
Transformations between HCLP and PCSP

Michael Jampel

�

, Jean-Marie Jacquet

y

mja,jmj@info.fundp.ac.be

Institut d'Informatique

F.U.N.D.P.

rue Grandgagnage 21

B-5000 Namur, Belgium

David Gilbert, Sebastian Hunt

drg,seb@cs.city.ac.uk

Dept. of Computer Science

City University

Northampton Square

London EC1V 0HB, U.K.

February 13, 1996

Abstract

We present a general methodology for transforming between HCLP and PCSP

in both directions. HCLP and PCSP each have advantages when modelling

problems, and each have advantages when implementing models and solving

them. Using the work presented in this paper, the appropriate paradigm can

be used for each of these steps, with a meaning-preserving transformation in

between if necessary.

Keywords: Hierarchical CLP, Partial Constraint Satisfaction, transformation

Contact information:

Michael Jampel

mja@info.fundp.ac.be

(address as above)

phone: +32 81 72.49.87

fax: +32 81 72.49.67

�

Michael Jampel has been funded by City University during his PhD, and is currently funded by

the European Community under the TMR scheme.

y

Jean-Marie Jacquet is supported by the Belgian National Fund for Scienti�c Research as a

Research Associate. Part of this work was carried out in the context of the INTAS project 93-1702

\E�cient Symbolic Computing."

1 Introduction

The Hierarchical Constraint Logic Programming (HCLP) scheme of Borning, Wilson,

and others [3, 10, 12] greatly extends the expressibility of the general CLP scheme [7].

A semantics has been de�ned for HCLP [10, 11] and some instances of it have been

implemented [8, 10].

The Partial Constraint Satisfaction (PCSP) scheme of Freuder and Wallace [4, 6]

is an interesting extension of CSP, which allows the relaxation and optimisation of

problems. Extensive empirical studies have been made of some of its instances [6].

There is a widespread view that some link exists between particular HCLP prob-

lems and particular PCSP problems, but no general method of transforming one into

the other is present in the literature. General frameworks have been developed of

which HCLP and PCSP are particular instances [1, 9], but they do not provide a

method for transforming between them. In this paper we present a completely gen-

eral method for �nding the HCLP equivalent of any PCSP problem, and vice versa.

Our motivation is mainly methodological, to allow the use of whichever paradigm

is appropriate for speci�cation, even if the other one is more appropriate for execu-

tion. But we also have a more theoretical motivation, namely to show the relation-

ship between the two formalism's orthogonal approaches to over-constrained systems

(OCSs). The two orthogonal approaches are as follows: HCLP reorganises the struc-

ture of an over-constrained problem, by specifying relationships between constraints;

PCSP keeps a at structure to the problem, but changes themeaning of the individual

constraints (by adding elements to the domain).

The structure of this paper is as follows. In Section 2 we introduce HCLP and

PCSP. We then make some preliminary remarks in Section 3. We discuss transforming

HCLP into PCSP in Section 4, including an example in Section 4.2. Then Section 5

discusses transformations from PCSP into HCLP. Pseudo-code illustrating both these

transformations can be found in Section 6. Finally in Section 7 we present some

conclusions and also mention further work.

2 Background

2.1 Hierarchical Constraint Logic Programming

A good introduction to HCLP can be found in Molly Wilson's PhD thesis [10, chapter

4] or in the early reference [3]; here is a brief overview. CLP can be extended to a

Hierarchical CLP scheme including both `hard' and `soft' constraints. The HCLP

scheme is parameterised not only by the constraint domain D but also by the `com-

parator' C, which is used to compare and select from the di�erent ways of satisfying

the soft constraints.

The strengths of the di�erent constraints are indicated by a non-negative integer

label. Constraints labelled with a zero are required (hard), while constraints labelled

j for some j > 0 are optional (soft), and are preferred over those labelled k, where

k > j. (A program can include a list of symbolic names, such as required, strongly-

preferred, etc., for the strength labels, which will be mapped to the natural numbers

by the interpreter. If the strength label on a constraint is omitted, it is assumed to

be required .)

2

The constraint store � (a set) is partitioned into the set of required constraints S

0

and the set of optional ones S

i

. The solution set for the whole hierarchy is a subset of

the solution set of S

0

, such that no other solution could be `better', i.e. for all levels

up to k, S

k

is completely satis�ed, and for level S

k+1

this solution is better than all

others, in terms of some comparator. Backtracking and incomparable hierarchies give

rise to multiple possible solution sets, each a subset of the solution to S

0

.

`Better' is de�ned with respect to some comparator [12]. The key notion is that

a comparator is a function from a solution of a set of constraints to a sequence of

numbers, which are then ordered lexicographically; the �rst element of the sequence

measures how well the solution satis�es the required constraints, the second how well

the strongest optional constraints are satis�ed, etc.; the earlier in the order, the better

that solution is.

