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ABSTRACT

Concepts connected with parallel logic programming are discussed in the light of
"traditional" developments in the field of logic programming. The language used to
illustrate these topics is PARLOG. Applications of PARLOG are introduced, in particular
those of systems programming and object oriented programming.

1. Declarative Programming & Logic Programming

The present generation of computers which conform to the von Neumann type of architecture has begun to
reach its performance limits, due basically to their sequential design. Early programming languages
evolved to exploit this architecture, and became heavily reliant on the execution mechanism of the
underlying machine. This was a constraining influence and inhibited their orientation towards the language
users. Despite radical improvements in language design during the last two decades, resulting in languages
such as Pascal, Ada and Modula, the underlying imperative nature of these languages which utilised
destructive assignment remains unchanged. The semantics of this class of languages can only be
understood by reference to the abstract or real machine on which the languages are to be executed.

Recent years have seen the design of languages which are free from the constrictions imposed by sequential
architectures, and in so doing have stimulated the design of radical machine architectures. These
declarative languages differ from imperative languages in that they are based on an abstract formalism, thus
divorcing their semantics from the machine on which they are run. The statements in such a language are
declarative since they can be understood without reference to machine level terms, such as side-effects. For
this reason, programs in a declarative language can act as a specification, since they can be regarded as the
formal description of a problem [Kowalski82]. Other advantages of such languages are that programs can
be developed and tested bit by bit, and that they can be systematically synthesised or transformed
[Hogger81].

First-order predicate logic provides the formalism for one branch of the declarative languages, namely logic
programming. Statements in such languages are sentences in this form of logic, usually Horn clauses.
Kowalski’s work [Kowalski74] gave these a procedural interpretation; the first logic programming
language to be implemented was Prolog, designed at Marseilles [Roussel75] and is widely used today.

† This article forms the basis for a talk given by the author at a seminar entitled "Current trends in Parallel Processing

and Supercomputing", organised by the Belgian Institute for Automatic Control (November 19-20, 1987, Antwerp).

- 1 -



D.R. Gilbert PARLOG

2. Logic programming, Prolog and PARLOG.

2.1. Committed choice parallel logic programming languages

PARLOG is a language which belongs to the family of committed choice parallel logic programming lan-
guages. Other such languages are Concurrent Prolog [Shapiro83a], and GHC [Ueda86]; all three are de-
scended from the Relational Language [Clark81]. There are significant differences between PARLOG and
Prolog. Committed choice non-determinism in PARLOG is implemented by the use of guards which en-
sure that committal is made to only one clause, unlike the backtracking ability of Prolog. Also the lan-
guage can explicitly express both parallelism in OR and stream-AND forms, as well as sequentiality.
These features enable the non-determinism inherent in the language to be exploited by the programmer, and
permit the writing of programs which require the separate use of both sequential and parallel evaluations.

2.2. Execution strategies.

A pure logic programming language does not possess rules which detail the order of evaluation of
predicates, and thus gives no indication of the manner in which the and-or tree determined by a
computation should be traversed. Because such a language is non-deterministic, a logic program may
possess a branched computation tree, and its execution may result in a variety of computations. Branching
is due to

(i) The existence of several calls capable of activation.

(ii) The existence of several clauses capable of responding to a particular call.

In an implementation of a logic language, the execution of a logic program is governed by the control
mechanism built into the program evaluator [Hogger84]. Thus, although the programmer has control over
the general way in which the computations are developed, the program evaluator must manage the binding
history. The standard strategy controlling the program evaluator’s progress consists of combining the
standard computational rule (call selection) with the standard search rule (clause selection). PARLOG and
Prolog differ in the standard control strategy they employ.

The the standard computational rule of Prolog is said to be left-to-right, depth first, with backtracking.
Prolog selects the first goal in textual order in each clause, and does not develop any other computations
until the current one has been concluded. The search tree that is developed is expanded depth first, and if a
terminal node with a failure is reached, then the program evaluator backtracks through the path in order to
find the most recent node which gives rise to other unexplored branches. PARLOG’s standard
computational rule does not employ automatic left-to-right evaluation, calls in an AND-conjunction being
evaluated in parallel; a depth-first strategy is not used to explore the search tree, but rather all possible paths
are explored concurrently and the first successful answer terminates the search. Thus in a call:

? a(X) , b(Y).

PARLOG would evaluate the calls to a(X) and b(X) concurrently, while Prolog would attempt to find a
solution to a(X) before attempting solutions to b(X).

