
A LOTOS to PARLOG Translator

David Gilbert

PARLOG Group
Imperial College

London SW7 2BZ
U.K.

email: drg@doc.ic.ac.uk

A translator from a subset LOTOS into PARLOG is described, and the process of its development
charted. The use of the software is described, and comments made on the difficulties of
implementing a direct translator from LOTOS specifications into executable code.

1. Introduction

The specification of communicating systems has become an important task as the ability to construct such
systems has evolved. One class of such systems in particular, namely that of computer networks, has
become a subject for such specifications since the role of communications and information interchange is
vital to the functioning of new generation technology.

However, the ability to specify highly concurrent systems in a formal manner does not guarantee that the
path to the construction of such systems from their specifications is either clear or automatic. This paper
describes an attempt to construct an automatic translator from specifications in a formal description
language into executable code. The formal language selected as a source was LOTOS [ISO87] and the
target was the parallel logic programming language PARLOG [Gregory87].

2. LOTOS as a Formal Description Technique.

LOTOS is a process algebra based language developed by the International Standards Organisation (ISO) as
a Formal Description Technique (FDT) to specify OSI protocols and services. It has been accepted as an
international standard and will be one of the three techniques which can be used in the the description of
the OSI model. The language is based on concepts introduced in CCS [Milner80] for the definition of the
dynamic behaviour of processes, and also incorporates an abstract data type language, ACT-ONE [Ehrig83].
This paper reports implementation work performed with the dynamic part of LOTOS, and does not deal with
the implementation of ACT-ONE. Tutorials on LOTOS may be found in [ISO87, Bolognesi87].

3. Routes to implementing LOTOS.

LOTOS could be implemented by

(i) extending a simulator to produce an interpreter or even a compiler for the language [van Eijk88];

(ii) using traditional compiler methods to produce executable machine code from the LOTOS source code;

(iii) prototyping an implementation of LOTOS using an existing computer language.

- 2 -

The first method might be implementable in a short time, but the resulting interpreter could well be quite
inefficient due to the slow speeds of execution of interpreters in general. There are difficulties involved in
the second, because the formalism on which LOTOS is based has little relation to the traditional von-
Neumann machine architecture. We chose the last route, and selected PARLOG as the target language due to
its ability to express concurrency and the possibility of executing PARLOG code on a multi-processor or
distributed system. It might well be that such an implementation would result in inefficient programs
which execute very slowly. This technique would, however, allow the testing of protocols in conditions
simulating those of the intended application, providing a tool to assist the designers of specifications to
discover whether the specification had the intended result. Hopefully this interface between specification
and implementation via rapid prototyping would result in a more efficient software production cycle.

4. PARLOG

PARLOG is a committed choice parallel logic programming language, and can explicitly express both OR
and stream-AND parallelism as well as non-determinism. Unlike Prolog, it does not possess the ability to
backtrack, due to its committed choice nature, which is implemented by the use of guards. PARLOG

programs can be written without regard to the underlying hardware on which they are to be run; hence they
may be executed on whatever machine the language has been implemented, either monoprocessor,
multiprocessor or a distributed system. The language is fully described in [Gregory87], and tutorial
material can be found in [Gilbert87]; only a minimal description of the language will be given here.

The syntax of PARLOG, given in the table below, is similar to the emerging standard for Prolog, with the
addition of explicit sequential operators, a guard operator, and mode declarations.

Table 1 PARLOG syntax .

box , center,tab (%) ; cB | cB cB10 | l. Symbol%Meaning =
<-%logical implication _ &%sequential-AND _ %parallel-AND _ ;%sequential-OR _ _ :%guard operator
_ _ ˆ%output mode annotation

Mode declarations are used to specify communication constraints on shared variables, which are declared
to be either ? ("input") or ˆ ("output"), thus acting as communication channels. These declarations are
made once for each relation, and each argument of the relation is annotated:

mode name(a1?,..,akˆ,..).
Messages sent along these channels are incrementally constructed from partially determined data structures,
usually consisting of lists of terms acting as message streams.

