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Abstract. We describe an investigation into spatial modelling by means
of an ongoing case study, namely phase variation patterning in bacterial
colony growth, forming circular colonies on a flat medium. We explore
the application of two different geometries, rectangular and circular, for
modelling and analysing the colony growth in 2.5 dimensions. Our mod-
elling paradigm is that of coloured stochastic Petri nets and we employ
stochastic simulation in order to generate output which is then analysed
for sector patterning. The analysis results are used to compare the two
geometries, and our multidimensional approach is a precursor to more
work on detailed multiscale modelling.
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1 Motivation

This paper builds on [5], where we have introduced our methodology for the
use of a structured family of Petri net classes which enables the investigation of
biological systems using complementary modelling abstractions comprising the
qualitative and quantitative, i.e., stochastic, continuous, and hybrid paradigms.

We extend our spatial modelling approach introduced in [2,3] where we dis-
cretise space within a geometrical framework exploiting finite discrete colour
sets embedded in coloured Petri nets. We motivate our work by describing an
investigation into spatial modelling by means of an ongoing case study, namely
phase variation patterning in bacterial colony growth, forming circular colonies
on a flat medium. In order to illustrate the power and flexibility of our ap-
proach we explore the application of two different geometries, rectangular and
circular, for modelling and analysing the colony growth in 2.5 dimensions: the 2
dimensions of the surface of the colony are modelled explicitly while the height
is modelled implicitly. In order to capture the stochastic properties of the case
study, we have chosen coloured stochastic Petri nets (SPN C) as our modelling
paradigm and employ stochastic simulation in order to generate output which
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is then analysed for sector patterning. The analysis results are used to compare
the two geometries, and our multidimensional approach is a precursor to more
work on detailed multiscale modelling. The main contributions of our paper are

– a detailed model of phase variation in bacterial colony growth, in two ge-
ometries (rectangular and circular),

– the development and application of techniques to analyse the properties of
the patterns generated by phase variation,

– a comparison of the application of the two geometries.

This paper is organised as follows. The biological background and the basic
model are described in Section 2. In Section 3 we explore the application of
the two alternative geometries using Cartesian and polar coordinates, and the
analysis is presented in Section 4. We conclude our paper with a brief summary
in Section 5. Some additional data are given in the Appendix.

2 Phase Variation in Bacterial Colony Growth

Background. Microbial populations commonly use a stochastic gene switching
process called phase variation, controlled by reversible genetic mutations, in-
versions, or epigenetic modification [14] . Understanding of its adaptive role has
traditionally been within the context of “contingency gene theory” [10] in which
populations will predictably include variants adapted to “foreseeable” frequently
encountered environmental or selective conditions [12] . The mechanistically most
common switches are mediated by random mutations in simple sequence repeats,
as exemplified by H. influenzae [8], H. pylori [13,15] and Neisseria [18] . Recent
reconsideration suggests a different and additional role for phase variation in
the generation of predictable functional diversity within multicellular microbial
populations, providing differentiated sub-specializations within structured and
predictable communities. Progress in this area requires the design of new mod-
els, moving from existing models of population proportions in freely competing
populations to ones that include and address spatial and structural composition
and interfaces.

The most readily observable compositional effect of phase variation in cul-
tures grown in vitro is colonial sectoring. In this paper we present preliminary
stochastic models that address colonial patterning including bi-directional re-
versible switching between two phenotypes, biologically relevant rates, and dif-
ferences in the fitness of the two alternate phenotypes. We consider a colony of
bacteria with two phenotypes A and B, which develop over time by cell division.
Cell division may involve cell mutation, and back-mutation alternates pheno-
types; see Fig. 1. We are interested in the proportion of phenotypes in the cell
generations, and how their spatial distribution evolves over time.

Basic model of phase variation. We start with the equations taken from
the previous deterministic model of phase variation [16], which describe syn-
chronous growth in cell colonies with two phenotypes A and B, but no spatial
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Fig. 1: Phase variation, basic scheme. α / β – forward/backward mutation rate.

aspects. These equations include the assumption that “if phase variation oc-
curs, the progeny consists of one A and one B.” Previously [16], behaviour was
explored by iterating the equations on a spreadsheet. We develop a stochastic
Petri net (SPN ) that is directly executable by playing the token game which
facilitates its comprehension, and permits the exploration of the behaviour by
standard analysis and simulation techniques. Our initial SPN model, see Fig. 2,
adopts an asynchronous modelling approach so that cells divide individually.
The model parameters were taken from [16]; α and β represent the forward and
backward mutation rates, and dA, dB the fitness of phenotype A and B, i.e. the
proportions that survive to division.
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dA/dt = da (1-alpha) A + db beta B
dB/dt = db (1-beta) B + da alpha A

this model corresponds to model 1 and model 2 in 
   Saunders; Moxon; Gravenor;
   Mutation rates: estimating phase variation rates ...
   Microbiology (2003)149,485-495
---
"If phase variation occurs, 
the progeny consists of one A and one B."

