SSE blocks and 5 unaligned blocks in D1, D2 and D3, giving a total of 9 blocks (B1,…,B9) where 
the underlying amino acid sequences in each block will be subsequently be aligned.   
  The compression of a pattern with respect to a set of structures is computed in a standard way by 
reference to the size of the pattern and the total size of the components of the TOPS structures which are 
not included in the pattern.  This value is normalised to the range 0 (worst) to 1 (best).  Intuitively, the 
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compression is a measure of how much a set of structures has in common.  A good value indicates that 
they all share most of their elements. A poor value is, in turn, an indicator of a diverse group that shares 
little common structure.  A set of structures that are all identical will naturally have a common motif that is 
identical to all the members of the group, and hence the compression of this motif with respect to the group 
will be exactly 1.  Sets with no amount of common structure (a set comprising an all-alpha and an all-beta 
protein, for example) will have an empty motif which will have a compression of 0. 
 
Multiple sequence alignment strategy 
  We apply a “divide-and-conquer”  strategy when generating sequence alignments and then concatenate 
the underlying amino acid sequence of the aligned SSE regions (represented as A in Def.2) and other 
regions (represented as L) respectively.  For the underlying amino-acid sequence S associated with a 
TOPS diagram: 

S = L1^A1^L2^A2^…^Lm-1^Am-1^Lm  where 
Ai is an amino-acid sequence of a corresponding aligned SSE 
Li is an amino-acid sequence for a region between two aligned SSEs Si-1 and Si 
^ represents sequence concatenation  
m=2∗|SP|+1                   Def. 2 

 
Figure 6: MSAT sequence alignment strategy.  Figure 6(a) illustrates the input amino-acid sequences in 
FASTA format.  Figure 6(b) shows the corresponding TOPS diagrams, where light triangles and dark 
circles represent matched SSEs discovered by the TOPS alignment program.  Figure 6(c) is a 
concatenated multiple sequence alignment, where the light and dark coloured regions correspond to the 
matched SSE regions in 6(b). 

 
  ClustalW v1.83 (Thompson et al, 1994) is used to generate the multiple sequence alignment for each 
TOPS aligned or unaligned region.  For example, given three CATH domains ‘1a8vA2’ , ‘1an802’  and 
‘1bcpF0’ , the TOPS structure alignment program will firstly produce a structure alignment, the individual 
segments are then aligned using ClustalW, and finally all of the segments are concatenated to produce a 
full length multiple sequence alignment. This process is illustrated in Figure 6. 
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EVALUATION 
 
Data sources 
  To demonstrate the usefulness of MSAT we have performed training and testing on examples of different 
folds compiled from the CATH knowledge base.  CATH is a hierarchical classification of protein domain 
structures, which clusters proteins into four major levels, Class (C), Architecture (A), Topology (T) and 
Homologous superfamily (H) (Orengo et al, 1997).  A CATH Homologous superfamily comprises 
sequences that might have low sequence similarity, but whose structure and function suggest a common 
evolutionary origin.  The Topology (T) level in CATH represents the fold of a protein; fold families 
contain sequences that have structural similarities.  We have selected 106 protein domains distributed in 7 
common β-rich super folds from the CATH database as our test cases (Table 1), namely OB folds, Jelly 
Rolls, IG-like, UB rolls, TIM barrels, alpha-beta plaits and Rossman folds.  We have selected domains so 
that each family has an average pair-wise sequence similarity of less than 10% and a TOPS compression 
value greater than 0.5. 

Table 1: Fold families used in this research 

Fold CATH 
code 

Nr  3D Structure TOPS Car toon 
Average 
Structure 

Compression 

Average 
Pair -wise 
Sequence 
Similar ity 

OB fold 2.40.50 15 

  

0.71 7.12% 

Jelly Rolls 2.60.120 15 

 
 

0.63 7.40% 

Immunoglobulin
-like (Ig-like) 

2.60.40 14 

  

0.87 8.15% 

UB rolls 3.10.20 14 

  

0.62 7.14% 

TIM Barrel 3.20.20 15 

 

0.82 7.27% 
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Fold CATH 
code 

Nr  3D Structure TOPS Car toon 
Average 
Structure 

Compression 

Average 
Pair -wise 
Sequence 
Similar ity 

Alpha-Beta 
Plaits 

3.30.70 18 

 
 