A PARLOG procedure is a collection of clauses with the same name n and arity k, and is referred to in this
paper as n/k. The general form of a PARLOG clause is:

<head> <- <guard> : <body> <or-op>
Note that <head> is in the form name(a

1
,..,a

k
) , where name is the relation name, and a

1
,..,a

k
its arguments.

The logical implication symbol is ‘<-’ and ‘:’ the guard operator. Both the guard and the body can be a
conjunction of calls, or empty, and the calls are separated by the sequential-AND or parallel-AND
operators. A clause is a candidate for evaluation if both input matching in the head and the evaluation of
the guard succeeds, whereas in a non-candidate clause either of these fail. A clause can be suspended if
either the input matching or guard evaluation suspend waiting for an input variable to become instantiated.
A suspended call may eventually become either candidate or non-candidate. Note that no output bindings
are made until committal has been made to the clause (ie the guard conditions are satisfied), and committal
may be made to only one clause of a procedure.

The naive form of communication in PARLOG is that of asynchronous producer and synchronous consumer,
with channels acting as unbounded buffers. However synchronous communication can be expressed in
PARLOG using the co-operative construction of binding terms. The producer sends a stream (an
incrementally constructed list) of tuples, each of which contains two arguments, one the data item to be sent
and the other a variable; the use of a sequential-AND operator then forces the producer to wait until the
consumer instantiates the variable to an agreed message. We illustrate this using the tuple ‘+’ to
encapsulate the message, with the first argument the message item itself, and the second argument the

- 3 -

synchronisation tuple1:
Item + Reply

We then implement synchronous send and receive in PARLOG by the following programs:

Example 1 Synchronous communication in PARLOG.

mode synch_send(item?,tupleˆ).
synch_send(Item,Item+Reply)<- data(Reply).

mode synch_receive(tuple?,itemˆ).
synch_receive(Item+Reply,Item)<- Reply=ok.

Note that data/1 suspends until its argument is ground (ie the top level functor of a data-structure is
instantiated). Thus the query ?data(X) suspends, and ?data([H|T]) succeeds. The call to =/2 in
synch_receive/2 instantiates the Reply variable to ok. These programs can be composed as follows:

? synch_send(item , Msg) , synch_receive(Msg , X).

and may be thought of as roughly equivalent to the LOTOS behaviour expression
g ! item || g ? X

5. Source-to-source translation.

The method used to translate one high level computer language into another may be broadly described by
the label "source-to-source translation". LOTOS is very similar to a conventional computer language in its
overall design, and is thus a candidate for such a translation process.

One technique that can be used to effect source-to-source translation is compiler-like translation. This
consists of the derivation from algorithm A in language L, of an algorithm A´ in language L´, each distinct
component of A´ being semantically equivalent to the corresponding component in A. In its most low-level
form, constructs from the original language are mapped directly into constructs in the target language. One
of the advantages of this method is that a "building-block" approach to translation can be used. Little or no
"intelligence" is required of the translator process once the low level components have been successfully
mapped from A to A´. Implementation of the translator itself as a computer program is thus facilitated.
For the reasons given above, we employed compiler-like translation as the method of implementing LOTOS

specifications in PARLOG.

An initial examination of the syntax and semantics of LOTOS and PARLOG suggests that there might exist
some ready similarities between the two languages. However, detailed investigation revealed that a naive
approach of mapping operators from the former language directly to those of PARLOG would not be
possible [Gilbert87b]. A description of early work undertaken to create constructs in PARLOG which
behave like LOTOS constructs is reported in [Gilbert86], and is summarised in [Gilbert87b]. This work
was performed, however, using an early definition of LOTOS which does not permit multi-way
synchronisation [ISO/BSI86]. We describe in more detail the actual implementation aspects of that work
and reports on the experience gained with the new draft standard for LOTOS [ISO87] which does permit
multi-way synchronisation.

6. Development of the translator

Only the "dynamic" part of LOTOS was considered for translation into PARLOG, that is the aspects based on
CCS [Milner80]. However, PARLOG does possess ‘implicit’ types (lists, tuples, strings and integers),
enabling the interaction between the ADT and the dynamic part of LOTOS and in the areas of "sort-
checking" and synchronisation conditions to be incorporated into our translator to an extent2.