derived measures we are interested in:
- proportion of A and B;
  propA = A/(A+B); propB = B/(A+B)

PARAMETERS:
---
alpha, beta
   mutation rates, also called phase variation;
   10^-2 - 10^-5;
   high:   alpha=beta= 0.0025
   medium: alpha=beta= 0.0005
   low:    alpha=beta= 0.00005
---
da, db
   fitness; proportions that survives to division;
   da = db = 1: no fitness difference
---
f relative fitness (ratio of phenotype survival probability):
   f = da/db  -> constant;
   Fig.6: f= 0.99, 0.9, 0.5

v(A2B) = dAαA, v(A2A) = dA(1− α)A
v(B2A) = dBβB, v(B2B) = dB(1− β)B

Fig. 2: SPN corresponding to Fig. 1; v – marking-dependent stochastic rates.

Derived measures of interest. The n-th generation in a synchronous
model yields 2n bacteria. Vice versa, if we know the total number total of bacteria
generated by asynchronous cell division, then we can obtain the corresponding
synchronous generation counter n by

n = log2 total (1)

For example, 26 synchronous generations (which may develop in about 24
hours) end up with a total population size of approximately 67 · 106. We obtain
the proportion of phenotypes A and B modelled by the variables A and B by

propA =
A

A+B
; propB =

B

A+B
(2)

Simulating the stochastic model allows us to observe asynchronous popula-
tion growth such that cells divide individually. Each event (firing of a transition)
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corresponds to the division of one cell. Consequently, the size of the population
will grow in steps by 1, in contrast with the previous synchronous model.

Folding. To prepare for spatial modelling of cell colonies we fold our first
(uncoloured) Petri net. We define two colour sets, Phenotype and DivisionType,
see Appendix A, to fold the two places A and B into one coloured place cell
with the colour set Phenotype, and to fold the four transitions into the coloured
transition division. We obtain the model in Fig. 3. The derivation of our final
model requires three further steps: adding space, controlling colony spreading,
and controlling thickness, which we discuss in the next section.
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dA/dt = da (1-alpha) A + db beta B
dB/dt = db (1-beta) B + da alpha A

this colored pn corresponds to model 1 and model 2 in 
   Saunders; Moxon; Gravenor;
   Mutation rates: estimating phase variation rates ...
   Microbiology (2003)149,485-495
---
"If phase variation occurs (mutation), 
the progeny consists of one A and one B."

derived measures we are interested in:
- proportion of A and B;
  propA = A/(A+B); propB = B/(A+B)
- total sum of A and B

PARAMETERS:
---
alpha, beta
   mutation rates, also called phase variation;
   10^-2 - 10^-5;
   high:   alpha=beta= 0.0025
   medium: alpha=beta= 0.0005
   low:    alpha=beta= 0.00005
---
da, db
   fitness; proportions that survives to division;
   da = db = 1: no fitness difference
---
f relative fitness (ratio of phenotype survival probability):
   f = da/db  -> constant;
   Fig.6: f= 0.99, 0.9, 0.5

one progeny goes to the same position as the parent cell,
one progeny goes to one of the neighbouring positions.
---
If there is mutation, then 
it's always the mutant who goes to the neighbouring position.

simulation options:
length: 0.5 - 1
output counter: 100
solver: stiff, ADAMS

reac arc gets a small arc weight;
requires to change the rate functions as the use of mass action implies 
that the arc weight appears as "to the power of" in the euqation.

Fig. 3: SPN C as SPN short-hand notation; unfolding this SPN C generates the
SPN in Fig. 2.

3 Adding space

The colony is represented in 2.5 dimensions by an explicit 2D grid with an
implicit constant maximal height over all grid positions.

3.1 Alternative geometries

Starting from a small initial population the colony spreads out as the number
of bacteria increases maintaining a circular shape throughout its development.
Thus, a circular geometry with polar coordinates for representing space seems
to be most appropriate for this particular modelling task. However, previous
attempts to model bacteria colony growth have represented space employing a
rectangular geometry with Cartesian coordinates. Independently of the chosen
spatial representation, the 2D space is discretised in compartments which are
then mapped to a grid. Each position of the grid is referenced by a unique tuple
(x, y), corresponding to a colour tuple in the model, where x is the index of the
row and y of the column in the grid, respectively. Differences between modelling
in these two coordinate systems will be highlighted next.

