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Abstract. We give a description of a Petri net-based framework for
modelling and analysing biochemical pathways, which unifies the qualita-
tive, stochastic and continuous paradigms. Each perspective adds its con-
tribution to the understanding of the system, thus the three approaches
do not compete, but complement each other. We illustrate our approach
by applying it to an extended model of the three stage cascade, which
forms the core of the ERK signal transduction pathway. Consequently
our focus is on transient behaviour analysis. We demonstrate how quali-
tative descriptions are abstractions over stochastic or continuous descrip-
tions, and show that the stochastic and continuous models approximate
each other. A key contribution of the paper consists in a precise defi-
nition of biochemically interpreted stochastic Petri nets. Although our
framework is based on Petri nets, it can be applied more widely to other
formalisms which are used to model and analyse biochemical networks.

1 Motivation

Biochemical systems are inherently governed by stochastic laws. However, due
to the computational efforts required to analyse stochastic models, two abstrac-
tions are more popular: qualitative models, abstracting away from any time
dependencies, and continuous models, commonly used to approximate stochas-
tic behaviour by a deterministic one. The interrelationships between these three
models are not always properly understood; for example, how the kinetics of a
biochemical reaction, when described by a continuous model, is related to the
stochastic nature of the underlying molecular mechanism.

In a previous paper [GH06] we developed an approach for modelling and
analysing biochemical networks using discrete and continuous Petri nets. Our
current work has taken this forward by considering stochastic Petri nets and
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developing an overall framework to unify these three approaches, providing a
family of related models with high analytical power.

A key contribution of this paper is the precise definition of biochemically in-
terpreted stochastic Petri nets in a generic manner, and we demonstrate the
benefit of their incorporation into the model development process. We show
how the general definition can be tailored to very specific kinetic assumptions
by appropriate adjustments of the general hazard function. Also we discuss the
relation of the stochastic Petri net to its time-free, purely qualitative abstrac-
tion - the standard Petri net, as well as to its continuous approximation - the
continuous Petri net (i.e., an ordinary differential equation system).

This paper is organised as follows. The following section provides an overview
of the biochemical context and introduces our running example. Next we outline
our framework, discussing the special contributions of the three individual anal-
ysis approaches with special emphasis on the transient behaviour analysis, and
examining their interrelations. We then present the individual approaches and
discuss mutually related properties in all three paradigms in the following order:
we start off with the qualitative approach, which is conceptually the easiest, and
does not rely on knowledge of kinetic information, but describes the network
topology and presence of the species. The qualitative modelling and analysis
basically adheres to the steps proposed in [GH06]. In addition, we show how to
systematically derive and interpret the partial order run of the signal response
behaviour. We then demonstrate how the validated qualitative model can be
transformed into the stochastic representation by addition of stochastic firing
rate information. Next, the continuous model is derived from the qualitative or
stochastic model by considering only deterministic firing rates. Suitable sets of
initial conditions for all three models are constructed by qualitative analysis. We
conclude with a summary and outlook regarding further research directions.

2 Biochemical Context

We have chosen a model of the mitogen-activated protein kinase (MAPK) cas-
cade published in [LBS00] as a running case study. This is the core of the ubiq-
uitous ERK/MAPK pathway that can, for example, convey cell division and
differentiation signals from the cell membrane to the nucleus. The model does
not describe the receptor and the biochemical entities and actions immediately
downstream from the receptor. Instead the description starts at the RasGTP
complex which acts as a kinase to phosphorylate Raf, which phosphorylates
MAPK/ERK Kinase (MEK), which in turn phosphorylates Extracellular signal
Regulated Kinase (ERK). This cascade (RasGTP → Raf → MEK → ERK) of
protein interactions controls cell differentiation, the effect being dependent upon
the activity of ERK. We consider RasGTP as the input signal and ERKPP (ac-
tivated ERK) as the output signal.