The standard search rule employed by a sequential implementation of Prolog evaluates clauses within a
relation in the order in which they appear in the text, using backtracking to provide an "all solutions" set of
answers by attempting to completely traverse the search tree. In practice there are situations in which
Prolog’s search strategy is incomplete, a problem related to its left-to-right depth-first strategy. If a branch
in a computational tree is infinite in depth, due for example to a non-terminating loop, then Prolog will not
explore the branches to the right of that branch. The computation may be aborted when the computer runs
out of workspace, or by intervention from the operator; alternatively some method may be implemented to
enforce backtracking in such a case. Either way, the computation is incomplete in that the aborted path
may eventually have terminated successfully.

The PARLOG program evaluator does not explore clauses within a relation definition in the strict textual
order in which they are encountered, but chooses one at random to evaluate, and only pursues the paths
which arise from that computation. The search strategy of PARLOG is thus incomplete, but preserves
partial correctness. In this sense, PARLOG employs "don’t care" non-determinism, rather than the "don’t
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know" non-determinism that backtracking brings to Prolog.

Consider the following logic program:

a <- a.
a.

and the query

? a.

Prolog would attempt solve the first clause textually and would enteran infinite loop, never returning an
answer. PARLOG non-deterministically commits to one of the clauses, and thus could eventually return a
successful answer. Recently progress has been made in the implementation of Or-parallel Prologs in an
attempt to avoid the bottleneck of the sequential search rule, and thus benefit from speedup in execution
[Warren87].

2.3. The syntax of a PARLOG program

2.3.1. Explicit AND operators

The PARLOG programmer may use AND operators which are explicitly parallel or sequential. The
parallel AND conjunction operator is the comma ’,’ and the sequential-AND operator is ’&’. These two
operators may be used together in the same clause, and bracketing can be employed in order to clarify
which calls are to be explored in parallel, and which in sequence. Thus the calls in the query

? p , q

will be evaluated in parallel, but in the case of

p & q

q will only be evaluated after the successful completion of the call to p. In the query:

( p , q ) & r

the calls to p and q are executed in parallel, and only after the successful completion of both is the call to r
executed. The sequential ’&’ is useful in several instances. These may include, for instance, the correct
ordering of input and output (programming with side effects) and the control of the degree of parallelism in
algorithms.

2.3.2. Explicit OR searches

OR searches may be designated as being explicitly either parallel or sequential. Clauses which are to be
searched in parallel are terminated with a period, and those to be evaluated sequentially are terminated with
a semi-colon ’;’. If the sequential and parallel OR search operators are used in the same predicate, clauses
to searched using the same strategy are separated by the relevant operator, the flow of control being read
from the first clause in textual order. The last clause of a predicate is always terminated by a period.
PARLOG’s sequential OR search strategy is similar to that of Prolog in that clauses are tried in textual
order. Thus

p ;
p ;
p ;
p.

are to be tried in the sequence 1,2,3,4 but

p .
p .
p ;
p.

designates that the first three clauses are to be attempted in parallel, and if none of these succeeds then

- 3 -



D.R. Gilbert PARLOG

clause 4 is to be explored. The colon at the end of clause 3 separates the subsequent clause from the
parallel OR-search of 1, 2 and 3.

2.3.3. Clausal Form

The general form of a PARLOG clause is:

<head> <- <guard> : <body>

Note that <head> is in the form name(a1,..,ak) , where name is the relation name, and a1,..,ak its
arguments. The logical implication symbol is ’ <-’ and ’:’ the guard operator. Both the guard and the body
can be a conjunction of calls, or empty, and the calls are separated by the sequential-AND or parallel-AND
operators. By convention, if a clause has a guard but no body, the constant true is takes the place of the
missing body, thus PARLOG clauses may also have the form:

<head> <- <body> .
<head> <- <guard> : true .

2.4. Forms of parallelism in logic programs, with reference to PARLOG.

An implementation of a logic language may allow parallel evaluation in the form of And-parallelism (the
computational rule where calls are evaluated concurrently), and as Or-parallelism (the search rule where
clauses are tried concurrently).

2.4.1. AND-parallelism

AND-parallelism is implicitly present in a query such as:

? q(X) , r(Y).

since the query will result in the evaluation of the multiple goals q and r. The logic programming paradigm
places no restriction on the order of evaluation of q and r, and in the ideal case they could be called
concurrently. If the calls are working on unrelated solutions, one particular form of parallelism, all-
solutions and-parallelism [Gregory85a] is an easy paradigm to implement. On a multi-processor
machine, the two calls could be allocated to different processors and the computation would be able to
proceed efficiently.