Cartesian coordinate system. In the Cartesian coordinate system [19]
approach, the 2D space is discretised by splitting it into equally sized rows and
columns obtaining a 2D grid similar to a matrix as shown in Fig. 4. The mapping
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between this matrix and the compartments of the 2D grid is direct, because each
position in the matrix corresponds to a compartment in the grid. The area of all
the positions in the grid is equal. The volume of all grid positions is also equal
because their maximal height is the same.

When division occurs, the parent remains in situ and the offspring can either
stay with the parent or be displaced to a neighbour. The neighbourhood relation
between different positions of the grid is represented as a function. The maximum
number of neighbours for each position is up to 8 depending on whether the
considered position is in the interior of the grid, at the edge or in the corner.

Polar coordinate system. On the other hand, when considering a polar
coordinate system [19], the 2D space is discretised in a different manner. First
of all, the space is divided into evenly spaced concentric circles. Each one of the
concentric circles and its immediate enclosing circle will form an annulus [19].
All annuli are then split into sectors obtaining annular sectors like the ones
presented in Fig. 4.

Fig. 4: Discretising space considering Cartesian (left) and polar (right) coordi-
nates. Each annulus in the polar case is mapped to a row in the grid and each
sector to a column, such that a position in the grid (left) has one and only one
corresponding annular sector (right) and vice versa.

When running a simulation from the centre of the discretised space, it is
important that the offsprings are able to be displaced with equal chance in
either of the directions identified by the sectors. For this purpose the origin of
the space is considered as a position in the grid which has as neighbours all the
immediate surrounding annular sectors. Therefore, the first row of the 2D grid
will contain only one entry, the origin.

The number of neighbours for the origin is equal to the number of sectors.
Similar to the neighbourhood relation in a Cartesian coordinate system, all other
annular sectors have maximum 8 neighbours, depending if their position is next
to the origin, in the interior or at the edge.

Comparing the geometries. One of the differences between the two ge-
ometries is that when using the rectangular geometry, the area and volume of
all positions in the grid are constant while in the circular geometry the area
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and volume are variable. In case of the circular geometry the variability of the
volume of each position in the grid has an effect on the transition rate function.
Conversely, in case of the rectangular geometry, the transition rate function is
not influenced by the volume of the positions since it is constant.

Another important aspect which sets the two geometries apart is the shape
of the compartments due to the discretisation process. Let us compare one row
from the grid obtained by discretising the space considering a Cartesian coordi-
nate system and the sector obtained similarly by considering a polar coordinate
system. The angle described by a row in the grid equals 0 degrees. Conversely,
the sides of the sector form a sharp angle greater than 0 degrees (except when
the number of sectors →∞).

For this particular case study, we are interested in the angle formed by the
patterns of high intensity in the colony. Any sector in the circular geometry will
automatically have a non-zero degrees angle associated. However, in the rectan-
gular geometry a non-zero degrees angle is formed only if the colony spreads out
on multiple rows and columns. In order to obtain comparable results we have
removed the diagonal movement in the polar coordinates model such that the
horizontal spreading of the colony is reduced.

Representing the geometries using colour sets. In spite of the multiple
differences between the rectangular and circular geometries, the definition of the
colour sets used for each Petri net is the same. The Grid colour set is equal to
the Cartesian product of the Grid2D and Phenotype colour sets where Grid2D
represents the two-dimensional grid and Phenotype the type of the bacteria; in
our case either A or B.

Each Petri net place represents a subset of the discretised space. The maxi-
mum number of bacteria in each place is inversely proportional to the resolution
of the grid. Increasing the resolution reduces the maximum capacity of the place,
while decreasing it makes room for more bacteria.

One crucial difference between the geometries consists of the neighbourhood
relation between two positions. This characteristic is captured by the neigh-
bourhood functions described in Appendix B, neighbourhood2D rectangular and
neighbourhood2D circular. They define all possible movements in the net. The
neighbourhood function for polar coordinates may appear to be more compli-
cated. However, its length is due to the need of separately considering the neigh-
bours of the origin and not because of an increased complexity.

In this case study we are concerned with mutation rates and their influence
on the system behaviour. Therefore, their total values for each position have
to be kept constant irrespective of the number of neighbours. Introducing space
means technically multiplying the number of transitions (one for each direction).
To counterbalance this effect, we scale the transition rates by dividing them by
N , where N is the number of neighbours.
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3.2 Controlling the spatial dynamic development of the colony

Controlling colony spreading. The probability of staying with the parent or
being displaced to a neighbouring position is modelled differently depending on
the representation of space.