See Section 3.3 for more detail on the particular aspects of HCLP involved in the

transformations.

2.2 Partial Constraint Satisfaction Problems

Freuder has developed a theory of Partial Constraint Satisfaction Problems (PCSPs)

to weaken systems of constraints which have no solutions, or for which �nding a

solution would take too long [4, 6]. PCSP is formalised as containing three components

h(P;U); (PS;�); (M; (N;S))i

where P is a constraint satisfaction problem (CSP), U is a set of `universes' i.e. a set

of potential values for each of the variables in P , (PS;�) is a problem space with PS

a set of problems and � a partial order over problems, M is a distance function over

the problem space, and (N;S) are necessary and su�cient bounds on the distance

between the given problem P and some solvable member of the problem space PS.

A solution to a PCSP is a problem P

0

from the problem space and its solution,

where the distance between P and P

0

is less than N . If the distance between P and

P

0

is minimal, then this solution is optimal.

2.2.1 Constraint Satisfaction Problems

The de�nition of a constraint satisfaction problem is well known: it consists of a

pair hV;Ci where V is a set of variables, each with a domain (extension), and C is

a set of constraints

1

. Solving a CSP involves �nding one value from the domain of

each variable such that all the constraints are satis�ed simultaneously. Generally the

CSP world restricts itself to considering binary constraints over variables with �nite

domains. A constraint c between two variables x and y can be denoted c

xy

.

(The domains of the variables in V are usually considered as unary constraints,

but in order to simplify the presentation in [4] they are represented as binary con-

straints between a variable and itself. The value v is in the domain of a vari-

able x if c

xx

contains (v; v). In fact, unless there are elements in the domain of

a variable which do not appear in any constraint, it is redundant to state indi-

vidual variable domains explicitly: we can always reconstruct them by saying that

U :: fi j (i; j) 2 C

UV

or (k; i) 2 C

WU

; for all j; k; V;Wg.)

1

Constraints are relations over the variables in V . In CSPs, they are usually treated extensionally,

i.e. a binary constraint is just considered as a set of pairs.

3

2.2.2 The problem space

A problem space PS is a partially-ordered set of CSPs where the order � is de�ned

as follows (sols(P) denotes the set of solutions to a CSP called P):

P

1

� P

2

i� sols(P

1

) � sols(P

2

)

Note that the ordering is over problems, but de�ned in terms of solutions. The problem

space for a PCSP must contain the original problem P , which can provide the maximal

element in the order, for standard problem spaces.(In the most general case, PS can

in fact contain Q such that P � Q or such that P and Q are incomparable. But if

we take the conjunction of all the constraints in all the problems in PS and create a

single problem R, then R will de�nitely be the greatest element in the order.) If P

has no solutions, then sols(P) = fg, which is a subset of all other sets.

The obvious problem space to explore when trying to weaken a problem is the

collection of all problems Q such that Q � P , but it may also be useful to consider

only some of these Qs, i.e. those problems which have been weakened in a particular

way which makes sense in the context of the system that we are trying to model.

2.2.3 Weakening a problem

There are four ways to weaken a CSP: (a) enlarging the domain of a variable, (b)

enlarging the domain of a constraint, (c) removing a variable, and (d) removing a

constraint. Consider example Z above: if none of your shirts match your shoes, you

could buy new shoes (variable domain enlargement / augmentation), you could decide

that certain shoes do, after all, go with a certain shirt (constraint augmentation), you

could decide not to wear shoes at all (variable removal), or you could ignore clashes

between shoes and shirts (constraint removal). (As a comparison with these four

methods, in HCLP we could decide that the constraint that shirts match shoes is

simply not very important.)

Freuder shows in [4] that these can all be considered in terms of (b) above i.e.

enlarging constraint domains (adding extra pairs to the relation which de�nes the

constraint). (a) As we have already decided to consider the domains of variables

as binary constraints c

xx

, domain enlargement can clearly be achieved by constraint

augmentation. (d) Enlarging a constraint c

xy

until it equals x � y (the cartesian

product of the domains) has the same e�ect as removing it altogether. (c) Removing

all the constraints on a variable achieves the aim of removing the variable itself.

2.2.4 The distance function

Di�erent distance functions are possible, but one obvious one is derived from the

partial order on the problem space. If M(P;P

0

) equals the number of solutions not

shared by P and P

0

, then when P

0

� P the distance function measures how many

solutions have been added by the relaxation of P . Another distance function is a count

of the number of constraint values not shared by P and P

0

, and yet others could be

based on HCLP-like strength labels. Freuder suggests that a distance function may be

used which will tend to �nd weakened problems with certain properties, for example

one whose constraint graph has certain structural properties (for example, see [5]).

4

3 Transformation: preliminary remarks

HCLP and PCSP are not identical in scope, therefore it is impossible to transform

all of HCLP into PCSP. This work presented in the rest of this paper is complete i.e.

we present transformations for every single aspect which it makes sense to transform.