0.97 8.12% 

Rossmann fold 3.40.50 15 

  

0.96 8.92% 

 
Evaluation method 

Hidden Markov models (HMMs) (Eddy, 1998; Durbin et al, 1998) have been shown to be effective in 
classifying protein families and recognising protein motifs from amino acid sequences.  These models 
consist of a set of states, each with a probability of generating a particular residue, and a set of transition 
probabilities for moving from one state to the next.  For protein sequences, there is usually a single state 
for each residue position in the model, and the transition possibilities are restricted to three: transition to 
the next residue position, insertion, or deletion of the next position. Thus HMMs are constrained to 
represent only correlations that are local in the amino acid sequence - the amino acid observed at a 
particular position only depends on the position immediately preceding it.  In addition, profile-based 
HMMs have been widely applied in bioinformatics to identify remote homologs and to generate multiple 
sequence alignments for protein families (Mian and Dubchak, 2000; Durbin et al, 1998).  We have 
employed the HMMER package (Eddy, 1998) in the MSAT system to generate a representative 
profile-based HMM for each of the seven superfold families using the multiple sequence alignment from 
MSAT.   We also separately generated two more profiles for each superfold families using multiple 
sequence alignments generated by ClustalW, and T-Coffee respectively without prior alignment via 
TOPS.  These pure sequence alignments were used to evaluate those generated by MSAT.  We further 
generated MSAT profiles using T-Coffee (Notredame et al. 2000) for the multiple sequence alignment 
stage, and evaluated them using the method described below; they performed less well than the MSAT 
profiles using ClustalW and are not illustrated here. 

 
  In order to evaluate the discriminative power of a multiple sequence alignment, we hypothesise that:   

S belongs to the family f described by alignment A, if the e-value e(A,S) 
generated by the hmmsearch program is below some threshold e0.  

 
Predicted Class  

True False 
Positive examples True Positives (TP) False Negatives (FN) Actual 

Class Negative examples False Positives (FP) True Negatives (TN) 

Figure 7: Contingency table for a two-class classification/prediction 
 
  We have evaluated this hypothesis by comparison to the ‘ fold’  classification of the CATH database 
(Orengo et al, 1997) which we take as the ‘gold standard’ .  The CATH fold classification can be used to 



 10 

separate protein domains into those which are truly related (Positive examples, Np) and those which are 
not truly related (Negative examples, Nn) at the fold level.  Our approach can then be used to classify 
CATH domains deemed similar by the hmmsearch program (i.e. entries whose sequence e-value e(A,S) < 
e0) and constructed a contingency table for each fold families as shown in Figure 7.  The positive examples 
Np comprise True Positives (TP), protein entries correctly predicted as members of the true class by 
hmmsearch, and False Negatives (FN), those wrongly predicted as members of the false class.   The 
negative examples Nn comprise False Positives (FP), those incorrectly predicted as belonging to the true 
class, and True Negatives (TN), those negative examples correctly predicted as not belonging to the true 
class.   Obviously, the numbers TP (e0) and FP (e0) of true and false positives respectively depend on the 
choice of the threshold e0.   Following Gribskov and Robinson (1996), we characterise the algorithm by its 
coverage rate c (e0)= TP (e0)/Np and its false positive rate f(e0) = FP(e0)/Nn. The plot of c(e0) against f(e0) 
is known as a Receiver Operating Characteristic (ROC) curve.   
 

 
Figure 8: Evaluation schema 

 
In order to carry out a form of cross validation over a fold family of N protein domains, half of the 

domains were removed from the set, multiple sequence alignment and profiles generated for the remaining 
N/2 domains by ClustalW and hmmbuild, and the family membership of the removed domains predicted 
by hmmsearch and its accuracy measured (Figure 8).  This process was repeated by randomly dividing the 
N domains 20 times into two sets.  This variation of cross validation is used because the size of N is less 
than 20 for each family in our case.  As mentioned above, the number of true positives and false positives 
is largely dependent on the threshold e0.  In our case, a large e-value (9999) is artificially selected as an 
input parameter to hmmsearch so that all domain entries (including positive sample and negative samples) 
are listed in ascending order of e-value.  Then the e-value e0 for each positive entry is recorded as well as 
the number of true positives and false positives above it in the ordered list of matches.  Finally using this 
data, the coverage rate and false positive rate is computed for that family. 