In the circular case the probability of a bacteria to be displaced to a neigh-
bouring position has to take into account the size of the current position, because
the area of the annular sectors is variable. We employ the interior-edge model de-
scribed in Fig. 5 to capture this aspect. Considering a particular annular sector,
the only bacteria which are able to be displaced from this sector to a neighbour-
ing sector are the ones lying on the edge. Assuming that each bacteria can move
in 8 directions (N, NW, W, SW, S, SE, E, NE) or remain in situ, only three
out of the nine movements of the bacteria on the edge will be to a neighbouring
position. The bacteria which lie in the corner are not treated separately in our
approach. Thus, the probability of being displaced to a neighbouring position is:

P =
3

9
∗ Areaedge

Areagrid position
(3)

and the probability of staying with the parent is 1−P . Areaedge is given by the
maximum area which can be occupied by bacteria of size 1 by 1 lying on the edge.
The difference between the edges and interior of an annular sector is depicted in
Fig. 5. Areagrid position is computed as the total area of the annular sector. Both
areas depend on the index i of the annulus to which the sector belongs. The value
of i is set to 1 for the origin and is incremented with each enclosing annulus.
Thus, the values of the areas are:

Areaedgei =
2rN + 2πr(2i+ 1)

MN
, Areagrid positioni

=
πr2(2i+ 1)

M2N
(4)

where M is the total number of annuli and N the total number of sectors. A
step by step description of how the values of Areaedge and Areagrid position are
computed is given in Appendix C.

Fig. 5: Interior-edge model used for the circular geometry in order to represent
the probability of a bacterium to be displaced to a neighbouring position. Bac-
teria lying on the edge are highlighted in yellow, bacteria lying in the interior in
white and the annular sector boundary in blue.

As the area of annular sectors increases, the ratio between the area on the
edge and the total area becomes smaller which means that the probability of a
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bacterium to be displaced to a neighbouring position decreases. On the other
hand, in the rectangular case the area of the grid positions is constant which
means that the model from the circular case would impose a constant probability
for all positions in the grid. To add more flexibility to the model, the probability
of staying with the parent or being displaced to a neighbouring position is mod-
elled using two preference factors γ and ω without changing the total transition
rate.

Increasing γ increases the preference to stay with the parent, while decreasing
γ increases the preference to be displaced. Conversely, increasing ω increases the
preference to be displaced, while decreasing ω increases the preference to stay
with the parent. In the general case, the probabilities of staying with the parent
or being displaced to a neighbouring position are:

Pstay with parent =
γ

γ + (#neighbours ∗ ω)

Pdisplace to neighbour =
ω

γ + (#neighbours ∗ ω)

(5)

In the rectangular case #neighbours is equal to 3 if the position on the grid is
in the corner, 5 on the edge and 8 in the interior. Conversely, in the circular
case #neighbours is equal to 5 on the edge, 8 in the interior, 6 in the annulus
immediately enclosing the origin and “the number of sectors” for the origin.

All probabilities are encoded in the rate function of the transition “division”,
irrespective of the employed geometry.

Controlling thickness. The bacteria generated by cell division can pile
up on top of each other and thus increase the colony thickness at that grid
position. This thickness is limited because of the cells’ requirements for access to
oxygen and nutrients. In order to control the thickness we introduce a constant
ρ, denoted as POOLSIZE in the SPN C model, which limits the maximum
number of cells at a certain grid position. The constant ρ is set to give room for 26
generations. The entire set of colour-related definitions common to both circular
and rectangular spatial representations and the final version of the models are
given in Appendix A and D, respectively. Due to space limitations rate functions
are not described here, but they are defined in the computational models made
available as supplementary materials.

The only structural difference between the models is that polar coordinates
require additionally one Petri net place and two transitions, which are high-
lighted in green colour in the model (see Appendix D, Fig. 10). The pre-transition
of the place pool accounts for the variable pool size (volume) depending on the
annulus to which each sector belongs. The extra place src index and its pre-
transition record to which annulus a given sector belongs, information which is
used to adapt the rate of the transition division. A future version of our mod-
elling tool will allow specifying a variable initial marking for a coloured place and
accessing the index of a position in the grid without the need of additional places
and transitions. Henceforth, this overhead should not be taken into consideration
when comparing the spatial representations.
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4 Analysing Phase Variation

4.1 Computational experiments

The Petri nets were constructed using Snoopy [11], recently extended to support
coloured Petri nets [6]. Simulations were run with Snoopy’s built-in stochastic
simulator and Marcie [7]. Simulation traces have been further processed by cus-
tomized C++ programs, and finally visualised as images or mp4 movies.