1 Note that ‘+’ is infix operator with arity 2
2 Type checking in PARLOG is performed at run-time, using both pattern matching and the relations list/1, atom/1 and

number/1.

- 4 -

The translator was developed by first building the ‘primitive building blocks’, ie atomic actions, and also
more complex behaviour expressions including choice and parallel operators.

6.1. Processes in LOTOS and PARLOG.

LOTOS processes are represented as PARLOG processes in the translator. The latter are coded as recursively
defined predicates (mutual or self recursion) and possess many of the properties of LOTOS process
definitions, including the ability to import and export parameters, and to express recursion. Parameter lists
in LOTOS process abstractions may take the form of gate and value parameters as two import lists, and an
export list categorised by sorts.

In order to express the facility for communication with the environment, a fourth (output) argument needs
to be included in the PARLOG predicate which allows a stream of synchronisation messages (offers) to be
exported. These messages are in effect event offers. The mode template of the PARLOG process
representing the LOTOS process name is:

mode name(gates?,val-params?,exportsˆ,offersˆ).

6.2. Event offers

The basic building block of a LOTOS specification is the atomic event which is used to express the
synchronised interaction between communicating processes. Thus the atomic event is the first item in the
repertoire of LOTOS that requires the attention of the designer of a translation system. Closely associated
with atomic events are event gates, or interaction points, referred to in the literature on LOTOS as abstract
resources shared by processes [ISO87]. The most important properties of atomic events are that they are
indivisible, are capable of synchronous communication and are parameterised by gate-names.

The three kinds of synchronisation in which LOTOS atomic events can participate are value matching, value
passing and value generation. An additional constraint which may be applied to synchronisation is that of
selection-predicates; if used, synchronisation can only occur if the predicate in each partner evaluates to
true.

6.2.1. Using one-to-one synchronisation.

The technique of cooperative construction of binding terms is used (see above) to enforce synchronous
communication, but has been adapted to permit encoding of the synchronisation classes of LOTOS. The
signal tuple employed may be either send/5 or receive/5:

send(Gate,Value,Sort,Condition,Reply).
receive(Gate,Value,Sort,Condition,Reply).

Gate and Sort are constants, Value corresponds to a LOTOS value expression in send/5 and is a variable
in receive/5 at time of transmission. Condition is a boolean expression in each case, and Reply is the
synchronisation variable.

Although LOTOS does not always refer explicitly to the sort in an expression such as
g!x

the following alternative description can be used:
g!x ofsort message-sort

with the implication that the value part of all communications possesses a sort, which if apparently absent
must nevertheless be presumed to be of a default sort. The translator can insert a default sort true if
required. If the ADT part of LOTOS were to be treated by the translator, a table of sort declarations would
enable the sorts of the value in g!x to be determined during the translation process.

Similarly, since the selection predicate is optional, it must always be included in the tuple. If not present in
the LOTOS specification, the translator can insert true as a condition.

6.2.2. Value matching

An example, value matching, is presented below:

- 5 -

Example 2 Value matching.

mode match(signal1?, signal2?, result1ˆ, result2ˆ).

match(send(Gate,Val1,Sort,Condition1,Out1),
send(Gate,Val2,Sort,Condition2,Out2))<-

Val1 =:= Val2&
call(Condition1) & call(Condition2):
Out1 = ok, Out2 = ok.

Note that in this case the Gate and Sort names must be identical. We assume in this example that the Sort is
Nat, so that the value expressions Val1 and Val2 are evaluated for equality by the predicate =:=/2. A more
complex test of equality could be made if sorts other than Nat were allowed. Both Conditions must be
evaluated to true using PARLOG’s call/1 before commitment is made to the clause.

6.2.3. Value passing

For the implementation of value passing we base our code on the following outline:

Example 3 Value passing.

match(send(Gate,Val1,Sort,Condition1,Out1),
receive(Gate,Val2,Sort,Condition2,Out2))<-

Val2 is Val1&
call(Condition1) & call(Condition2):
Out1 = ok, Out2 = ok.