 
 

RESULTS AND DISCUSSION 
 

  We have performed three different alignment methods and compared their performance based on the 
CATH folds listed in Table 1.  ClustalW v1.83 (Thompson et al, 1994a) and T-Coffee v1.37 (Notredame 
et al. 2000) are sequence-based, and MSAT is our method.  All these methods were used with the default 
parameters for the corresponding package. 
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Figure 9 shows the ROC curves of every method for each fold.  In ROC curve space, the points (0,0) 
and (1,1) represent the HMM profile which always predicts negative class and positive class respectively, 
the point (0,1) represents the ideal HMM profile, and (1,0) represents the HMM profile that gets it all 
wrong.  Therefore, given two curves in ROC space, the upper curve performs better than the lower one.  
We can see from Figure 9 that the MSAT method is generally better than the other two approaches.  In 
order to evaluate the significance of differences found between these methods, we have computed several 
different statistical measurements: Positive Predicted Value (PPV), F-measure and the Matthew’s 
Coefficient Correlation value, using the cut-off point at 80% coverage.  Positive Predicted Value (Eq. 1) 
evaluates the positive predicted reliability of the method; the values range from 0 to 1, with the higher a 
value representing a better prediction.  F-measure (Eq. 2, van Rijsbergen, 1979) is a measurement that has 
been widely used in the Information Retrieval community to balance the trade-off between the coverage 
and the PPV of a classifier (HMM profile in our case); values range from 0 (worst) to 1 (best).  Matthew’s 
Coefficient Correlation (Eq. 3) computes the correlation between positive and negative classifications, 
and is 1.0 when there are no false positives or negatives, 0 where the classifier is a random classifier, and 
-1.0 when there are only false positives and false negatives (Brazma et al, 1998).  Table 2 indicates the 
PPV, CC and F-measure of each method at 80% coverage.  

FPTP

TP
PPV

+
=                     Eq. 1 

FPFNTP

TP
MeasureF

++×
×=−

2

2
               Eq. 2 

))()()(( FPTNFNTPFNTNTNTP

FNFPTNTP
CC

++++
×−×=             Eq. 3 

 
   Overall, from our results (Table 2), we observed that MSAT alignment do improve the multiple 
sequence alignment in five out of seven families when compared to ClustalW and T-Coffee.   

Table 2: Different statistical measurements at 80% coverage 
Fold  MSAT ClustalW T-Coffee 

PPV 0.068 0.066 0.067 
F-Measure 0.126 0.123 -0.098 OB fold 

CC -0.08 -0.189 -0.098 
PPV 0.545 0.314 0.293 

F-Measure 0.631 0.449 0.423 Jelly Rolls 
CC 0.624 0.450 0.422 
PPV 0.160 0.130 0.106 

F-Measure 0.256 0.215 0.188 Ig-like 
CC 0.225 0.171 0.133 
PPV 0.142 0.105 0.139 

F-Measure 0.238 0.186 0.228 UB roll 
CC 0.214 0.139 0.186 
PPV 0.945 0.951 0.845 

F-Measure 0.896 0.899 0.842 TIM Barrel 
CC 0.891 0.894 0.833 
PPV 0.170 0.142 0.133 

F-Measure 0.282 0.242 0.231 Alpha-Beta Plaits 
CC 0.229 0.165 0.160 
PPV 0.298 0.326 0.284 

F-Measure 0.438 0.463 0.420 Rossmann fold 
CC 0.441 0.464 0.423 
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Table 3: TOPS pattern properties 

Fold # SSEs #
�
 strands #H-bonds #Chirality arcs Avg. Structure Compression 

OB Fold 8 5 3 0 0.71  
Jelly Rolls 11 11 9 0 0.63  
Ig – like 7 7 5 0 0.87  
UB Roll 8 5 4 2 0.62  