All computational experiments were performed on automatically unfolded
Petri nets. Unfolding the coloured Petri net for a 101×101 grid using a rectan-
gular geometry yields an uncoloured Petri net with 30,605 places and 362,405
transitions with an unfolding time of 780 seconds on a regular desktop computer
(Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz processor, 2 GB DDR3 RAM).
Similarly, unfolding a coloured Petri net of the same dimensions using a cir-
cular geometry yields an uncoloured Petri net with 40,406 places and 382,191
transitions with an unfolding time of 2000 seconds. The number of places and
transitions is higher in the circular case due to the overhead required by the
current Snoopy version for recording to which annulus each sector belongs.

The unfolded Petri net is simulated using the Gillespie algorithm [4]. The out-
put of the simulation comprises two traces for each grid position, corresponding
to the two phenotypes A and B. The analysis follows the development over time
of the proportion of the given phenotype in the total population, and the for-
mation of the associated patterns. This requires converting the traces from the
stochastic simulations into 2D representations, see Fig. 6, and analysing the de-
velopment of the 2D sector-like patterns over time. We expect that the model
will finally allow the prediction of mutation rates and fitness by counting and ex-
tracting information from the pattern segments, which in the future could give
new insights into the population dynamics of mutation. Currently, the model
predicts behaviour which has not been measured so far in the wet lab in the
sense that it generates a time series description of the evolution of the patterns
in the bacteria colony, while wet lab data just provide snapshots of final states.

Fig. 6: 2D representation of the final state of 4 stochastic simulations, 2 for
rectangular (left) and 2 for circular (right), illustrating the development of sector-
like patterns. Due to the stochastic nature of the simulations, the output is
different in every run. The value of propB, see Equation 2, is encoded by colour.
Yellow indicates patches with high density of phenotype B, dark purple patches
of high density of phenotype A, red patches of approximately equal proportions.
The black background shows the grid area not covered by phenotype B.
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4.2 Parameter scanning

When the mutation rates are fixed, different combinations of values for param-
eters ρ and ω will result in different simulation outcomes. One batch of simula-
tions was run for each parameter ρ and ω by choosing random values from the
parameter space in order to observe how the behaviour is affected.

Changing ρ. In the first batch of simulations, all parameters were kept
constant, except ρ, which had a different value for each run. The values for ρ
were selected by starting with an initial value and linearly increasing it after
each run.

In the rectangular case the volume or capacity is constant throughout the
grid, whereas in the circular case it is not. Therefore, ρ has a different interpreta-
tion depending on the chosen spatial representation. For comparison purposes, it
is better to consider the maximum height of the colony which is constant through-
out the entire grid for both geometries. Experiments with the same heights and
corresponding ρ’s were carried out for both geometries and two characteristic
results for each one of the geometries are depicted in Fig. 7a-7d.

Increasing the value of the parameter ρ increases the maximum height of each
grid position which implies that more bacteria can pile up onto each other. Since
the number of generations is fixed and the maximum height limit of the colony
was increased, it is to be expected that the width of the colony is reduced; this
can be observed in Fig. 7a-7d. The value of ρ was chosen for both geometries in
such a way that the most outwards bacteria with respect to the centre do not
reach the edge of the grid. The reason for this is that we expected some back-
propagation of bacteria from the edge of the grid to affect the final outcome of
the simulation.

Changing ω. The second batch of simulations changed only the value of ω
for each run. Similar to the selection of values for ρ, the values for ω have been
randomly selected from the entire search space. Images representing the final
states of two simulations for each geometry are given in Fig. 7e-7h. The proba-
bility of the offspring to stay with the parent or be displaced to a neighbouring
position depends on the dimensions of the grid position. All grid positions are
equally-sized in the model using Cartesian coordinates, which means that the
probabilities of staying/being displaced are constant. However, the area of the
grid positions in the model using polar coordinates is different, which means
that the probabilities are different as well. The value of ω specified as caption
for the polar coordinates model in Fig. 7e-7h corresponds to the most outward
annular sectors (i.e. annular sectors with the biggest area).

Considering that the value of γ is fixed, the preference of the offspring to be
displaced to a neighbouring position is directly proportional to the value of ω.
Increasing ω increases the chance of the offspring to be displaced which means
that the clear cut between high and low density areas in the images fades away.
Thus, in Fig. 7e-7h the images corresponding to a higher value of ω have a more
uniform distribution of concentrations than the ones in which ω was smaller.