The bipartite graph in Figure 1 describes the typical modular structure for
such a signalling cascade. Each layer corresponds to a distinct protein species.
The protein Raf in the first layer is only singly phosphorylated. The proteins
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Fig. 1. The bipartite graph for the extended ERK pathway model. The graph has been
derived by SBML import and automatic layout, manually improved, from the set of the
ODEs in [LBS00]. Circles stand for species (proteins, protein complexes). Protein com-
plexes are indicated by an underscore “ ” between the constituent protein names. The
suffixes P or PP indicate phosphorylated or doubly phosphorylated forms respectively.
Squares stand for irreversible reactions, while two concentric squares specify reversible
reactions. The species that are read as input/output signals are given in grey.

in the two other layers, MEK and ERK respectively, can be singly as well as
doubly phosphorylated. In each layer, forward reactions are catalysed by kinases
and reverse reactions by phosphatases (Phase1, Phase2, Phase3). The kinases in
the MEK and ERK layers are the phosphorylated forms of the proteins in the
previous layer, see also [CKS07].

3 Overview of the Framework

In the following we describe our overall framework, illustrated in Figure 2, that
relates the three major ways of modelling and analysing biochemical networks
described in this paper: qualitative, stochastic and continuous.
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Fig. 2. Conceptual framework

The most abstract representation of a biochemical network is qualitative and
is minimally described by its topology, usually as a bipartite directed graph with
nodes representing biochemical entities or reactions, or in Petri net terminology
places and transitions (see Figure 1). Arcs can be annotated with stoichiometric
information, whereby the default stoichiometric value of 1 is usually omitted.

The qualitative description can be further enhanced by the abstract represen-
tation of discrete quantities of species, achieved in Petri nets by the use of tokens
at places. These can represent the number of molecules, or the level of concen-
tration, of a species, and a particular arrangement of tokens over a network is
called a marking. The standard semantics for these qualitative Petri nets (QPN)
does not associate a time with transitions or the sojourn of tokens at places, and
thus these descriptions are time-free. The qualitative analysis considers how-
ever all possible behaviour of the system under any timing. The behaviour of
such a net forms a discrete state space, which can be analysed in the bounded
case, for example, by a branching time temporal logic, one instance of which is
Computational Tree Logic (CTL), see [CGP01].

Timed information can be added to the qualitative description in two ways –
stochastic and continuous. The stochastic Petri net (SPN) description preserves
the discrete state description, but in addition associates a probabilistically dis-
tributed firing rate (waiting time) with each reaction. All reactions, which occur
in the QPN, can still occur in the SPN, but their likelihood depends on the
probability distribution of the associated firing rates (waiting times). Special
behavioural properties can be expressed using e.g. Continuous Stochastic Logic
(CSL), see [PNK06], a probabilistic counterpart of CTL. The QPN is an ab-
straction of the SPN, sharing the same state space and transition relation with
the stochastic model, with the probabilistic information removed. All qualitative
properties valid in the QPN are also valid in the SPN, and vice versa.

The continuous model replaces the discrete values of species with continuous
values, and hence is not able to describe the behaviour of species at the level
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of individual molecules, but only the overall behaviour via concentrations. We
can regard the discrete description of concentration levels as abstracting over the
continuous description of concentrations. Timed information is introduced by the
association of a particular deterministic rate information with each transition,
permitting the continuous model to be represented as a set of ordinary differential
equations (ODEs). The concentration of a particular species in such a model will
have the same value at each point of time for repeated experiments. The state
space of such models is continuous and linear. It can be analysed by, for example,
Linear Temporal Logic with constraints (LTLc) in the manner of [CCRFS06].

The stochastic and continuous models are mutually related by approxima-
tion. The stochastic description can be used as the basis for deriving a continu-
ous Petri net (CPN) model by approximating rate information. Specifically, the
probabilistically distributed reaction firing in the SPN is replaced by a particular
average firing rate over the continuous token flow of the CPN. This is achieved
by approximation over hazard functions of type (1), described in more detail in
section 5.1. In turn, the stochastic model can be derived from the continuous
model by approximation, reading the tokens as concentration levels, as intro-
duced in [CVGO06]. Formally, this is achieved by a hazard function of type (2),
see again section 5.1.

It is well-known that time assumptions generally impose constraints on be-
haviour. The qualitative and stochastic models consider all possible behaviours
under any timing, whereas the continuous model is constrained by its inherent
determinism to consider a subset. This may be too restrictive when modelling
biochemical systems, which by their very nature exhibit variability in their be-
haviour.

In the following the reader is assumed to be familiar with the standard Petri
net terminology as well as foundations of temporal logics, for an introduction
see, e.g., [Mur89] and [CGP01].