Note that in, as in value matching, the Gate names and Sorts must be the same, but Val2 is ground to the
value of Val1, using the predicate is/2. The Conditions are then evaluated to true before commitment to
the body of the clause3.

6.2.4. Value Generation

A detailed discussion of this is to be found in [Gilbert86], with reference to the older semantics of the
parallel operator which permitted 1:1 synchronisation only. The outline code is:

Example 4 Value generation.

match(receive(Gate,Val1,Sort,Condition1,Out1),
receive(Gate,Val2,Sort,Condition2,Out1))<-
randomise(Val,Condition1,Condition2,Num):
Val1 = Num, Val2 = Num,

Out1 = ok, Out2 = ok.

Note that this relation generates a random number which satisfies both Conditions, and thus again assumes
Sort to be Nat.

6.2.5. The parallel operator.

The semantics of LOTOS’s parallel operators differ widely from that of PARLOG. Hence the parallel
operators are mapped into a par program, written in PARLOG, which emulates their behaviour. Each
PARLOG process representing a LOTOS behaviour expression produces a stream of synchronisation signals
which are available to an environment, usually represented as a par process. Every par process consumes
two streams of synchronisation signals (produced either by processes representing behaviour expressions,

3 In order to preserve clause safety and prevent the binding of a variable in an input position in the guard, the code used

in the translator makes a copy of Val2 and Condition2 before performing the other guard tests.

- 6 -

or by other par processes), and produces a stream of synchronisation signals.

The mode declaration of the par program is:

mode par(in-1?,in-2?,selected-gates?,hidden-gates?,out-streamˆ).

6.2.6. The parallel operator and multi-way synchronisation.

The code for the parallel operator and synchronisation has to be considerably more complex when value
generation is considered along with multi-way communication.

The latest draft standard for LOTOS [ISO87], differs from that used in the original development of the
translator [ISO/BSI86], and permits multi-way synchronisation in the use of the parallel operator. This
semantics, coupled with ‘value generation’ and the use of predicates permits a constraint-oriented style of
specification. This style, however, introduces aspects of undecidability and implies that the route from
specification to implementation is very difficult if not impossible. An example in LOTOS, the solution to
which is effectively undecidable, would be [van Eijk88]

choice x,y :int [] [3x↑2 + y↑5 = 0] -> g;B

Constraint-oriented specification is used in the description of multi-partner negotiation for value generation
according with restriction by predicates:

g?x:nat [x<100] || g?y:nat [y>0] || g?z:nat [z*z > 200]

If, on the other hand, the style of specification is oriented towards implementation, and the use of multi-
way communication avoided, the implementation of the specifications is much easier. A more detailed
discussion of specification styles and their effect on implementability can be found in [van Eijk88].

The new semantics of the parallel operator are implemented in PARLOG as processes which manipulate the
streams produced by processes and perform synchronisation across all streams involved. The code is
complex, and is under development at present.

6.3. The inactive process: stop

The completely inactive process in LOTOS, stop, cannot perform any event. It can be represented in
PARLOG by a call suspending on a variable which will never become bound.

6.4. Selection and hiding

Selection is performed by par/2, in that only signals naming common gates (or all gates in the case of |||)
are considered for synchronisation. Hiding is performed by the multi-way communication predicate, in that
signals to gates named as hidden are not made available to the outer environment.

6.5. Action prefix and enable operators

Action prefix is represented as the sequential-AND operator in PARLOG, as is the enable operator. Value
passing is not permitted for the latter operator since the ADT part of LOTOS has not yet been incorporated
into the translator.