First of all, however, we discuss those parts of HCLP which are outside the scope of

PCSP, and make other preliminary remarks.

3.1 Di�erences which will not be transformed away

Firstly

2

, CLP in general de�nes a class of programming languages, which place con-

straint solving in a logic programming framework, whereas CSP de�nes a set of prob-

lems, techniques, and algorithms. We could embed PCSP in a logic programming

framework, and then a comparison with HCLP would make sense, or we can ignore

the programming language aspects of HCLP, and compare the resulting theory of `con-

straint hierarchies' with PCSP. In this section we will consider the latter approach,

i.e. when we say `HCLP' we really mean `constraint hierarchies'.

Secondly, CSP techniques are always de�ned with �nite domains whereas the CLP

framework extends to continuous domains such as the real numbers. We will only

attempt to transform HCLP(FD); however, we will transform metric comparators as

well as predicate ones. (Metric comparators required a notion of `distance' between

points in the domain, but there is no reason why this distance cannot be discrete.)

Finally, in HCLP the required constraints are special; the di�erence between re-

quired and strong constraints is richer than the di�erence between, say, strong and

weak. PCSP does not have this special class of required constraints. This is discussed

further in the next section.

3.2 PCSP with distinguished required constraints

In Section 2.2, we presented the standard formalisation of PCSPs as h(P;U); (PS;�);

(M; (N;S))i. We can modify this to allow us to denote a subset of the constraints in

P as `required', giving a theory which can be called P

R

CSP (our additions in italics):

h(P;R;U); (PS;�); (M; (N;S))i

where P is a constraint satisfaction problem, R � P is a set of constraints, U is a set

of `universes' i.e. a set of potential values for each of the variables in P , (PS;�) is a

problem space with PS a set of problems each of which contains all the constraints

in R, and � a partial order over problems, M is a `distance function' on the problem

space, and (N;S) are necessary and su�cient bounds on the distance between the

given problem P and some solvable member of the problem space PS. A solution to

a PCSP is a problem P

0

from the problem space and its solution, where the distance

between P and P

0

is less than N , and where all the constraints in R are satis�ed . If

the distance between P and P

0

is minimal, then this solution is optimal.

2

The three points mentioned in this section are reasonably straightforward, but have not been ex-

plicitly made in any publication. They were mentioned to one of the authors by Borning [Private

Communication], but we were already aware of them independently.

5

In Section 2.2 we noted that Freuder states that the obvious problem space to

explore when trying to weaken a problem is the collection of all problems Q such that

Q � P , but we also noted that it may be useful to consider only some of these Qs,

i.e. those problems which have been weakened in a particular way which makes sense

in the context of the system that we are trying to model [5]. Therefore we note that

P

R

CSP can be considered simply as selecting those Qs which satisfy all the constraints

in R.

One way to select the appropriate part of the problem space is to choose a dis-

tance function which gives an in�nitely large distance for all other parts. If distance

functions are generally denoted by �, from now on we will assume the existence of

a particular function �

1

, usually parameterised by a set of required constraints �,

which de�nes a distance of zero to any problem which satis�es all the constraints in

�, and a distance of in�nity to all other problems. If T is some arbitrary problem

drawn from the problem space, then

�

1(�)

=

(

0; if � � T

1; otherwise

�

1(�

r

)

will be the �rst element of the sequence of functions � = [�

r

; �

s

; �

w

; : : :] pa-

rameterised by the constraints at each level of the hierarchy. For example, if the

comparator used is UCB, then � = [�

1(�

r

)

; �

UCB(�

s

)

; �

UCB(�

w

)

; : : :].

The main conclusion of this section is that we can deal with the issue of required

constraints in a straightforward and localised manner. Therefore, perhaps surpris-

ingly, in the rest of this paper we do not really need to emphasise the di�erence

between PCSP and P

R

CSP.

3.3 Characterisation of HCLP and PCSP

In this section we present those aspects which are relevant for the transformation

process. The relevant aspects for HCLP are

hH = (H

0

;H

1

;H

2

; : : :]); C = (e;E; g)i

where H is a hierarchy of constraints, made up of all the required constraints H

0

,

the strongly preferred constraints H

1

, weaker preferences H

2

etc. The comparator

C is used to compare di�erent solutions; it is made up of an error function e which

calculates the error of a possible solution with respect to one constraint, E which

simply maps e pointwise over all the constraints in one level of the hierarchy H

i

, and

a combining function g which combines the elements of the sequence produced by E,

resulting in a score for that solution with respect to all the constraints at that level

of the hierarchy. For example g might be `max', or `sum', or `least squares'. The

resulting sequence of errors [r; s; w; : : :] giving the errors with respect to each level

if the hierarchy, are used to order di�erent possible solutions lexicographically. The

lowest element in the order indicates the best solution.