In many computations which involve AND-parallelism calls may not be completely independent but share
logical variables. Restricted AND-parallelism where mutually dependent calls are evaluated sequentially
could be used, but this would still not exploit the full potential of a parallel processor and is inefficient. In
order to permit the concurrent evaluation of calls that share a variable, stream AND-parallelism has been
introduced into PARLOG; this allows the expression of the communication which occurs in such cases.

A language employing a left-to-right, depth-first computational rule would not be able to exploit the
potential And-parallelism present in a program. Prolog in the presently implemented form throws away all
And-parallelism which it encounters.

2.4.2. Directional and non-directional logic programs.

Prolog is a non-directional logic programming language in that no distinction is made between which
arguments of a predicate can be used for input and which can be used for output. This is often held to be
one of the great advantages of the language in that one predicate can be used to perform apparently
different tasks. However, in practice many Prolog programs do not make use of this facility. Indeed, the
non-logical "cut" operator is often employed in order to prevent this kind of program behaviour by pruning
away all unexplored branches from the search tree after the cut has been encountered. Programmers use
the cut for several reasons, including increased speed of execution since unwanted solutions are not
explored, and saving memory since backtracking points do not have to be recorded for later examination.

Programs in PARLOG are directional: the use of of mode declarations means that relations cannot be used
"in reverse", unlike the case in Prolog. Combined with the committed choice search strategy, this makes
the implementation of And-parallelism more practical because bindings do not have to be undone since
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there is no backtracking. The advantages that have been gained in terms of stream communication are
enormous, enabling PARLOG to be used constructively in applications where concurrency and process
state are of importance.

2.4.3. Communicating processes in PARLOG.

Although in a logic program a relation call cannot actively change state, but only reduce to other calls, a
relation which calls itself recursively with different arguments can be viewed as a long lived process which
changes its state [Gregory85b]. Since PARLOG allows more than one call to be evaluated concurrently, the
language permits computations which comprise the execution of several concurrent processes, and is able
to express the concepts of concurrency which have been of importance in the areas of systems
programming, and more recently in applications work. Prolog’s search strategy, on the other hand, only
allows one relation at a time to be evaluated, so that only one such process can be regarded as being in
existence at any point.

2.4.4. Stream communication

PARLOG uses the data flow model of communication, information being passed between concurrently
executing PARLOG processes using stream communication. PARLOG’s ability to perform stream-AND-
parallelism gives the language the power to express stream communication in a very simple manner.
Shared variables act as communication channels and messages can be sent by the incremental construction
of partly instantiated data structures such as lists of terms. The communication channels are effectively
unbounded queues. Output variables are produced in an asynchronous manner, but input variables are
processed synchronously if an argument contains a partially instantiated term.

In fact, the use of streams permits more complex forms of communication, for example back-
communication (see below). One advantage of stream-AND-parallelism is that solutions are
communicated incrementally, a disadvantage is that its use admits the computation of only one solution.
Since stream-AND-parallelism is a more primitive form of parallelism in terms of which other schemes can
be implemented, it can be used to implement a multi-solution mode using incremental construction of a
solution list [Gregory85a].

2.4.4.1. Synchronisation and suspension

Process synchronisation is an important component in communication, and is achieved in PARLOG by
suspension of input matching until a variable is bound. The notion of "modes" is provided in PARLOG so
that communication between concurrently executing calls may be expressed. The "?" declaration when
used to annotate an argument indicates that a non-variable term appearing in that position in the head of a
clause may be used only for input matching. The call to a goal which contains an uninstantiated variable in
an input mode position may suspend until that variable has become instantiated. For example, given a
relation declaration:

mode is_list(?).
is_list( [H|T] ).

a call ? is_list([X|Y]) will succeed, a call ? is_list(foo) will fail, and a call ? is_list(X) will suspend. Note
that the list notation [H|T] is equivalent to the data structure ’• ’(H,T), where the top-level functor name is
’•’. Suspension thus occurs in order to prevent the variable X in the call ? is_list(X) from being bound to
’•’(H,T). Deadlock occurs if no progress can be made with any call, so that all calls are suspended. Mode
declarations mean that in a situation involving communication only one PARLOG process can be the
producer binding a particular shared variable, whilst there may be one or more consumers of the
communication stream.

Output arguments are indicated by a "ˆ" mode annotation, and output is performed by unification after the
clause has been selected. Thus, given a PARLOG program:

mode foo(ˆ,ˆ).
foo(f(X),X).
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• a call ? foo(A,B) will result in the bindings A=f(Z) , B=Z.

• a call ? foo(g(X),Y) will fail,

• a call ? foo(f(a),Y) will succeed, with the binding Y=a.