4 The Qualitative Approach

4.1 Qualitative Modelling

We interpret the graph given in Figure 1 as a place/transition Petri net, and call
the circles places , and the rectangles transitions . Reversible reactions have to be
modelled explicitly by two opposite transitions in the basic Petri net notation.
However in order to retain the elegant graph structure of Figure 1, we use macro
transitions, each of which stands here for a reversible reaction. The entire (flat-
tened) place/transition Petri net consists of 22 places and 30 transitions, where
k1, k2, . . . stand for reaction (transition) labels.

We associate a discrete concentration with each of the 22 species. In the
simplest way, these concentrations can be thought of as being “high” or “low”
(above or below a certain threshold), resulting in a two-level model where each
species can be read as a Boolean variable. More generally, we could apply a
multi-level approach by differentiating between a finite number of discrete levels,
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each standing for an equivalence class of possibly infinitely many concentrations.
Then species can be read as integer variables.

4.2 Qualitative Analysis

Analysis of general behavioural properties. The Petri net enjoys the three
orthogonal general properties of a discrete Petri net: boundedness, liveness and
reversibility. The decision about the first two can be made for our running exam-
ple in a static way, while the last property requires dynamic analysis techniques.
The necessary steps of the systematic analysis procedure follow basically those
given in [GH06]. We restrict ourselves here to the most essential points.

The net is strongly connected and thus self-contained, i.e. a closed system. In
order to bring the net to life, we construct an initial marking using P-invariants.
These are non-trivial non-negative integer solutions of the homogeneous linear
equation system x · C = 0, where C stands for the incidence matrix of the net.
There are seven minimal P-invariants covering the net, and consequently the net
is bounded for any initial marking. All these P-invariants xi contain only entries
of 0 and 1, permitting a short-hand specification by just giving the names of the
places involved.

x1 = (RasGTP, Raf RasGTP)
x2 = (Raf, Raf RasGTP, RafP, RafP Phase1, MEK RafP, MEKP RafP)
x3 = (MEK, MEK RafP, MEKP RafP, MEKP Phase2, MEKPP Phase2,

ERK MEKPP, ERKP MEKPP, MEKPP, MEKP)
x4 = (ERK, ERK MEKPP, ERKP MEKPP, ERKP, ERKPP Phase3,

ERKP Phase3, ERK PP)
x5 = (Phase1, RafP Phase1)
x6 = (Phase2, MEKP Phase2, MEKPP Phase2)
x7 = (Phase3, ERKP Phase3, ERKPP Phase3)

Each P-invariant stands for a reasonable conservation rule, the species preserved
being given by the first name in the invariant. In signal transduction networks
a P-invariant typically comprises all the different states of one species. In a
Boolean approach, each species can be only in one state at any time, thus each
P-invariant gets exactly one token. Within a P-invariant, the species with the
most inactive (i.e. non-phosphorylated) or the monomeric (non-complexed) state
is chosen. Following these criteria, the initial marking is: one token on each of Raf,
RasGTP, MEK, ERK, Phase1, Phase2 and Phase3, while all remaining places
are empty. With this marking, the net is covered by 1-P-invariants (exactly one
token in each P-invariant), and is therefore 1-bounded.

Generalising this reasoning to a multi-level concept, we could assign n tokens
to each place, representing the most inactive state, in order to indicate the
highest concentration level for them in the initial state. The “abstract” mass
conservation within each P-invariant would then be n tokens, which could be
distributed fairly freely over the P-invariant’s places during the behaviour of the
model. This results in a dramatic increase of the state space, cf. the discussion
in Section 5.2, while not improving the qualitative reasoning.
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Model validation should include a check of all T-invariants for their biological
plausibility. T-invariants are non-trivial non-negative integer solutions of the
homogeneous linear equation system C · y = 0. The entries of a T-invariant
can be read as the specification of a multiset of transitions, which reproduce a
given marking by their firing. If there are non-trivial solutions, then there are
infinitely many ones. Therefore, the plausibility check is usually restricted to
the consideration of all minimal solutions. The net representations of minimal
T-invariants (their transitions plus their pre- and post-places and all arcs in
between) characterise minimal self-contained subnetworks with an identifiable
biological meaning.