Modelling Phase Variation 11

(a) h = 12,
ρ = 10000

(b) h = 29, ρ = 26000 (c) h = 12,
ρ = 80

(d) h = 29,
ρ = 200

(e) ω = 1 (f) ω = 500 (g) ω = 1 (h) ω = 500

Fig. 7: Different values of the parameter ρ, and implicitly maximum height (h),
for the Cartesian coordinate system (a, b) and the polar coordinate system (c,
d). Different values of the parameter ω for the Cartesian coordinate system (e,
f) and the polar coordinate system (g, h).

4.3 Sector Analysis
In the beginning, the analysis of the sectors was done by looking at the images
of the colony at different time points and deciding if the sector-like patterns
are similar to the ones in the wet lab. Unfortunately, only few images from the
wet lab are available. New wet lab experiments are ongoing, but images of the
colonies can not be provided yet.

For the purpose of improving the assessment of results, there was a need to
formalise the analysis of sectors. The following set of measures was defined to
describe the patterns from the final state of the simulation: Area, angle described
by the sides, distance from the centre of the grid, and the total number of sectors.

Using specific image processing techniques from the open source computer vi-
sion library OpenCV [1], a sector detection module was implemented which takes
images as input. The main steps of the algorithm are given in Appendix E.1.

The advantage of the algorithm working directly with images and not with
the raw output of the simulation is that the images can originate from either
dry or wet lab. Thus, our analysis approach is generic. Since the experiments in
the wet lab are still ongoing, the image processing procedure was validated only
on in silico generated images, but our expectation is that the approach should
similarly work well on images from the wet lab.

Results. One thousand stochastic simulations were run for both the rectan-
gular and circular model with an average simulation time of 50 minutes. Images
were generated from the final states of the simulations which were then provided
as input to the sector analysis module. An example of the result of the sector
detection procedure for each geometry is depicted in Appendix E.2.
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The output of the analysis procedure are csv files containing information
about the area, angle, distance from the centre and number of detected sectors.
The averaged results from all simulations for both the rectangular and circular
case are described in Table 1. We employed a two-sample statistical test for
comparing the results. The data corresponding to all measures and both geome-
tries was tested for normality using the Shapiro-Wilk [17] and the Q-Q plot [21]
methods. In all cases the null hypothesis, i.e. that the sample data is drawn from
a normal distribution, was rejected. Thus, we tested if the sample data for both
geometries is drawn from the same distribution using the Mann-Whitney [9,20]
non-parametric test. Similarly, the null hypothesis, i.e. that the sample data are
drawn from the same distribution, was rejected. The p-values obtained for all
tests are given in Table 2, Appendix E.3.

Both area and angle have higher values in the circular than in the rectan-
gular case, which is to be expected due to the different 2D space discretisation.
Sectors in the circular geometry inherently have a non-zero degree angle asso-
ciated, while rows in a rectangular geometry do not. Moreover, the area of the
annular sectors is increasing as they are farther away from the centre of the grid.
Conversely, the area of all positions in the rectangular geometry is constant. The
number of sectors is slightly bigger in the circular case because the bacteria from
the starting position can be displaced in maximum “number of sectors” direc-
tions, while in the rectangular case only in maximum 8. Finally, the distance
of the sectors from the grid centre is approximately equal for both geometries.
Thus, according to these results the distance from the centre is the only reli-
able measure which has similar values for both geometries. Running batches of
more simulations will increase the accuracy of the results and more fine-grained
conclusions can be drawn. Histograms and corresponding normal distribution
curves for all measures have been plotted and added to Appendix E.3 in order
to complement the analytical comparison of the results described above.

Table 1: Rectangular (�) and circular (©) sector analysis with µ – mean, σ –
standard deviation, cv – coefficient of variation. Area and distance (from the
centre) are given wrt total grid area and maximum distance from the centre.

Measures Area Distance Angle Sectors
� © � © � © � ©

µ 3% 5% 41% 39% 56◦ 78◦ 1.47 1.78
σ 2% 2% 17% 16% 18◦ 25◦ 1.14 1.03
cv 0.93 0.62 0.40 0.41 0.32 0.32 0.77 0.58
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5 Summary

In this paper we have described a methodology of modelling bacterial colonies
which evolve in time and space using rectangular and circular geometries, and a
procedure for sector-like patterns detection and analysis.

Currently it is not possible to state which geometry is more appropriate for
the phase variation case study, because there are not sufficient images from the
wet lab against which to validate our results. The emphasis of this paper is on
the generic methodologies which we developed and which can be employed for
different case studies modelled using coloured Petri nets. Work is ongoing in the
wet lab to generate images of actual bacterial colonies which will then be used
as targets for model fitting in order to generate more accurate computational
models for describing bacterial colony growth under different conditions.