2.4.4.2. Producers and consumers.

The basic paradigm of stream communication is that of producers and consumers. As an illustration,
consider the call

? eager_producer(Stream) , lazy_consumer(Stream).

where the programs for eager_producer and lazy_consumer are:

Example 1

mode eager_producer( Streamˆ ).
eager_producer( [ Item | Stream ]) <-
eager_producer( Stream ).

mode lazy_consumer( Stream? ).
lazy_consumer( [ Item | Stream ] ) <-
lazy_consumer( Stream ).

Note firstly that we do not define termination clauses for either relation, so that the call given above is non-
terminating. Secondly, we do not concern ourselves here with the nature of Item, which is a variable in the
above program sketch.

The eager_producer process may run ahead of the lazy_consumer by an arbitrary amount, and we assume
the existence of system buffers to permit this. However, the lazy_consumer is constrained by the rate of
production of Item slots, ie by the instantiation of the list functor. If the eager_producer for some reason
instantiated Stream at a slower rate than the lazy_consumer could consume it, the progress of the latter
process would be constrained by suspension on each recursion until Stream was instantiated at the top
level to a list.

The PARLOG programmer is, however, able to utilise the completely synchronous communication
facilities offered by the language. This is achieved by back-communication which can take two forms.

Firstly, the mode of the producer may be reversed, causing it to become "lazy". In this case, the consumer
has the output mode on the shared variable, and the producer is declared input on that argument. The
consumer than sends the producer a list of variables to be instantiated as messages; unable to run ahead of
the consumer, the producer’s eagerness is constrained by that process.

The second, analogous to "rendez-vous", is that of the co-operative construction of binding terms. The
producer sends a stream (eg an incrementally constructed list) of tuples, each of which contains two
arguments, one the data item to be sent and the other a variable. The example code below illustrates this;
we use msg(Item,Reply) for the message tuple.
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Example 2

mode synchronous_producer( Streamˆ ).
synchronous_producer([ msg(item,Reply) | Stream ])<-

data(Reply)&
synchronous_producer(Stream).

mode synchronous_consumer( Stream? ).
synchronous_consumer([ msg(Item,Reply) | Stream ])<-

Reply = ok ,
synchronous_consumer(Stream).

As an example, a non-terminating invocation would be:

? synchronous_producer( Stream ) , synchronous_consumer( Stream ).

In the above, synchronous_producer/1 may only produce one message tuple at a time, and is forced to
wait until the Reply argument has been ground by the call Reply = ok in synchronous_consumer/1. The
overall sequencing of the communication is achieved by the sequential-AND operator in
synchronous_producer/1 between the call to data/1 and the self recursive call.

2.4.5. OR-parallelism

A relation defined by more than one clause possesses the potentiality of supporting a parallel search of all
its member clauses in order to determine which one(s) result in success. This has been termed OR-
parallelism, which refers to

"concurrency in the search for solutions to a single relation call" [Gregory87a].

OR-parallelism can be combined with any of the schemes for AND-parallelism, as well as with an AND-
sequential search strategy, such as that employed by Prolog. In the following example, only OR-
parallelism is illustrated:

q(X) <- r(X).
q(X) <- s(X).

In evaluating a call to q

? q(X)

both clauses of q are invoked concurrently. The way in which solutions are obtained depends on the
implementation of the logic language that is being used. PARLOG will pick one of the clauses at random
(in the absence of input-matching or guards) and attempt to explore that one: the result of success or failure
will be reported, but no backtracking is employed, so that no other clause will subsequently be chosen for
evaluation.

2.4.6. Committed choice non-determinism

PARLOG employs "don’t care" non-determinism as a means of obtaining a solution, rather than the
backtracking strategy used by Prolog to implement "don’t know" non-determinism. The former strategy
can be viewed as a form of intelligent backtracking which eliminates unnecessary searching [Kowalski79].
Don’t-care non-determinism formed the basis of Dijkstra’s language of guarded commands [Dijkstra76].

Production of one solution to a query is useful in many applications, especially that involving the
description and programming of systems which in real life possess the property of committed choice non-
determinism. As an example, although it may be possible to write a file in several ways, it usually
desirable to implement only one solution. In system programming achieving a specified goal is normally of

- 7 -



D.R. Gilbert PARLOG

more consequence than the method of achievement.

Although in some cases the PARLOG programmer really does not care which clause in a predicate is
chosen for evaluation, it is more usual to specify the conditions under which a clause may be selected. The
two methods open to the programmer are guards and input matching.