The net under consideration is covered by T-invariants, a necessary condi-
tion for bounded nets to be live. Besides the expected ten trivial T-invariants
for the ten reversible reactions, there are five non-trivial, but obvious minimal
T-invariants, each corresponding to one of the five phosphorylation / dephos-
phorylation cycles in the network structure:

y1 = (k1, k3, k4, k6), y2 = (k7, k9, k16, k18), y3 = (k10, k12, k13, k15),
y4 = (k19, k21, k28, k30), y5 = (k22, k24, k25, k27).

The interesting net behaviour, demonstrating how input signals cause finally
output signals, is contained in a non-negative linear combination of all five non-
trivial T-invariants, y1−5 = y1 + y2 + y3 + y4 + y5, which is called an I/O
T-invariant in the following. The I/O T-invariant is systematically constructed
by starting with the two minimal T-invariants, involving the input and output
signal, which define disconnected subnetworks. Then we add minimal sets of
minimal T-invariants to get a connected subnet. For our running example, the
solution is unique, which is not generally the case.

We check the I/O T-invariant for feasibility in the constructed initial mark-
ing, which then involves the feasibility of all trivial T-invariants. We obtain an
infinite partial order run, the beginning of which can be characterised in a short-
hand notation by the following partially ordered word out of the alphabet of all
transition labels (“;” stands for “sequentiality”, “‖” for “concurrency”):

( k1; k3; k7; k9; k10; k12;
( (k4; k6) ‖ ( (k19; k21; k22; k24); ( (k13; k15; k16; k18) ‖ (k25; k27; k28; k30) ) ) ) ),

see [GHL07] for a graphical representation. This partial order run gives further
insight into the dynamic behaviour of the network, which may not be apparent
from the standard net representation, e.g. we are able to follow the (minimal)
producing process of the proteins RafP, MEKP, MEKPP, ERKP and ERKPP,
compare [GHL07], and we notice the clear independence of the dephosphoryla-
tion in all three levels.

The reachability graph of the net is finite because the net is bounded, and has
in the Boolean token interpretation 118 states out of 222 theoretically possible
ones, forming one strongly connected component. Therefore, the Petri net is
reversible, i.e. the initial system state is always reachable again, or in other
words the system has the capability of self-reinitialization. Moreover, from the
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viewpoint of the discrete model, all of these 118 states are equivalent, and each
could be taken as an initial state resulting in exactly the same total (discrete)
system behaviour. This prediction will be confirmed by the observations gained
during quantitative analyses, see Sections 5.2 and 6.2.

Model checking of special behavioural properties. Temporal logic is par-
ticularly helpful in expressing special behavioural properties of the expected
transient behaviour, whose truth can be determined via model checking. We
confine ourselves here to two CTL properties, checking the generalizability of
the insights gained by the partial order run of the I/O T-invariant. In the fol-
lowing, places are interpreted as Boolean variables, in order to simplify notation.

Property Q1: The signal sequence predicted by the partial order run of the
I/O T-invariant is the only possible one. In other words, starting at the initial
state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP
in order to reach ERKPP.

¬ [ E ( ¬ RafP U MEKP ) ∨ E ( ¬ MEKP U MEKPP ) ∨
E ( ¬ MEKPP U ERKP ) ∨ E ( ¬ ERKP U ERKPP ) ]

Property Q2: Dephosphorylation takes place independently. E.g., the dura-
tion of the phosphorylated state of ERK is independent of the duration of the
phosphorylated states of MEK and Raf.

( EF [ Raf ∧ ( ERKP ∨ ERKPP ) ] ∧ EF [ RafP ∧ ( ERKP ∨ ERKPP ) ] ∧
EF [ MEK ∧ ( ERKP ∨ ERKPP ) ] ∧
EF [ ( MEKP ∨ MEKPP ) ∧ ( ERKP ∨ ERKPP ) ] )

In subsequent sections we will use Q1 as a basis to illustrate how the stochastic and
continuous approaches provide complementary views of the system behaviour.

5 The Stochastic Approach

5.1 Stochastic Modelling

As with a qualitative Petri net, a stochastic Petri net maintains a discrete num-
ber of tokens on its places. But contrary to the time-free case, a firing rate
(waiting time) is associated with each transition t, which are random variables
Xt ∈ [0, ∞), defined by probability distributions. Therefore, all reaction times
can theoretically still occur, but the likelihood depends on the probability dis-
tribution. Consequently, the system behaviour is described by the same discrete
state space, and all the different execution runs of the underlying qualitative
Petri net can still take place. This allows the use of the same powerful analysis
techniques for stochastic Petri nets as already applied for qualitative Petri nets.