PCSP is formalised as a triple h(P;U); (PS;�); (M; (N;S))i, but we need only

consider certain elements of it as follows: P is a constraint satisfaction problem, and

M is a distance function which selects the consistent problem `nearest' to P .

When transforming HCLP into PCSP, we will take all the constraints inH without

their strength labels as being P . We will use the strength label information and the

comparator to construct the appropriate distance function.

6

When transforming PCSP into HCLP, the constraints in the hierarchy will just be

the constraints in P , and the distance function will be used to de�ne their strength

labels (i.e. which of the H

i

should contain each constraint) and the comparator C.

In the case of the standard PCSP distance function, all the constraints from P

must be placed in the same non-required level of the hierarchy, but it does not matter

which one is used. Arbitrarily, we choose to label them `strong' and so put them in

H

1

.

4 Transforming HCLP into PCSP

4.1 Creating the distance function

The base problem (P) is all the constraints in the hierarchy, without their strength

labels. U , PS, and (N;S) remain as they would for an original PCSP based on P .

(By `original PCSP' we mean one written down by a user, as opposed to one created

by automatically transforming an HCLP problem.)

The distance function will be calculated from a combination of the HCLP com-

parator and the particular hierarchy of labelled constraints, and the hierarchy will

lead to it being strati�ed into a lexicographic order. The distance function � derived

from a hierarchy with n levels will be strati�ed into n parts, whose results will be or-

dered lexicographically (i.e. it will not calculate a single distance of the relaxed CSP

from P). Each relaxation (each problem drawn from the problem space PS) will be

annotated with a sequence [d

0

; d

1

; d

2

; : : : ; d

n�1

] each element of which is calculated by

the respective distance function in � = [�

0

; : : : ; �

n�1

]. (The required level is formally

called level 0, the strongest non-required level is 1, down to n � 1 for the weakest

level.) For example, in the case of a hierarchy containing only required, strong and

weak constraints, each candidate problem will be annotated with a sequence [r; s; w],

where r is the distance according to �

r

, the part of the distance function derived from

the required constraints, s is the distance according to �

s

, the part of the distance

function derived from the strong constraints, and w is the weak distance, calculated

by �

w

. We then order the various relaxations according to the lexicographical order

of their sequences.

The distance function calculates the distance of one of the problems T in the

problem space PS from the `ideal' set of constraints which would have distance zero

(i.e. completely satisfy all the constraints in the original problem). In fact, as the

original constraints might be inconsistent, it is possible that no such ideal set exists.

Let us de�ne sols(T) to be the set of solutions to T . We required T to be consistent,

and so sols(T) will never be empty. Each member of sols(T) is a valuation, i.e. an

assignment of a value from its domain to each variable in T . We can calculate how

well a particular valuation satis�es the constraints � using the machinery developed

by Borning and Wilson for HCLP.

T may have more than one solution, and hence may give rise to more than one

valuation, therefore we de�ne the distance of T from � to be themaximum of distances

of each of the valuations in T . This is necessary because HCLP's comparators take

as input the set of original constraints and a single valuation / possible solution. The

output is the score for that particular valuation, which can then be used to place

that valuation in an order. In PCSP, however, distance functions create an order over

7

sets of constraints; a set of constraints can have many solutions, and so we have to

choose the score of one of them. We choose the worst (largest) score, i.e. this set of

constraints can never give an answer with a score worse than x. For example, if T is

said to be a distance of 2 from �, that means that any solution of T is a distance of

at most 2 from �.

Therefore, using some HCLP terminology including denoting a general comparator

by C (de�ned in terms of g, e, and E), the PCSP distance function de�ned in terms

of the set � of constraints from one optional level of the hierarchy is:

�

C(�)

(T) = maxfg(E(��) j � 2 sols(T)g

In other words, we treat all the constraints in � as a sequence, apply a particular

valuation � to each of them, calculate the error for each member of the sequence,

combine the errors using g, and then take the maximum of the errors for all the � and

treat it as the error for T .

The various distance functions, each parameterised by the constraints from a dif-

ferent level of the hierarchy, will lead to results which are lexicographically ordered,

just as in HCLP. The main di�erence between standard HCLP and our work is that

we interpose the step of taking the maximum error for each of the valuations in T

between the application of g and placing in an order.

In the case of UCB, g(v) =

P

jvj

i=1

v

i

and e = e

p

is the simple predicate error

function which returns 0 for each constraint in � which is consistent with � , and 1

for each inconsistent constraint [2, 12]. E is e raised over sequences, i.e. its input is a

sequence of constraints, and its output in this case is a sequence of 0's and 1's. g then

adds all these individual errors. Least-squares-better (LSB) has a more complicated

e = e

d

, which measures the error as a `distance' in a metric space. g then sums the

squares of these errors:

�

UCB(�)

(T) = max

(

X

c2�

e

p

(c; �) j � 2 sols(T)

)

�

LSB(�)

(T) = max

(

X

c2�

e

d

(c; �)

2

j � 2 sols(T)

)

See Section 6 for pseudo-code for transforming HCLP into PCSP.