In the future we plan to extend our spatial modelling framework from 2.5D
(i.e. 2D and implicitly modelling height) to full 3D representation which would al-
low the simulation and observation of more detailed aspects of bacterial colonies.
We also want to extend our sector detection and analysis procedure from working
with 2D sector-like patterns to linear and non-linear 3D surfaces.

All supplementary materials are made available at http: // people. brunel.
ac. uk/ ~ cspgoop/ data/ cmsb2013 for the interested reader.
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A Colour-related definitions

The colour-related definitions common to both circular and rectangular geome-
tries:

const D1 = int with 101 ;
const D2 = D1 ;

colorset Phenotype = enum with A, B;
colorset Divis ionType = enum with r e p l i c a t e , mutate ;
colorset CD1 = int with 1−D1 ;
colorset CD2 = int with 1−D2 ;

colorset Grid2D = product with CD1 x CD2;
colorset Grid = product with Grid2D x Phenotype ;

var c : Phenotype ;
var div : Divis ionType ;
var x , xn : CD1;
var y , yn : CD2;

B Neighbourhood functions

The neighbourhood function for the Cartesian coordinate system is:

fun ne ighbour2D rectangular (CD1 x ,CD2 y ,CD1 xn ,CD2 yn ) bool :
// ( xn , yn ) i s one o f the up to e i g h t ne ighbours o f ( x , y )
// or ( x , y ) i t s e l f

( xn=x−1 | xn=x | xn=x+1 )
& ( yn=y−1 | yn=y | yn=y+1)
& (1<=xn & xn<=D1) & (1<=yn & yn<=D2) ;

Similarly, the neighbourhood function for the polar coordinate system is de-
fined as follows:

fun ne ighbour2D c i r cu la r (CD1 x ,CD2 y ,CD1 xn ,CD2 yn ) bool :
// ( xn , yn ) i s one o f the up to e i g h t ne ighbours o f ( x , y )
// or ( x , y ) i t s e l f

(1<=xn & xn<=D1 & 1<=yn & yn<=D2) &
( ( x=1 & y=1 & xn=1 & yn=1) |

( x=1 & y=1 & xn=2) |
( x=2 & ( (

( y=1 & yn=D2) |
( y=D2 & yn=1) |
( yn=y−1 | yn=y+1 | yn=y )

) & ( xn=x+1 | xn=x ) ) | ( xn=1 & yn=1) ) |
( ( y=1 & yn=D2) |
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( y=D2 & yn=1) |
( yn=y−1 | yn=y+1 | yn=y )

) & (2<x ) & ( xn=x | xn=x−1 | xn=x+1) )

C Probability of a bacterium to be displaced to a
neighbouring position in the circular case

As stated in Section 3, the probability of a bacterium to be displaced to a neigh-
bouring position is:

P =
3

9
∗ Areaedge

Areagrid position
(6)

Both areas depend on the index i of the annulus to which the sector belongs.
The value of i is set to 1 for the origin and is incremented with each enclosing
annulus. Let us denote by M the number of annuli, by N the number of sectors
and by r the radius of the actual bacterial colony.

The value of Areaedge is given by the maximum area which can be occupied
by bacteria of size 1 by 1 lying on the edge. Considering the annular sector AS
in Fig. 8:

Areaedgei = Arealefti +Areatopi +Arearighti +Areabottomi (7)

Fig. 8: Areaedge is equal to the sum of the four subareas: left, top, right and
bottom. The value of the subarea left is equal to the value of subarea right.

The value of Arealefti is equal to Arearighti and they are given by the area
of the rectangle of width equal to the width of a bacterium (i.e. 1) and the height
equal to the absolute difference of the radii defining the annular sector. Consid-
ering that all concentric circles defining the annuli are equidistant the height of
the rectangle is equal to r divided by the total number of annuli. Thus:

Arealefti = Arearighti = 1 ∗ rcolony
M

=
rcolony
M

(8)
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The value of Areatopi is equal to the area of the annular sector defined by the
outer radius router of the annular sector AS and the inner radius rinner, such
that router−rinner is equal to the height of a bacterium (i.e. 1). Thus, we obtain:

Areatopi =
πr2(i+ 1)2

M2N
− π

N

(
r(i+ 1)

M
− 1

)2

=
πr2(i+ 1)2

M2N
− π

M2N

(
r2(i+ 1)2 − 2r(i+ 1)M +M2

)
=
π(2r(i+ 1)−M)

MN

(9)