For a better understanding we describe the general procedure of a particular
simulation run for a stochastic Petri net. Each transition gets its own local
timer. When a particular transition becomes enabled, meaning that sufficient
tokens arrive on its pre-places, then the local timer is set to an initial value,
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which is computed at this time point by means of the corresponding probability
distribution. In general, this value will be different for each simulation run. The
local timer is then decremented at a constant speed, and the transition will fire
when the timer reaches zero. If there is more than one enabled transition, a race
for the next firing will take place.

Technically, various probability distributions can be chosen to determine the
random values for the local timers. Biochemical systems are the prototype for
exponentially distributed reactions. Thus, for our purposes, the firing rates of
all transitions follow an exponential distribution, which can be described by
a single parameter λ, and each transition needs only its particular, generally
marking-dependent parameter λ to specify its local time behaviour.

Definition 1 (Stochastic Petri net, Syntax). A biochemically interpreted
stochastic Petri net is a quintuple SPN Bio = (P, T, f, v, m0), where

– P and T are finite, non empty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– f : ((P × T ) ∪ (T × P )) → IN0 defines the set of directed arcs, weighted by
non-negative integer values.

– v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby
H :=

⋃
t∈T

{
ht | ht : IN|•t|

0 → IR+
}

is the set of all stochastic hazard func-
tions, and v(t) = ht for all transitions t ∈ T .

– m0 : P → IN0 gives the initial marking.

The stochastic hazard function ht defines the marking-dependent transition rate
λt(m) for the transition t. The domain of ht is restricted to the set of pre-places
of t, i.e. •t := {p ∈ P |f (p, t) �= 0}, to enforce a close relation between network
structure and hazard functions. Therefore λt(m) actually depends only on a
sub-marking.

Stochastic Petri net, Semantics. Transitions become enabled as usual, i.e.
if all pre-places are sufficiently marked. However there is a time, which has to
elapse, before an enabled transition t ∈ T fires. The transition’s waiting time
is an exponentially distributed random variable Xt with the probability density
function:

fXt(τ) = λt(m) · e(−λt(m)·τ), τ ≥ 0.

The firing itself does not consume time and again follows the standard firing
rule of qualitative Petri nets. The semantics of a stochastic Petri net (with
exponentially distributed reaction times for all transitions) is described by a
continuous time Markov chain (CTMC). The CTMC of a stochastic Petri net
is isomorphic to the reachability graph of the underlying qualitative Petri net,
while the arcs between the states are now labelled by the transition rates. For
more details see [Mur89], [BK02].

Based on this general SPN Bio definition, specialised biochemically inter-
preted stochastic Petri nets can be defined by specifying the required kind of
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stochastic hazard function more precisely. We give two examples, reading the
tokens as molecules or as concentration levels. The stochastic mass-action haz-
ard function tailors the general SPN Bio definition to biochemical mass-action
networks, where tokens correspond to molecules:

ht := ct ·
∏

p∈•t

(
m(p)
f(p, t)

)

, (1)

where ct is the transition-specific stochastic rate constant, and m(p) is the cur-
rent number of tokens on the pre-place p of transition t. The binomial coefficient
describes the number of non-ordered combinations of the f(p, t) molecules, re-
quired for the reaction, out of the m(p) available ones.

Tokens can also be read as concentration levels, as introduced in [CVGO06].
The current concentration of each species is given as an abstract level. We as-
sume the maximum molar concentration is M , and the amount of different levels
is N + 1. Then the abstract values 0, . . . , N represent the concentration inter-
vals 0, (0, 1 ∗ M/N ], (1 ∗ M/N, 2 ∗ M/N ], . . . , (N − 1 ∗ M/N, N ∗ M/N ].
Each of these (finite many) discrete levels stands for an equivalence class of (in-
finitely many) continuous states. The stochastic level hazard function tailors the
general SPN Bio definition to biochemical mass-action networks, where tokens
correspond to concentration levels:

ht := kt · N ·
∏

p∈•t

(
m(p)
N

), (2)

where kt is the transition-specific deterministic rate constant, and N the num-
ber of the highest level. The transformation rules between the stochastic and
deterministic rate constants are well-understood, see e.g. [Wil06]. In practice,
kinetic rates are taken from literature, textbooks etc. or determined from bio-
chemical experiments. Hazard function (2) is the means whereby the continuous
model (see the framework in Figure 2 and Section 6) can be approximated by the
stochastic model; this can generally be achieved by a limited number of levels –
see Section 5.2.