6.6. The choice operator

The choice operator in LOTOS does not map directly into the or-parallel operator of PARLOG, since no
output can be made in a guard in PARLOG before commitment to a clause. Instead, choice is represented as
a list of possible offers contained within signals produced by processes. Thus the LOTOS expression:

a ! 3 ; exit [] b ? x : nat [x < 5] ; exit

would produce a choice list in the message tuple of the form:

- 7 -

message([send(a,3,nat,true),receive(b,X,nat,less(X,5))],Result,Ok)

The LOTOS choice operator was not fully implemented in the translator with respect of the environment’s
interaction with the process offering the choice. Although provision has been made in the design of the
signal predicate for choices to be sent to the par process and a reply to be received indicating the successful
signal, this facility has not been incorporated into the code generator. In order to implement the full
semantics of the choice operator, all behaviour expressions must initially offer one synchronisation
message, and if it is selected, the remainder may be offered. Due to the properties of PARLOG guards, no
output bindings can be made unless committal has been made to the whole clause. PARLOG representations
of behaviour expressions would consist of two predicates, the first offering an initial signal, and the next
offering the rest. This would present difficulties if one process invokes others and the choice is offered at
lower levels of the instantiation process.

6.6.1. Guarded expressions

Guarded expressions are implemented by PARLOG guards; when used in combination with the choice
operator they are mapped onto guard conditions and OR-parallel search in PARLOG.

6.6.2. Internal events

Internal events are implemented as synchronisation signals which are always satisfied in the match
procedure, but leave the corresponding matching signal to be retried for matching against subsequent
signals. In this way, the use of internal events and the choice operator in LOTOS to describe combinations
of deterministic and non-deterministic choice can be mapped into PARLOG.

6.6.3. Disable

The disable operator was originally not implemented, and expansion of disable expressions into those
containing choice and sequential operators was employed. However, the present translator makes use of
PARLOG’s three argument metacall call/3 [Clark86], to implement LOTOS’s disable operator. This metacall
is derived from call/1, a metalevel programming facility similar to that of Prolog and Lisp.

In its simple form the call/1 predicate has mode declaration call(goal?). The logical reading of
?call(goal) is the same as that of ?goal. A call with a variable as a goal suspends until the variable is
instantiated to a term denoting a PARLOG clause body (a relation call or conjunction). A program can thus
evaluate calls which are determined at run-time.

The PARLOG system predicate call/3 has mode call(Call?, Statusˆ, Control?). Control is a
stream of messages which can be used by a supervisor or monitor program to control the evaluation of the
Goal. The acceptable messages on the control stream are: stop, suspend and continue. The Status
argument, a variable at the time of the call, is instantiated by the call to a stream of messages reporting key
states in the evaluation of the call. The last message will be one of: failed, succeeded or stopped,
indicating the form of termination; stopped indicating premature termination due to an input control
message on the Control stream.

We use this predicate to implement [>/2 in our system by adapting call/3 to output the message started
on the status stream when the reduction of a call has started:

- 8 -

Example 5 PARLOG Disrupt.

mode ? [> ?.
A [> B <-

call(A,S1,C1), call(B,S2,C2), arbitrate(S1,C1,S2,C2).

mode arbitrate(S1?,C1ˆ,S2?,C2ˆ).
arbitrate([success|S1],C1,S2,[stop|X]).
arbitrate(S1,[stop|X],[started|S2],C2).
arbitrate([Other|S1],C1,S2,C2)<-

Other \== success, S2 \== [started|X]:
arbitrate(S1,C1,S2,C2).

The first clause of arbitrate/4 will detect if A has terminated successfully, and binds C2 to [stop|X], thus
preventing the evaluation of B. However, arbitrate/4 may in its second clause detect when the evaluation
of B starts (in a non-suspended state, if A has not yet terminated), and bind C1 to [stop|X], aborting the
evaluation of A.

7. Present state of the translator

A trial version of a source-to-source translator was designed, capable of converting a subset of LOTOS in to
PARLOG. The implementation was constrained both by the incompleteness of the LOTOS to PARLOG

mappings described in the section on Development, and by problems encountered in the construction of the
translator itself (see below). The ADT part of the LOTOS language was not implemented, and there is no
type-checking incorporated in the parser.