4.2 Example

In this section we present an example of an over-constrained system and its speci�ca-

tion and solution in HCLP, and then showing its transformation into PCSP.

Consider the problem of choosing matching clothes (example adapted from Freuder

and Wallace [6]). A robot wishes to wear a shirt, some shoes, and some trousers, and

wants them all to match each other. There are various choices for the di�erent items

and various constraints between them. We can easily model this using three �nite

domain variables with a number of binary constraints between them. If we use the

letter S to denote the variable for shirts, then we can use F for shoes (footwear)

and T for trousers. The domain of the shirt variable will be S :: fr; wg for red and

white respectively, and similarly shoes and trousers will have domains F :: fc; sg for

cordovans and sneakers, and T :: fb; d; gg, for blue, denim, and grey. A constraint

that shirts must match footwear will be denoted C

SF

, and so on. Then, using Freuder

8

and Wallace's assumptions about which clothes go with which, the complete problem

can be expressed formally as follows (we will call this model Z):

S :: fr; wg; F :: fc; sg; T :: fb; d; gg

C

ST

:: f(r; g); (w; b); (w; d)g; C

FT

:: f(s; d); (c; g)g; C

SF

:: f(w; c)g

This problem is over-constrained; it has no solutions. We can see this by choosing

the red shirt, and tracing the implications of this choice. We must choose the grey

trousers, which forces us to choose the cordovans as footwear. But according to C

SF

,

the cordovans only go with the white shirt. Contradiction. We can trace the e�ects of

choosing the white shirt in the same way, also arriving at a contradiction. Therefore

we need to consider some way of relaxing or weakening the problem until solutions

can be found.

4.2.1 Example in HCLP

Let us use HCLP strength labels to indicate our assumption that, say, shirts and

trousers are more important than footwear, and let us choose the unsatis�ed-count-

better (UCB) comparator:

strong C

ST

; weak C

FT

; weak C

SF

The solutions to this hierarchy will equal the solutions to the two equally acceptable

relaxed problems (C

ST

; C

FT

) and (C

ST

; C

SF

) which are, in the variable order (S;F; T),

f(r; c; g); (w; s; d)g and f(w; c; b); (w; c; d)g respectively.

4.2.2 HCLP formulation transformed into PCSP

The base set of constraints for the PCSP formulation will be all the constraints from

the HCLP version, without strength labels. The distance function will be in two parts

� = [�

UCB(C

ST

)

; �

UCB(C

FT

;C

SF

)

], one of which measures the relaxation of the strong

constraint, and another for the weak level of the hierarchy. The order will be the

lexicographic order over the sequences of integers [s;w] produced by �.

UCB and �

UCB(�)

are elsewhere in this paper, as is the notion of constraint aug-

mentation. Here it su�ces to say that the best solutions, i.e. those earliest in the or-

der created by the distance function, will be the sets of constraints fC

ST

; C

FT

; C

0

SF

g,

fC

ST

; C

FT

; C

00

SF

g, fC

ST

; C

0

FT

; C

SF

g, fC

ST

; C

00

FT

; C

SF

g, where C

0

SF

= f(w; c); (r; c)g,

i.e. C

SF

augmented with the extra tuple (r; c), and the other three solutions also con-

tain one augmented constraint (C

00

SF

= f(w; c); (w; s)g, C

0

FT

= f(s; d); (c; g); (c;b)g,

C

00

FT

= f(s; d); (c; g); (c;d)g). The solutions from these four sets of constraints, in vari-

able order (S;F; T), are f(r; c; g)g, f(w; s; d)g, f(w; c; b)g, and f(w; c; d)g, identical to

the HCLP solutions.

5 Transforming PCSP into HCLP

5.1 Transforming the standard PCSP distance function

To transform PCSP with the standard distance function into HCLP, we take the

constraints in P and give them all the same arbitrary non-required strength label,

9

say `strong'. Thus they will be placed in H

1

. Then we use the HCLP comparator

unsatis�ed-count-better (UCB). We claim that this is the correct comparator to use,

i.e. we claim that the solutions calculated by HCLP using UCB are the same as those

in PCSP, and the particular solutions which are best according to PCSP will also

be best according to UCB. (The intuition is as follows: the number of unsatis�ed

constraints counted by UCB is the same as the number of constraints which would

need a single domain augmentation to create a consistent CSP, thus UCB measures

an equivalent distance to that measured in PCSP.)