5.2 Stochastic Analysis

Due to the isomorphy of the reachability graph and the CTMC, all qualitative
analysis results obtained in Section 4 are still valid. The influence of time does
not restrict the possible system behaviour. Specifically it holds that the CTMC
of our case study is reversible, which ensures ergodicity; i.e. we could start the
system in any of the reachable states, always resulting in the same CTMC with
the same steady state probability distribution.

In the following our main focus is on the analytic model checking approach. In
Section 4.2 we employed CTL to express behavioural properties. Since we have
now a stochastic model, we apply Continuous Stochastic Logic (CSL) [PNK06],
which replaces the path quantifiers (E, A) in CTL by the probability operator
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P��p, whereby �� p specifies the probability of the given formula. For example,
introducing in CSL the abbreviation Fφ for trueUφ, the CTL formula EFφ
becomes the CSL formula P≥0[Fφ ], and AFφ becomes P≥1[Fφ ].

In order to use the probabilistic model checker PRISM [PNK06], we encode
the extended ERK pathway in its modelling language, as proposed in [DDS04].
This translation requires knowledge of the boundedness degree of all species
involved, which we acquire by the structural analysis technique of P-invariants.

We only consider here the level semantics. Since the continuous concentrations
of proteins in the ERK pathway are all in the same range (0.1. . . 0.4 mMol in
0.1 steps), we employ a model with only 4, and a second version with 8 levels.
The corresponding CTMCs (and reachability graphs) comprise 24,065 states for
the 4 level version and 6,110,643 states for the 8 level version.

Equivalence check by transient analysis. We start with a transient analysis
to prove the sufficient equivalence between the stochastic model in the level
semantics and the corresponding continuous model, justifying the interpretation
of the properties gained by the stochastic model also in terms of the continuous
one. The probabilistic model checker PRISM permits the analysis of the transient
behaviour of the stochastic model, e.g., the concentration of RafP at time t is
given by:

CRafP (t) = 0.1
s ·

4s∑

i=1

(
i · P (LRafP (t) = i)

)

︸ ︷︷ ︸
expected value of LRafP (t)

.

The random variable LRafP (t) stands for the level of RafP at time t. We set
s to 1 for the 4 level version, and to 2 for the 8 level version. The factor 0.1

s
calibrates the expected value for a given level to the concentration scale. In the
4 level version a single level represents 0.1 mMol and 0.05 mMol in the 8 level
version. Figure 3 shows the simulation results for the species MEK and Ras-
GTP in the time interval [0..100] according to the continuous and the stochastic
models respectively. These results confirm that 4 levels are sufficiently adequate
to approximate the continuous model, and that 8 levels are preferable if the
computational expenses are acceptable.
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Probabilistic model checking of special behavioural properties. We
give two properties related to the partial order run of the I/O T-invariant, see
Section 4.2 and qualitative property Q1 therein, from which we expect a con-
secutive increase of RafP, MEKPP and ERKPP. Both properties are expressed
as so-called experiments, which are analysed varying the parameter L over all
levels, i.e. 0 to N. For the sake of efficiency, we restrict the U operator to 100
time steps. Note that places are read as integer variables in the following.

Property S1: What is the probability of the concentration of RafP increasing,
when starting in a state where the level is already at L (the latter side condition
is specified by the filter given in braces)?

P=? [ ( RafP = L ) U<=100 ( RafP > L ) { RafP = L } ]
The results indicate, see Figure 4(a), that it is absolutely certain that the con-
centration of RafP increases from level 0 and likewise there is no increase from
level N; this behaviour has already been determined by the qualitative analysis.
Furthermore, an increase in RafP is very likely in the lower levels, increase and
decrease are almost equally likely in the intermediate levels, while in the higher
levels, but obviously not in the highest, an increase is rather unlikely (but not
impossible). In summary this means that the total mass, circulating within the
first layer of the signalling cascade, is unlikely to be accumulated in the activated
form. We need this understanding to interpret the results for the next property.