The translator was modularised, allowing flexibility in development, promoting ease of testing and
facilitating software maintenance. All the software was written in PARLOG. The modules developed were:

(i) Tokeniser
(ii) Parser
(iii) Code Generator

The modules are executed in parallel, exploiting the stream-AND parallelism of PARLOG; a typical usage
would be the call:

Example 6 .

mode translate(LotosFilename?, ParlogFilename?).
translate(LotosFilename, ParlogFilename)<-

readfile(LotosFilename,Asciistream),
tokeniser(Asciistream,Tokens),
parser(Tokens,ParseTree),
code-generator(ParseTree,ParlogCode),
write-code(ParlogFilename,ParlogCode).

Note that while tokeniser passes the tokens in a stream to parser, the latter process incrementally produces
a complex structure (channel)4, the parse tree, thus permitting more concurrency than would a stream in its
consumption by code-generator. A pictorial representation of the translation process is given in the figure
below.

4 A stream (an incrementally constructed list) is a special form of a channel.

- 9 -

Figure 1 Translator program.

down circle rad 0.5i "LOTOS"
"source file" arrow box "readfile"
arrow " ascii stream" ljust box
"tokeniser" arrow " tokens" ljust
box "parser" arrow " parse tree"
ljust box "code" "generator" arrow
" PARLOG code" ljust circle rad
0.5i "PARLOG" "source file"

7.1. Reading a file to produce a stream of ascii characters.

The routine which reads a file and produces a stream of ASCII characters uses the PARLOG primitives
which are implemented in "C". Sequential-AND operator are used in the code for readfile to ensure the
correct sequence of file operations.

7.2. The Tokeniser

The tokeniser processes the stream of integers representing ASCII characters produced by readfile. In
implementing this program the BNF for LOTOS has been adhered to, but all printable characters except for
spaces and tabs are included in the output stream. The tokeniser predicate consumes a list of integers
representing ASCII characters, and recursively replaces those groups of characters which represent LOTOS

lexical tokens by the appropriate token. Detection of the empty list on the input stream determines the
termination of the execution of tokeniser. Comments in LOTOS, which are delimited by "(*" and "*)" are
not processed.

7.3. The Parser

7.3.1. Overall design

The parser was implemented as a top-down recursive descent parser, using the parallel logic programming
technique of difference-streams. A tuple (data-structure) is produced representing the parse-tree, whose
general form is:

spec(specname(Specid),Params,Externaltypes,Definition,Rest)
where Rest is a list of local definitions, the members of which are tuples of the form:

process(procname(Name),Params,Definition,Defns-rest)
Each of the process tuples has its own local definition part, Defns-rest, which is itself a list of process
tuples. The attributes of each tuple are at first left uninstantiated until ground later during the parsing. This
technique has some similarities with "fixup" which is used when compiling: addresses of parameters can be
left undefined until fixed during a subsequent pass.

7.3.2. Error checking

No error checking algorithms are incorporated in the parser which behaves like a standard predicate in
PARLOG: when called it either succeeds and the parse-tree tuple is produced as output, or the call fails. The
parser was not designed to include diagnostic abilities for the time being. As it was decided to exclude the
ADT part of LOTOS from the implementation, type-checking is not performed by the parser.

7.3.3. Implementing the BNF

The sections from the LOTOS BNF which were implemented in the parser are:

- 10 -

6.2.1 Specification
6.2.2 Definition block
6.2.6 Process Definitions
6.2.7 Behaviour Expressions5

6.2.8 Value-expressions
6.2.9 Declarations
6.2.10 special-identifiers

Those sections not implemented at all were:

2.3 Data-type-definition
2.4 P-expressions.

Section 2.5 (sorts, operations and equations) was only implemented for sort-list and simple-equation.

7.3.4. Amendments to the BNF

The BNF contains one statement which is not LL1, and so presents difficulties for a straightforward
implementation. The relevant section is 6.2.8:

value-expression = [value-expression operation-identifier]
simple-expression

To facilitate writing the PARLOG code this was transformed into the following equivalent form:

value-expression = simple-expression <empty>
| simple-expression operation-identifier value-expression

7.4. The Code Generator

The code generator was implemented as a recursive traverse of the parse-tree, creating a list structure
suitable for input to the PARLOG library predicate write_source.