The value of Areabottomi is equal to the area of the annular sector defined
by the inner radius rinner of the annular sector AS and the outer radius router,
such that router − rinner is equal to the height of a bacterium (i.e. 1). Thus, we
obtain:

Areabottomi =
π

N

(
ri

M
+ 1

)2

− πr2i2

M2N

=
π

M2N

(
r2i2 + 2riM +M2

)
− πr2i2

M2N

=
π(2ri+M)

MN

(10)

In conclusion, after summing up all elements:

Areaedgei =
2rN + 2πr(2i+ 1)

MN
(11)

The value of Areagrid position is computed as the value of the annulus to
which the sector belongs divided by the total number of sectors:

Areagrid positioni
=
πr2(2i+ 1)

M2N
(12)
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D Coloured Stochastic Petri Net models

cell1

1‘(x=MIDDLE)&(y=MIDDLE)&(c=A)

Grid

pool

71406999

POOLSIZE‘(1<=x&x<=D1) & (1<=y&y<=D2) & (x<>MIDDLE|y<>MIDDLE)++
POOLSIZE 1‘(x=MIDDLE & y=MIDDLE)

Grid2D

run

11‘dot

Dot

size

1
1‘dot
Dot

division

[neighbour2D8r(x,y,xn,yn)]

stop

[div=replicate] ((xn,yn),c) ++

[div=mutate] ((xn,yn),(+c))

(xn,yn)

((x,y),c)

COLONYSIZE‘dot

Fig. 9: SPN C model based on the Cartesian coordinates system.

cell

1 1‘(x=1)&(y=1)&(c=A)

Grid

pool

100 POOLSIZE‘x=1&y=1

Grid2D

run

11‘dot
Dot

size

1 1‘dot
Dot

src index
Grid2D

division

[neighbour2D8r no diagonal(x,y,xn,yn)]

stop

fill pool

true : 1

[valid(x,y)]

fill src index

true : 1

[valid(x,y)]

[div=replicate] ((xn,yn),c) ++

[div=mutate] ((xn,yn),(+c))

(xn,yn)

[x>0](((2*x - 1) * POOLSIZE) + 1)‘(x,y)
[x>0]x‘(x,y)

((x,y),c)

COLONYSIZE‘dot

2‘(xn,yn)

[x>0]1‘(x,y) [x>0]1‘(x,y)

(x,y)

Fig. 10: SPN C model based on the polar coordinates system. Immediate transi-
tions are highlighted in green.
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E Sector detection and analysis

E.1 Sector analysis algorithm

Algorithm 1 Algorithm for sector analysis

Require: imageF ile is valid
Ensure: Results written to outputF ile
1: Read imageF ile and create an instance of type Mat from it called image
2: Change the contrast and brightness of image for highlighting regions of interest
3: Remove noise from image using blur filters
4: Apply morphological close operation on image in order to connect close regions

which form a sector
5: Threshold image and store the result in binaryImage
6: Detect the contours of sectors in binaryImage, approximate their polygons and
convexHulls

7: for all hull ∈ convexHulls do
8: Compute distance from the centre, area and angle using hull
9: end for

10: Print results into outputF ile

E.2 Sector detection

Fig. 11: Images illustrating the detection of sector-like patterns in final state
images using rectangular (left) and circular (right) geometries. The border of
the detected sectors is coloured with blue. The size of the sector area has to be
higher than a threshold value in order for the sector to be considered.
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E.3 Statistics

Table 2: The p-value obtained from the statistical tests in rectangular (�) and
circular (©) case for all measures (area, distance from the centre, angle, number
of sectors). The Shapiro-Wilk test was used to check the hypothesis that the
sample data was drawn from a normal distribution. The Mann-Whitney test
was used to check the hypothesis that the sample data for both geometries was
drawn from the same distribution.

Measures Shapiro-Wilk Mann-Whitney
� ©

Area <2.2e-16 <2.2e-16 <2.2e-16
Distance 1.334e-07 5.398e-12 5.92e-05
Angle 1.272e-14 <2.2e-16 <2.2e-16
Sectors <2.2e-16 <2.2e-16 6.68e-13

The following figures describe the distribution of the mean of one of the mea-
sures (area, distance from the centre, angle, number of sectors) using a circular
(left) and rectangular (right) geometry. The frequency represents the number
of sectors in each bin of the histogram. Each curve follows a normal distribu-
tion having the mean and standard deviation equal to the mean and standard
deviation of the sample data used to create the histogram.

Fig. 12: Measure: Area of sectors.
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Fig. 13: Measure: Distance from the centre of the grid.

Fig. 14: Measure: Angle of sectors expressed in degrees.

Fig. 15: Measure: Number of sectors.
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