2.4.7. Guards

A clause containing a guard is evaluated first with respect to the guard; only if the guard succeeds will the
evaluation be committed to the body, after which there is no going back. Where a relation is defined by
several clauses, each clause will be evaluated with respect to its guard, the evaluation proceeding in parallel
down the search tree. As soon as one guard is successfully evaluated, the body of that clause is committed
to, and the evaluation of all the other clauses is terminated. During the search for a candidate clause, no
variables in the call are bound, and no output binding is made to variables of the call, until the evaluation
commits to the use of some clause. Since there is no backtracking on the choice of the candidate clause,
bindings to variables in the call are never retracted.

An example of a program which makes use of guard and non-determinism is partition/4, which partitions a
list of items (integers or constants) according to the value of a partition element into two lists. This
program is used in the quicksort program. The PARLOG program for partition/4 is:

Example 3

mode partition( partition_element? , input_list,greater_eqˆ , less_eqˆ ).
partition( Pe , [] , [] , [] ).
partition( Pe , [H|T] , [H|Ge] , Le )<-

Pe =< H :
partition( Pe , T , Ge , Le ).

partition( Pe , [H|T] , Ge , [H|Le] )<-
H =< Pe :
partition( Pe , T , Ge , Le ).

Note that if the list element being compared is equal in value to the partition element, the above program
non-deterministically allocates it to either the Greater_eq list or the Less_eq list. This is intentional, and
is due to the fact that the guards in the second and third clauses are not mutually exclusive.

2.4.8. Input matching

PARLOG employs input matching as a means of selecting a candidate clause for evaluation. This standard
technique of logic programming can be used by the PARLOG programmer in order to write programs
without guards, thus making the programs more succinct.

A standard PARLOG program which exploits input matching and suspension is merge/3, which merges
two streams to produce one output stream. The program is:

Example 4

mode merge(A?,B?,Outˆ).
merge( [Item|A] , B , [Item|Out] )<- merge( A , B , Out ).
merge( A , [Item|B] , [Item|Out] )<- merge( A , B , Out ).
merge( [] , Out , Out ).
merge( Out , [] , Out ).

An example call is:
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? eager_producer(L1), eager_producer(L2) , merge(L1,L2,L3).

Note that the merging of the two lists will be partly determined by the rate at which each is produced. The
call to merge/3 will result in a parallel clause search: if neither input stream is empty, the first two clauses
are the candidates. Their selection will be suspended until L1 or L2 is bound to a partial list of the form
[H|T] by one of the producer processes. If, for example, the second stream B is produced more slowly than
the rate it can be consumed by merge/3, the call will commit to the first clause. Thus the call will result in
a time dependent merge, a requirement of systems programming where a communal resource is shared and
accessed by clients. Messages from different clients can be merged and passed through to the resource as
they arrive.

If both L1 and L2 are partly instantiated, the call to merge/3 will non-deterministically commit to one of
the first two clauses The order of items within each stream is preserved in the output stream, but the
program is not a fair merge, since it may repeatedly select the same clause in such a case. Fair and efficient
merges can be written in PARLOG and similar languages [Clark85].

2.4.9. Kernel PARLOG

A PARLOG clause can be translated into a standard form, Kernel PARLOG, which has no mode
declarations. All head arguments are distinct variables, input matching and output matching being done by
explicit calls to PARLOG unification primitives in the guard and body of the clause respectively. The
primitives1 used to perform input matching is <= (one way unification), while = (full unification) is used
for output.

As an example, the first clause of the merge/3 relation (above) is presented in kernel form:

Example 5

merge(X,B,Z)<-
[Item|A] <= X :
Z = [A|Out] ,
merge(A,B,Out).

A more detailed discussion of the implementation of input matching and output assignment, which is
related to the kernel form of PARLOG, may be found in [Gregory87a].

2.4.10. Safe guards

In PARLOG, the evaluation of a guard must not be allowed to bind variables in the call, otherwise even if
the call were to eventually fail, such bindings might remain. Output unification must be made in the body
of a clause, after commitment to it. Even if variables in input positions have been instantiated by input
matching, these bindings will not affect output arguments until commitment.

It is important that evaluation of a guard does not bind variables in an input position, a restriction known as
the safe guard condition. Thus a guard may only bind variables appearing in the guard, body and output
positions in the head of the clause. The mode declarations allow the implementation of a guard safety
check at compile time, which may be over restrictive in that it declares unsafe some guards which are
actually safe. The current implementation of PARLOG uses a simpler mechanism [Foster86]
[Gregory87b], and the programmer is responsible guard safety.