PARLOG predicates described above were used to map structures encountered in the parse tree on to
PARLOG programs. Atomic events, value matching, value passing, value generation and the stop process
are all translated successfully by the code generator. LOTOS expressions which can be translated are:

(i) Enable expressions (no value passing)
(ii) Parallel expressions
(iii) Hiding & gate selection expressions
(iv) Choice expressions (in the context of guarded expressions only)
(v) Guarded expressions
(vi) Action-prefix expressions
(vii) Atomic expressions
(viii) Value expressions (a limited subset)

In addition, the block-structure of LOTOS as regards process declarations has been implemented in the
translations. At present only self-recursion is translated correctly. No run-time support is included for
variable references: outline methods to implement both this and correct referencing of process call are
outlined later in this paper.

8. Using the lopar software

The software runs under Unix™ BSD 4.2+ and requires the PARLOG SPM system [Foster86]. Input to the
translator is from a file containing a LOTOS specification. The translator will accept full LOTOS syntax, but
only the dynamic part is converted from the parse tree into abstract code; the latter is then written out as

5 Not sum-expressions or par-expressions.

- 11 -

PARLOG source code to file. The PARLOG code can then be compiled by the SPM compiler, producing a file
containing PARLOG ‘object’ code acceptable to the SPM emulator.

In order to execute the PARLOG object code produced by the translator, it must be loaded into the SPM
along with library routines needed, for example the code for the parallel operators and synchronisation
routines. Also required is the LOTOS supervisor, whose function is equivalent to an observer of the
execution of the specification. This supervisor enables the observations to be made available to the user,
either as a trace on the console, or as output to file.

9. Improvements

Implementation of the ADT part of LOTOS would also enable improvements to be made in the language
translator. Sort checking would then become possible. This would facilitate the inclusion of error checking
facilities in the parser, allowing it to be used in a diagnostic mode to verify correct use of variables and
expressions in a specification. Included in the diagnostic capabilities should be the ability of the parser to
flag errors, to attempt to correct them and to carry on with the parsing without halting at the first error it
encounters. A user friendly feature would be to return the user to the LOTOS source code under the control
of a standard text editor at the point of the first non-recoverable error.

More work has to be done in the area of code generation. Translation of the choice operator needs to be
included. The generator is lacking a full implementation of the scope rules and block structuring of LOTOS;
some guidelines have been given in [Gilbert86] regarding the implementation of an environment stack
both at translation time and at run time. This would be best implemented after the mapping of ACT-ONE

into PARLOG has been achieved.

10. Comments on implementing LOTOS using PARLOG

LOTOS possesses the ability to specify communication systems using general methods which can be
adapted to specific situations. It relies heavily on the concept of event-gates. The use of these as input
parameters to process instantiations facilitates the construction of systems built out of communicating
processes. Multiway synchronisation is a boon to specifiers, but is a very hard construct to implement;
problems in this area are related to those of implementing constraints in logic programming
[Lassez87, Choquet87]. It may well be that the construction of a LOTOS translator would be facilitated if
only implementation-oriented styles of specification were acceptable as input, and the use of multi-way
communication avoided.

The stream communication model employed by PARLOG requires the programmer to explicitly link
processes which intercommunicate, linkage being achieved by the use of the logical variable. In order to
achieve the flexibility inherent in LOTOS, a PARLOG implementation must create complex software entities
which perform the redirection and synchronisation of message streams. These entities are implemented as
PARLOG processes. They can cause the execution of the PARLOG code to be inefficient as the messages in
the synchronisation streams are routed to the intended destination. The inefficiency is exacerbated by the
complex operational semantics of some of the LOTOS operators when used in combination, notably the
parallel and hiding operators.