Property S2: What is the probability that, given the initial concentrations of
RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP remain at zero,
i.e. RafP is the first species to react?

P=? [ ( ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ) U<=100 ( RafP > L )
{ ( MEKPP = 0 ) ∧ ( ERKPP = 0 ) ∧ ( RafP = 0 ) } ]

The results indicate, see Figure 4(b), that the likelihood of the concentration
of RafP rising, while those of MEKPP and ERKPP are zero, is very high in
the bottom half of the levels, and quite high in the lower levels of the upper
half. The decrease of the likelihood in the higher levels is explained by property
S1. Property S2 is related to the qualitative property Q1 (Section 4.2), and the
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continuous property C1 (Section 6.2) – the concentration of RafP rises before
those of MEKPP and ERKPP.

Due to the computational efforts of probabilistic model checking we are only
able to treat properties over a stochastic model with 4 or at most 8 levels. This
restricts the kind of properties that we can prove; e.g., in order to check increases
of MEKPP and ERKPP – as suggested by the qualitative property Q1 and done
above for RafP in the stochastic properties S1 and S2 – we would need 50 or 200
levels respectively.

Analytic probabilistic model checking becomes more and more impracticable
with increasing size of the state space. Hence, the computation time of a prob-
abilistic experiment, which typically consists of a series of probabilistic queries,
can easily exceed several hours on a standard workstation. In order to avoid
the enormous computational power required for larger state spaces, the time-
dependent stochastic behaviour can be simulated by dedicated algorithms, e.g.
[Gil77], or approximated by a continuous one, see next section.

6 The Continuous Approach

6.1 Continuous Modelling

In a continuous Petri net the marking of a place is no longer an integer, but
a positive real number, which can be read as the concentration of the species
modelled by the place. Transitions fire continuously, whereby the current deter-
ministic firing rate generally depends on the current marking of the pre-places,
i.e. of the current concentrations of the reactants. For our running case study,
we derive the continuous model from the qualitative Petri net by associating a
mass action rate with each transition in the network, i.e., the reaction labels
are now read as the deterministic rate constants. We can likewise derive the
continuous Petri net from the stochastic Petri net by approximating over the
hazard function of type (1), see for instance [Wil06]. In both cases, we obtain a
continuous Petri net, preserving the structure of the discrete one, see Figure 2.

The semantics of a continuous Petri net is defined by a system of ODEs,
whereby one equation describes the continuous change over time on the token
value of a given place by the continuous increase of its pre-transitions’ flow and
the continuous decrease of its post-transitions’ flow, i.e., each place subject to
changes gets its own equation. See [GH06] for more details.

The initial concentrations as suggested by the qualitative analysis correspond
to those given in [LBS00], when mapping non-zero values to 1. For reasons of
better comparability we have also considered more precise initial concentrations,
where the presence of a species is encoded by biologically motivated real values
varying between 0.1 and 0.4 in steps of 0.1. The complete system of non-linear
ODEs generated from the continuous Petri net is given in [GHL07].

6.2 Continuous Analysis

Steady state analysis. Since there are 22 species, there are 222 possible ini-
tial states in the qualitative Petri net (Boolean token interpretation). Of these,
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118 were identified by the reachability graph analysis (Section 4.2) to form one
strongly connected component, and thus to be “good” initial states. We then
computed the steady state of the set of species for each possible initial state. In
summary, our results show that all of the ’good’ 118 states result in the same
set of steady state values for the 22 species in the pathway, within the bounds
of computational error of the ODE solver. None of the remaining possible initial
states results in a steady state close to that generated by the 118 markings in the
reachability graph; for details see [GHL07]. This is an interesting result, because
the net considered here is not covered by the class of net structures discussed in
[ADLS06] with the unique steady state property.

In Figure 5 (a) we reproduce the computed behaviour of MEK for all 118 good
initial states, showing that despite differences in the concentrations at early time
points, the steady state concentration is the same in all 118 states.
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Fig. 5. (a) Steady state analysis of MEK for all 118 ‘good’ states. (b) Continuous
transient analysis of the phosphorylated species RasP, MEKPP, ERKPP, triggered by
RasGTP.