Concurrent Prolog [Shapiro83a] does not impose any constraint on the form of guards, but requires an
elaborate run-time mechanism to ensure the locality of bindings made by guards. Guarded Horn Clauses
[Ueda86] uses a simpler mechanism which still requires an expensive run-time check, since the attempt to
bind a call variable during either input unification or a guard call is the suspension mechanism.

1 See the Appendix
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3. The Semantics of PARLOG

The semantics of PARLOG has been given an interpretation in terms of a modified version of Milner’s
Calculus of Communicating Systems [Milner80] by [Hussey87]. This work follows on from that done by
[Ellis86], and is an advance on the work presented in [Beckman86]. Hussey’s approach was to model
PARLOG processes as agents in a form of CCS modified to allow global scope of variables, unification and
suspension.

4. Applications of PARLOG

4.1. Metalevel programming

PARLOG provides a metalevel programming facility, as do Prolog and LISP. A metacall similar to that of
Prolog exists in PARLOG: in its simple form the call/1 predicate has mode declaration:

mode call(goal?).

The logical reading of call(goal) is the same as that of goal. A call call(Goal) suspends until Goal is
instantiated to a term denoting a PARLOG clause body (a relation call or conjunction). A program can thus
evaluate calls which are determined at run-time. Considering the query:

? call(X) , X=write(foo).

the call call(X) will suspend until X is bound to the atom write(foo); the entire query is equivalent to:

? write(foo)

However PARLOG currently has a more powerful metacall facility, call/4, derived from the three argument
metacall described in [Gregory87a], having the mode declaration:

mode call(Database?,Goal?,Statusˆ,Control?).

The Control argument is an input stream of messages which can be used by a supervisor or monitor
program to control the evaluation of the Goal. The acceptable messages on the control stream are: stop,
suspend and continue.

The Status argument, a variable at the time of the call, is instantiated by the call to a stream of messages
reporting key states in the evaluation of the call. The last message will be one of: failed, succeeded or
stopped, indicating the form of termination; stopped indicating premature termination due to an input
control message on the Control stream. Before termination, the messages suspend, continue may be
output on the Status stream when such messages are received on the Control stream. Finally, exception
messages may also be output on the Status stream, signaling exceptions such as deadlock, overflow or a
call to a relation undefined in Database. A monitor program can then handle the exceptions; the exception
message for the undefined relation is of the form:

exception(undefined,Undefined_call,Var)

where Var is an unbound variable for back communication. The metacall suspends on Var waiting for it to
be bound, and then continues with the term to which Var was bound in place of the undefined call. By this
means the monitor program can substitute some other call for the undefined call, and by binding Var to the
goal evaluate(Other_database,Undefined_call) it can cause the call to the relation undefined in
Data_base to be evaluated in Other_database.

The PPS, a PARLOG programming system written in PARLOG [ Foster87] depends heavily on the use of
the metacall. Details of the use of the metacall by the PPS can be found in [Clark86a]. An example
program is given below, which implements a Unix style shell that accepts a stream of user commands to
call programs in a particular database. The shell program has been modified from that given in [Clark86b].
The user programs are to be executed as either background commands, a command term of the form
bg(Db,Call), or foreground commands, fg(Db,Call). When a foreground command arrives, the shell
suspends all current background processes until the foreground command terminates, priority being given
to foreground processes. The second argument of the pri_shell program is a control message stream
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consumed by each of the metacalls running a background process.

Example 6

mode pri_shell(User_commands? , Background_controlˆ).
pri_shell( [] , Control ).
pri_shell( [ bg(Db,Call ) | Commands ] ,Control )<-

call( Db , Call , Status , Control ) ,
pri_shell( Commands , Control ).

pri_shell( [ fg(Db,Call) | Commands] , [ suspend | Control ] )<-
call( Db , Call , Status , New_control ) &
( Control = [continue|New_control] ,
pri_shell( Commands , New_control ) ).

The use of the sequential conjunction in the last clause ensures that the sending of the continue message to
the suspended background calls is delayed until the completion of the foreground call.

4.2. Advanced Man Machine Interfaces and PARLOG

PARLOG’s ability to express concurrency, stream determinism and non-determinism greatly simplify the
development of programs on a modern high performance workstation. Such work requires the use of
highly sophisticated man-machine interfaces. Recent work [Barnes87] has assessed in detail the suitability
of PARLOG for the construction of such interfaces, and has further enhanced features of the PPS
[Foster87] (see above). This includes a graphical interface to a browser, a tool which creates its own
window and then allows the user to access all the programs that have been created. Many functions have
been added, including the ability to edit relations, purge and restore versions and return to the latest version
of a program. This facility makes the task of program development and maintenance easier, and the
graphical interface further simplifies the interaction between the programmer and the PPS due to the model
of the PPS that is presented to the user.