11. Conclusions

The translator was implemented for a substantial subset of the mappings using PARLOG as the language to
write all the necessary modules. It incorporates a tokeniser and parser which together conform to the BNF
of LOTOS that was available at the time. Future changes to the BNF can easily be incorporated into the
tokeniser and parser since they are written in PARLOG itself. Neither the tokeniser nor parser perform any
kind of error checking, syntax or otherwise. The code generator does not implement ACT-ONE and thus
does not perform translation-time type-checking. Moreover some of the LOTOS constructs which can be
mapped into PARLOG are not incorporated in the code generator, notably the choice operator in any context
other than guarded expressions. LOTOS’s scope rules are incorporated in the code generator regarding

- 12 -

process declarations, but recursive process instantiations are only supported for self-recursion. No
provision is made for scope rules applied to the declaration of variables, as a run-time environment is not
implemented: the LOTOS programmer is encouraged to declare explicitly as input all variables needed in
any process.

The declarative nature of PARLOG facilitated the task of building the prototype translator, and modifications
are relatively easy to perform. The system was used successfully to translate some simple LOTOS

specifications, and given the complex nature of the task, we are satisfied that such a tool described here is
useful in the development of system specifications using LOTOS.

Acknowledgements

This work was partly carried out while I was in receipt of an SERC grant, studying for the MSc in
Computing, and also while I was funded by Alvey on "Implementation and Applications of PARLOG",
Project number 043/098.

References

Bolognesi87.
Tommaso Bolognesi and Ed Brinksma, ‘‘Introduction to the ISO Specification Language LOTOS,’’
Computer Networks and ISDN Systems, vol. 14, no. 1, pp. 25-59, Elsevier Science Publishers, 1987.

Choquet87.
Nicole Choquet, Need for a Prolog handling constraints in a software engineering application, CR-
CGE, Laboratoires de Marcoussis, Marcoussis, France, 1987.

Clark86.
Keith Clark and Steve Gregory, ‘‘PARLOG: Parallel programming in Logic,’’ ACM Transactions on
Programming Languages and Systems, vol. 8, no. 1, Jan 1986.

Ehrig83.
H. Ehrig, W. Frey, and H. Hansen, ‘‘ACT ONE: An algebraic specification language with two levels
of semantics,’’ Bericht Nr 83-03, Techische Universitaet, Berlin, 1983.

Foster86.
Ian Foster, Steve Gregory, Graem Ringwood, and Ken Satoh, ‘‘A Sequential Implementation of
PARLOG,’’ 3rd International Conference on Logic Programming, London. July 1986, Dept of
Computing, Imperial College, London. UK, March 1986.

Gilbert86.
David Gilbert, ‘‘Implementing LOTOS in PARLOG,’’ MSc Thesis, Department of Computing,
Imperial College, London, UK, September 1986.

Gilbert87.
David Gilbert, ‘‘PARLOG: a tutorial introduction.,’’ Proceedings of Parallel Processing and
Supercomputing, Begian Institute for Automatic Control, Antwerp, Belgium, November 19-20, 1987.

Gilbert87b.
David Gilbert, ‘‘Executable LOTOS: Using PARLOG to implement an FDT,’’ Proceedings of IFIP
Protocol Specification, Testing and Verification: VII, Zurich, Switzerland, 5-8 May 1987, Elsevier
Science, North-Holland, Amsterdam, Netherlands, 1987.

Gregory87.
Steve Gregory, Parallel Logic Programming in PARLOG: The Language and its Implementation,
Addison-Wesely, London, UK, 1987.

ISO87.ISO, Revised Text of 2nd ISO / DP 8807 - LOTOS, ISO, March 1987.

ISO/BSI86.
ISO/BSI, ‘‘Working document DP 8807 LOTOS/86/1 FDT:278,’’ IST/21/1/3 BSI 86/61840, April
1986.

- 13 -

Lassez87.
Catherine Lassez, ‘‘Constraint Logic Programming,’’ BYTE, pp. 171-176, BYTE, August 1987.

Milner80.
Robin Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, 92,
Springer-Verlag, Berlin, 1980.

van Eijk88.
Peter van Eijk, ‘‘Software tools for the specification language LOTOS,’’ PhD thesis, Department of
Informatics, University of Twente, Enschede, Netherlands, January 1988.