Certain combinations of augmented constraints in the PCSP formulation, which

duplicate solutions found at a closer distance, will not appear in the HCLP answer,

but all the solutions to these combinations will appear. (Here is an analogy: if the list

of PCSP solutions, in order from best to worst, is [a; b; c; a; d; a; e], the list of HCLP

solutions may be [a; b; c; d; e]. So although the lists are not equal, the fact that a

should be chosen before b or d is present in both representations.)

See Section 6 for pseudo-code for transforming PCSP into HCLP.

5.1.1 Detailed defence of choice of UCB

This section contains a detailed defence of our choice of UCB as the comparator to

use in HCLP when transforming from PCSP. It addresses one possible key objection,

but does not a�ect the presentation in subsequent sections of the paper.

Consider those PCSP weakenings which involve more than one augmentation of a

single constraint. We claim that the following complaint about our choice of UCB is

unjusti�ed: \UCB will just detect that a constraint had been violated by a valuation.

It wouldn't detect that two di�erent augmentations would be necessary for the con-

straint not to be violated." It is incoherent because two augmentations can never be

necessary for a single constraint not to be violated. Two augmentations to a single

constraint might, however, lead to an additional two or more solutions, but we can

ignore this situation due to the following claim:

Claim: the additional solutions caused by n � 2 augmentations of a single con-

straint can be completely separated into n classes, each of which contains solutions

caused by only one of the n augmentations. The CSPs represented by these singly-

augmented constraints will all appear in the partial order induced by the distance

function, and they will all appear earlier than the CSP containing the n-augmented

constraint. Therefore, no solutions will be lost by ignoring all multiply-augmented

constraints. Therefore, the fact that UCB only picks out those solutions which vi-

olate the smallest number of singly-augmented constraints, does not change the set

of solutions computed. (All that would happen is that two solutions s

1

and s

2

will

separately appear as, say, the equal-best solutions to the hierarchy, but their union

will fail to appear as a second-best or third-best solution.)

Example: Let A

0

denote the constraint A with one extra tuple added to its do-

main, in the usual manner. Usually there will be more than one way to augment A;

these alternatives may be indicated by A

0

1

, A

0

2

, etc. Let A

00

generally denote two aug-

mentations to A, and speci�cally A

00

1;2

denote that the two augmentations are equiva-

lent to A

0

1

[A

0

2

. Then our claim is that all the solutions to the CSP fA

00

1;2

; B

00

3;4

; C

00

5;6

g

are present in the union of the solution sets fA

0

1

; B

0

3

; C

0

5

g[fA

0

2

; B

0

3

; C

0

5

g[fA

0

1

; B

0

4

; C

0

5

g[

fA

0

2

; B

0

4

; C

0

5

g [: : :. In other words, we can ignore multiple augmentations of a single

constraint.

10

Intuition: Consider the CSP as a graph, with each variable represented by a node

and each constraint represented by an edge. The tuples which make up the constraint

are labels for the edges. A solution to the CSP is a path through every edge in the

graph, consistent with the labels. If we add a label to an edge, we are increasing by

one the number of paths between the two nodes connected by that edge

3

. If instead

we added a di�erent label, we would again increase the number of paths between these

two nodes by one. It is intuitively clear that adding these two labels simultaneously

will add precisely two paths between the two nodes: any path can only take account

of one of the two labels on the edge. We could have arrived at the same set of total

paths through the graph by taking two copies of the original graph, adding one new

label to each of them, �nding the new paths caused by this single extra label, and

then eventually taking the union of the two sets of paths.

Proof: Consider various binary constraints over di�erent pairs selected from n

variables X

1

, X

2

, X

3

, etc. We can de�ne the expansion C

�

ij

of each constraint C

ij

,

which originally related X

i

and X

j

, to a set of n-tuples by creating a tuple for each

element of the cartesian product of the variables not originally involved in the con-

straint:

C

�

ij

= f(v

1

; v

2

; : : : ; v

i

; v

j

; : : : ; v

n

) j (v

i

; v

j

) 2 C

ij

; (v

k

; k 6= i; k 6= j) 2 dom(X

k

)g

Example: if X has domain fa; bg, Y has domain fc; dg, and Z has domain fe; fg, and

if A

XY

= f(a; c); (b; d)g, then A

�

XY

= f(a; c; e); (a; c; f); (b; d; e); (b; d; f)g.

It is clear that the solution to a CSP is precisely the intersection of the expanded

versions of each of its constraints. Thus instead of considering the solution of the set

of constraints fA

XY

; B

Y Z

; C

XZ

g, we can just consider A

�

XY

\B

�

Y Z

\ C

�

XZ

.

If we add one pair to the domain of one of the constraints in a CSP, it is equivalent

to adding a set of n-tuples to the domain of that constraint's expanded version, where

the other places in the tuple are �lled with all possible combinations of elements from

the domains of all the other variables. Continuing with the example, let us assume,

without loss of generality, that we have augmented constraint B. This leads to adding

a set of n-tuples to B

�

; let us call this set of additional tuples R. We can imagine

adding a di�erent pair to B which would lead to adding a di�erent set to B

�

, say R

0

.