TIM Barrel 16 8 7 7 0.82  
Alpha-Beta Plaints 6 4 3 2 0.97  

Rossmann Fold 10 5 4 4 0.96  

 
  Furthermore, we have analysed the topological properties of the patterns discovered by the TOPS 
alignment program, in terms of numbers of SSEs, number of beta strands, number of H-bonds and 
chiralities, as tabulated in Table 3.  We have found that MSAT significantly improves sequence 
alignments when the average structure compression for the family is less than 0.65 and the TOPS patterns 
are sufficiently large with many constraints (i.e. H-bonds and chiralities).  In the case of Jelly rolls and UB 
rolls, the alignments generated from MSAT outperform their sequence-driven counterparts (ClustalW and 
T-Coffee).  This observation suggests that the TOPS program can discover distant related protein 
structures that share a common fold, and hence can generate good structure-driven multiple sequence 
alignments.  This additional (fold) information will be valuable knowledge for biologists interested in 
detecting protein members with low sequence similarity but that preserve a core common fold. 
  Generally, MSAT generates a better multiple sequence alignment for folds which are  strand rich (e.g. 
Class 2 of CATH).  This is especially true for Jelly rolls and immunoglobulin-like folds where both have 
long  sheets in their TOPS patterns.  The performance of MSAT for OB folds is not very good compared 
to ClustalW or T-Coffee alone due to the irregular amino acid length of this fold.  Furthermore, the TOPS 
pattern for OB fold is very small and simple (less constrained) and hence did not contribute much to the 
alignment.  Although alpha-beta plaints are another small fold, the TOPS pattern for this fold is more 
constrained (with two extra chirality arcs) thus making MSAT extremely sensitive, resulting in a large 
improvement in the alignment.   
  One interesting finding from our results is that MSAT only made a modest improvement in the case of 
TIM barrels and Rossmann folds, although both of these folds have large TOPS patterns as well as 
significant H-bonds and chirality constraints.  This observation does not imply that MSAT is inconsistent 
in its alignments, but suggests that MSAT is returning biologically relevant results.  Several studies have 
shown that the sequence of TIM barrels is more conserved in loop regions, rather than in the core 
secondary structure elements.   In this context it is relevant that TOPS does not align loop regions, since 
the inserts in the TOPS patterns represent unaligned SSEs as well as loops, and these mixed blocks are 
passed on to ClustalW.  The TIM barrel is a very common fold that is involved in various biological 
functions, and one of the conclusions from Nagano et al (2002) concerns patterns “ […]  whose sequences 
are so diverse that even the most powerful approaches find few relationships, yet whose active sites all 
cluster at one end of the barrel” .  This is also the case for Rossmann fold, where most of the NAD binding 
sites are located at the C-terminal end of a parallel  sheet (Bell et al 1997).  Although MSAT did not 
improve much on the sequence-based alignment of TIM barrels, this fold represents one of the best 
predicted fold by all three methods (Table 2); this is probably due to the regular βαβ arrangement of the 
secondary structure elements.    
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Figure 9: ROC Curves Figure 9(h) shows a clearer representation of Figure 9(g).  This has been made 
possible by widening the FP-rate scale of Figure 9(h) 
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CONCLUSIONS 
 
  The multiple sequence alignment tool – MSAT, integrates the TOPS alignment program and ClustalW, 
in a useful framework facilitating the routine automated generation of structure driven sequence alignment.  
The tool is available as a web-service at http://balabio.dcs.gla.ac.uk/msat/.  

Currently we are constructing a database of HMMER profiles and associated TOPS patterns for CATH 
fold families and developing a system to search a query protein sequence against these profiles in order to 
perform fold recognition.  When a query sequence matches a profile, it can be associated with a 
corresponding TOPS pattern, as well as being assigned possible membership of a fold family.  Thus the 
system can be used as an initial fold recognition tool, assisting the understanding of the relationship 
between sequence, structure and function.  Our ultimate goal is to be able to automatically recognise the 
fold of a query protein sequence: the system described here is our first step towards this goal.  
  Finally, the TOPS alignment program does not at present perform very well on all α families due to the 
lack of constraint information in the descriptions for these structures.  However, work is in progress to 
improve the TOPS algorithms by taking into account helix packing information which is now 
incorporated into the TOPS database (Dalton et al, 2003; Michaelopoulos et al, 2004). 
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