4.3. Concurrent systems programming in PARLOG

PARLOG can be used to describe communicating systems, in a form which is both a specification and a
program. In the following example, a synchronous buffer, use is made of the synchronous_producer
(above). We describe a one-place buffer which accepts message tuples of the form msg(Item,Reply) on an
input channel, and grounds Reply to the constant ’ok’. This buffer is recursive, but will not accept the next
message until the process waiting on the output channel has acknowledged receipt of the Item. Note that
the buffer terminates when the In channel becomes the empty list.

Example 7

mode buffer(in? , outˆ).
buffer( [] , [] ).
buffer( [ msg(Item , Reply) | In ] , [ msg(Item , Reply1) | Out]) <-

Reply = ok ,
data(Reply1)&
buffer(In , Out).

A buffer of any size may be built by recursively spawning one-place buffers, and connecting the output
channel of one to the input channel of the next:

- 11 -



D.R. Gilbert PARLOG

Example 8

mode buffer_n(size? , in? , outˆ).
buffer_n(0 , Out , Out);
buffer_n(Size , In , Out)<-

Size1 is Size - 1 ,
buffer(In , Mid) ,
buffer_n(Size1 , Mid , Out).

The communication of a synchronous producer-consumer pair via a ten-place buffer would be invoked by:

? synchronous_producer(A), buffer_n(10,A,B), synchronous_consumer(B).

We can also connect several producers to one consumer, noting that the producer-consumer paradigm may
be either synchronous or asynchronous:

? producer1(A) , procucer2(B) , producer3(C) , merge_all([A,B,C],All) , consumer(All).

Note that the producers-consumer paradigm above may be either synchronous or asynchronous; we can
imagine that the producers are users who wish to access a shared resource such as a printer, represented by
the consumer. In this case, the producers may send a variable which is a reference to some text file to be
printed. A more sophisticated version of the algorithm would make all the producers and the consumer
synchronous, with an n_place buffer between the merge_all process and the printer (consumer): the Item
in the message tuple msg(Item,Reply) would represent the text file to be printed:

? synchronous_producer(A), synchronous_producer(B), synchronous_producer(C),
merge_all([A,B,C],D), buffer_n(20,D,E), printer(E).

The merge_all/2 relation accepts as input a list of streams to produce one stream using merge/3 and may
be defined thus:

Example 9

mode merge_all(streams? , all_streamˆ).
merge_all([] , []).
merge_all( [ Stream | Streams ] , All_Stream)<-

merge_all(Streams , Streams1),
merge(Stream, Streams1 , All_stream).

PARLOG can also be used to translate formal description techniques, for example those written in LOTOS,
into executable code [Gilbert87a] [Gilbert86]. An important feature of a translation of this kind is that
LOTOS is used to describe concurrent systems, and the resultant PARLOG code is capable of concurrent
execution where appropriate.

4.4. Temporal Logic and PARLOG

PARLOG programs can be given a natural interpretation in terms of networks of communicating processes.
Systems programming requires the use of synchronisation, and classical logic languages do not express
tractably the constraints needed to control program execution. One form of logic that can be used is the
temporal approach [Gabbay85] [Gabbay87] and work has recently been done to implement such a system
in PARLOG [Shah87]. Temporal constraints can be specified at a high level using a subset of temporal
logic, and automatic source-to-source translation is used to convert the specification into a PARLOG
program which executes in the required manner.
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4.5. Using PARLOG for simulations

The way in which PARLOG can be used for discrete event simulation has been investigated where systems
are modelled by a collection of communicating processes running in parallel [Broda84]. PARLOG is a
natural specification language for communication protocols due to its ability to express concurrency and
communication, and initial work to this end is reported in [Gregory85c] and the specification of a
telephone switching system has been made by extending PARLOG to incorporate the concept of a real time
clock[Elshiewy86].

4.5.1. Digital circuit simulation and debugging

The use of PARLOG as a computer hardware description language is a relatively new topic. The use of
and-parallelism, ability to express processes and stream communication allows hardware circuits to be
described and simulated both naturally and efficiently [Chan87]. PARLOG can specify sequential
machines directly from the physical configuration due to the parallel nature of the language, whilst the use
of Prolog requires a program transformation before the circuit component can be specified. In order to
perform circuit debugging, backtracking is simulated in PARLOG by the use of stacks and deep guards.
The analogy between digital circuits and the and-or tree representation of logic program reduction indicates
an application of circuit debugging algorithms to program debugging.