If we add both pairs to B at the same time, it is clear

4

that we must add R [R

0

to

B

�

.

3

The number of paths through the entire graph may increase by more than one. If there are k paths

leading into the start node of the edge under consideration, and l paths leading away from the end

node, then adding a path between the two nodes may increase the number of paths through the

entire graph by up to kl.

4

If it is not clear, consider the following: if the �rst pair added to constraint C

ij

is (�; �) (giving,

say,

0

1

C) and the second pair is (; �) (giving

0

2

C), and the doubly-augmented constraint is called

00

C,

then

0

1

C

�

ij

= C

�

ij

[f(v

1

; v

2

; : : : ; �; �; : : : ; v

n

) j (v

k

; k 6= i; k 6= j) 2 dom(X

k

)g

0

2

C

�

ij

= C

�

ij

[f(v

1

; v

2

; : : : ; ; �; : : : ; v

n

) j (v

k

; k 6= i; k 6= j) 2 dom(X

k

)g

and

00

C

�

ij

= C

�

ij

[f(v

1

; v

2

; : : : ; v

i

; v

j

; : : : ; v

n

) j (v

i

; v

j

) 2 f(�; �); (; �)g;

(v

k

; k 6= i; k 6= j) 2 dom(X

k

)g

then clearly

00

C

�

ij

=

0

1

C

�

ij

[

0

2

C

�

ij

11

Our claim is that we can ignore CSPs where one constraint has been multiply

augmented; all their solutions will be present in the union of the solutions to CSPs

with singly-augmented constraints. This is equivalent to claiming

A

�

\ (B

�

[(R [R

0

)) \ C

�

= (A

�

\ (B

�

[R) \ C

�

)[(A

�

\ (B

�

[R

0

) \ C

�

)

The proof is a straightforward exercise in the use of the distributivity laws of set theory

(J [(K \ L) = (J [K) \ (J [L) and its dual), with one use of the idempotence of

set union (K [K = K).

Therefore, using UCB as our comparator in the automatically generated HCLP

version of a PCSP is acceptable. So our transformation from PCSP to HCLP holds.

5.2 Transforming non-standard distance functions

We have shown above how to transform problems using the standard PCSP distance

function into HCLP. We now consider three other possibilities, �rstly where all the

variables and constraints are treated equally by the distance function but the distance

is not de�ned as minimum augmentation, secondly where some of the variables in the

problem are highlighted, and �nally where some of the constraints are highlighted.

5.2.1 Non-speci�c (homogeneous) distance functions

All the constraints are put at the `strong' level of the hierarchy resulting from the

transformation. The combining function embodied by the distance function must be

transformed into an HCLP-like comparator, speci�cally into an error function for each

constraint and a combining function which combines the errors at each level.

5.2.2 Distance functions which prefer a subset of the variables

In general CSPs are considered in terms of binary constraints. The theory can be

extended, but complications are introduced. CLP, on the other hand, is indi�erent to

the arity of constraints. Therefore, if a PCSP problem has some kind of cost function

which selects solutions which minimise the value of some function of (some of) the

variables, we can simply treat it as another constraint. If the use of the cost function

is expressed in the usual way (\Do not violate any constraints in order to minimise the

function") then it can be labelled `weak', while all the constraints in the original PCSP

are labelled `strong.' If it is acceptable to violate constraints in order to minimise the

function, then the inverse strength labelling can be used.

5.2.3 Distance functions which prefer a subset of the constraints

This possibility can be transformed into HCLP in a very straightforward manner: the

preferred constraints are labelled `strong', while the others are labelled `weak'. If there

are multiple subsets with some order over them, then clearly more HCLP strength

levels can be used.

12

6 Pseudo-code

In Figure 1 we present logic-programming-style pseudo-code which transforms HCLP

into PCSP in the manner described in Section 4 of this paper. Figure 2 presents

similar pseudo-code for the PCSP to HCLP transformation (Section 5). We can also

write a single procedure, called say transform-HP, which includes transformations in

both directions thus showing the relational nature of our transformations; we have

kept them separate here for clarity of presentation. Using the relational version, we

state the main claim of this paper as a query in logic programming terms in Figure 3.

This Figure assumes the existence of two procedures, each of which interfaces to a

standard implementation of HCLP and PCSP respectively. The HCLP procedure

requires a collection of labelled constraints and a comparator as input. The PCSP

procedure has as inputs a collection of unlabelled constraints and a distance function.

Figure 3 claims that if we do not have an implementation of HCLP, we can replace a

call to it by the two calls transform-HP, PCSP, and vice-versa. So we can specify in

one of the two paradigms and solve in the other, whenever it is necessary or desirable.

transform-HCLP-PCSP((LabelledConstraints, Comparator),

(Constraints, DF)) :-

partition-constraints(LabelledConstraints,

(Required, Strong, Weak, ...),

remove-labels((Required, Strong, Weak, ...),

(UL-Required, UL-Strong, UL-Weak, ...)),

% DF = Distance function.