Continuous model checking of the transient behaviour. Corresponding
to the partial order run of the I/O T-invariant, see Section 4.2, we expect a
consecutive increase of RafP, MEKPP, ERKPP, which we get confirmed by the
transient behaviour analysis, compare Figure 5 (b). To formalise the visual eval-
uation of the diagram we use the continuous linear logic LTLc [CCRFS06], which
is interpreted over the continuous simulation trace of ODEs.

The following three queries confirm together the claim of the expected propaga-
tion sequence. In the queries we have to refer to absolute values. The steady state
values are obtained from the steady state analysis in the previous section; these
are 0.12 mMol for RafP, 0.008 mMol for MEKPP and 0.002 mMol for ERKPP, all
of them being zero in the initial state. If a species’ concentration is above half of its
steady state value, we call this concentration level significant. Note that in order
to simplify the notation, places are interpreted as real variables in the following.

Property C1: The concentration of RafP rises to a significant level, while the
concentrations of MEKPP and ERKPP remain close to zero; i.e. RafP is really
the first species to react.

( (MEKPP < 0.001) ∧ (ERKPP < 0.0002) ) U (RafP > 0.06)
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Property C2: if the concentration of RafP is at a significant concentration
level and that of ERKPP is close to zero, then both species remain in these
states until the concentration of MEKPP becomes significant; i.e. MEKPP is
the second species to react.

( (RafP > 0.06) ∧ (ERKPP < 0.0002) ) ⇒
( (RafP > 0.06) ∧ (ERKPP < 0.0002) ) U (MEKPP > 0.004)

Property C3: if the concentrations of RafP and MEKPP are significant, they
remain so, until the concentration of ERKPP becomes significant; i.e. ERKPP
is the third species to react.

( (RafP > 0.06) ∧ (MEKPP > 0.004) ) ⇒
( (RafP > 0.06) ∧ (MEKPP > 0.004) ) U (ERKPP > 0.0005)

Note that properties C1, C2 and C3 correspond to the qualitative property
Q1, and that S2 is the stochastic counterpart of C1.

7 Tools

The bipartite graph in Figure 1 and its interpretation as the three Petri net mod-
els have been done using Snoopy [Sno], a tool to design and animate hierarchical
graphs, including SBML import.

The qualitative analyses have been made using the Integrated Net Analyser
INA [SR99] and the Model Checking Kit [SSE04]. We employed PRISM [PNK06]
for probabilistic model checking, and Biocham [CCRFS06] for LTLc-based con-
tinuous model checking.

MATLAB [SR97] was used to produce the steady state analysis of all ini-
tial states in the continuous model, and the transient analysis was done using
BioNessie [Bio], an SBML-based simulation and analysis tool for biochemical
networks.

8 Summary and Outlook

In this paper we have described an overall framework that relates the three major
ways of modelling biochemical networks – qualitative, stochastic and continuous
– and illustrated this in the context of Petri nets. In doing so we have given a pre-
cise definition of biochemically interpreted stochastic Petri nets. We have shown
that the qualitative time-free description is the most basic, with discrete values
representing numbers of molecules or levels of concentrations. The qualitative
description abstracts over two timed, quantitative models. In the stochastic de-
scription, discrete values for the amounts of species are retained, but a stochastic
rate is associated with each reaction. The continuous model describes amounts
of species using continuous values and associates a deterministic rate with each
reaction. These two time-dependent models can be mutually approximated by
hazard functions belonging to the stochastic world.

We have illustrated our framework by considering qualitative, stochastic and
continuous Petri net descriptions of the ERK signalling pathway, based on the
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model from Levchenko et al [LBS00]. We have focussed on analysis techniques
available in each of these three paradigms, in order to illustrate their complemen-
tarity. Our special emphasis has been on model checking, which is especially use-
ful for transient behaviour analysis, and we have demonstrated this by discussing
related properties in the qualitative, stochastic and continuous paradigms. Al-
though our framework is based on Petri nets, it can be applied more widely to
other formalisms which are used to model and analyse biochemical networks.

We are now working on the incorporation of deterministic time into stochastic
models, as well as the integration of continuous and stochastic aspects into one
model.
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The data files of the model in its three versions and the analysis results are avail-
able at www-dssz.informatik.tu-cottbus.de/examples/levchenko. A self-contai-
ned documentation of the case study as well as related work is given in [GHL07].
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