% The type of DF is determined by the e and g functions

% (which are determined by the choice of comparator), and

% and also parameterised by the different levels of constraints

distance-function-0((Required, Comparator), DF-R(UL-Required)),

distance-function-1((Strong, Comparator), DF-S(UL-Strong)),

distance-function-2((Weak, Comparator), DF-W(UL-Weak)),

...

collect-distance-functions((DF-R(UL-Required), DF-S(UL-Strong),

DF-W(UL-Weak)...), DF),

collect-constraints((UL-Required, UL-Strong, UL-Weak,...),

Constraints).

Figure 1: HCLP into PCSP

7 Conclusions and further work

7.1 Conclusions

We have developed a general methodology for transforming between HCLP and PCSP.

We have clari�ed various issues, and provided a proof of correctness. We have shown

13

transform-PCSP-HCLP((Constraints, DF(Type,SpecialCons)),

(LabelledConstraints, Comparator)) :-

% if Type = standard, then UCB comparator will be chosen, etc.

% if no constraints are highlighted by the distance function,

% then SpecialCons will be empty and all constraints are `strong'

partition-constraints((Constraints, DF(Type,SpecialCons))

(UL-Strong, UL-Weak, ...),

add-labels((UL-Strong, UL-Weak, ...), (Strong, Weak, ...)),

create-comparator(Type, Comparator)

collect-constraints((Strong, Weak, ...), LabelledConstraints).

Figure 2: PCSP into HCLP

?- HCLP((LabelledConstraints, Comparator), HCLP-Solutions),

transform-HP((LabelledConstraints, Comparator),

(Constraints, DF))

PCSP((Constraints, DF), PCSP-Solutions),

equiv(HCLP-Solutions, PCSP-Solutions).

Figure 3: Equivalence

that strength labels, associated with constraints in HCLP, contain information which

is necessary to de�ne the global distance function in PCSP.

HCLP and PCSP each have advantages when modelling problems, and each have

advantages when implementing models and solving them. Using the work presented

in this paper, the appropriate paradigm can be used for each of these steps, with a

meaning-preserving transformation in between if necessary.

7.2 Further work

We would like to investigate issues of algorithmic complexitywithin the two paradigms.

Acknowledgements

Thanks to Alan Borning, Thomas Schiex, Rob Scott, and Roland Yap for many helpful

discussions about CLP.

Thanks to City University for funding Michael Jampel's PhD for three years, and

to the European Community for a TMR grant. Thanks to the Belgian National Fund

for Scienti�c Research, and to the European Community INTAS project 93-1702, for

funding Jean-Marie Jacquet's research.

14

References

[1] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Constraint Solving over Semir-

ings. In IJCAI'95, Montreal, August 1995.

[2] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint Hierarchies. Lisp

and Symbolic Computation, 5:223{270, 1992.

[3] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint Hier-

archies and Logic Programming. In ICLP'89 Lisbon, Portugal, June 1989.

[4] Eugene Freuder. Partial Constraint Satisfaction. In IJCAI'89, August 1989.

[5] Eugene Freuder. Exploiting Structure in Constraint Satisfaction Problems. In Con-

straint Programming: Proceedings 1993 NATO ASI Parnu, Estonia, pages 54{79.

Springer, 1994.

[6] Eugene Freuder and Richard Wallace. Partial Constraint Satisfaction. Arti�cial Intel-

ligence, 58:21{70, 1992.

[7] Joxan Ja�ar and Jean-Louis Lassez. Constraint Logic Programming. In POPL'87

Munich, 1987.

[8] Francisco Menezes, Pedro Barahona, and Philippe Codognet. An Incremental Hierar-

chical Constraint Solver. In Paris Kanellakis, Jean-Louis Lassez, and Vijay Saraswat,

editors, PPCP'93: First Workshop on Principles and Practice of Constraint Program-

ming, Providence RI, 1993.

[9] Thomas Schiex, H�el�ene Fargier, and Gerard Verfaillie. Valued Constraint Satisfaction

Problems: Hard and Easy Problems. In IJCAI'95, Montreal, August 1995.

[10] Molly Wilson. Hierarchical Constraint Logic Programming. PhD thesis, University of

Washington, Seattle, May 1993. (Also available as Technical Report 93-05-01).

[11] Molly Wilson and Alan Borning. Extending Hierarchical Constraint Logic Program-

ming: Nonmonotonicity and Inter-Hierarchy Comparison. In NACLP'89 Cleveland,

Ohio, 1989.

[12] Molly Wilson and Alan Borning. Hierarchical Constraint Logic Programming. Journal

of Logic Programming, 16(3):277{318, July 1993.

15