4.5.2. Specification and simulation of parallel system architectures in PARLOG

A declarative Computer Hardware Description Language (CHDL) has been developed in PARLOG to
specify parallel system architectures and the CHDL produced used to specify aspects of the FAIM-1
(Fairchild AI Machine) system architecture [Steer87].

Simulation tools designed to be used on the SUN-3 workstation were produced and were designed; the
speed at which algorithms were coded and tested allows the user to generate and test their own
specifications efficiently. The work also showed that PARLOG can be used directly to write functional
specifications.

4.6. Object Oriented Programming in PARLOG

Logic programming and object-oriented programming are formalisms which are suitable for combination.
Logic programming gives a logical meaning to objects, allowing them to be verified and transformed easily,
and provides a clean way of representing the relations between objects. Also logic programming languages
are more powerful than object oriented programming languages due to their use of unification. Concurrent
logic programming has the advantage of being able to express concurrent objects. The method of
representing objects in concurrent logic programming languages was first explored in [Shapiro83b], and
has been further developed in [Kahn86] and [Davison87] [Davison88]. The latter author has developed an
object-oriented language called POLKA, which is implemented on top of PARLOG. It contains features
found in languages such as Smalltalk, Simula and Hewitt’s Actor languages. In addition, it allows meta
level programming using objects. This is similar to ideas found in Bowen’s MetaProlog [Bowen85]. The
language supports encapsulation of data, synchronous and asynchronous message passing, inheritance
(single, multiple and dynamic), self communication and dynamic creation of objects . The language allows
the use of all the features of PARLOG, including AND and OR parallelism, the logical variable and
committed choice non-determinism. This results in new programming techniques such as message peeking,
object splitting and partially defined objects. PARLOG programs for representing problems involving
networks of communicating processes are especially easy to express in POLKA. Such code is shorter than
the PARLOG equivalent since process recursion, process arguments and message streams are hidden. It is
also possible to execute PARLOG procedures directly from within POLKA.

Applications of POLKA include :

(i) a window manager on the SUN 3

(ii) simulation of simple computer hardware

(iii) bank account objects
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Future applications will include the coding of a large subset of the speech recognition system HEARSAY,
to investigate POLKA’s use for blackboards, and also the programming of petri nets.

What are objects in PARLOG?

• An object can be implemented as a tail recursive PARLOG process, with its internal state held as
unshared arguments.

• PARLOG objects communicate by partially instantiating shared variables which act as message
streams and determine the network. Thus the sending of the message M on the stream X is
represented by the binding X = [M|X1].

• An object process is suspended until its message streams are partially instantiated with a message,
following PARLOG’s normal suspension rules.

• Inheritance in objects can be performed by connecting a message stream from an object to its
inheritor. Unrecognised messages are passed from an object lower down in the inheritance hierarchy
to its superior.

• Responses to messages may be passed using back communication rather than via an explicit return
stream.

The basic ideas underlying the representation of objects in PARLOG is given by the following example.
An object represents a bank account which has one state for the amount of money that it contains. The
kinds of messages that it can receive are:

(i) balance(A) returns the balance in the account

(ii) credit(Val) credits ’Val’ to account

(iii) debit(Val) debits ’Val’ from account

The PARLOG code for this, and the POLKA version is given below:
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Example 10

mode account(Message_stream?).
account(Message_stream)<-

account(Message_stream , 100).

mode account(Message_stream? , Amount?).

account([balance(A)|Stream] , Amount)<-
A = Amount ,
account(Stream,Amount).

account([credit(Val)|Stream] , Amount)<-
New_amount is Amount + Val ,
account(Stream , New_amount).

account([debit(Val)|Stream] , Amount)<-
New_amount is Amount - Val ,
account(Stream , New_amount).

account([] , Amount);

account([Message|Stream] , Amount)<-
write(’account does not understand ’)&
write(Message)&
account(Stream,Amount).

Example 11

name account
variables invisible Amt state <= 100

clauses
balance(A) --> A = Amt.

credit(Val) --> Amt becomes Amt + Val.

debit(Val) --> Amt becomes Amt - Val.

end.

To execute the object it must be called with its argument bound to a stream of messages which are incre-
mentally instantiated:

? account(Stream), Stream = [ balance(A),......]

Note that name, variables, invisible, clauses, state, become and end are reserved words in POLKA. All
the clauses have a format of the form:
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messages --> actions

and the message can be any PARLOG term, including a variable. The action is a sequence of operations
which may be calls to PARLOG relations or a POLKA cliche. There is no need to include recursive calls
to the ’account’ object. Note that the use of becomes, which looks like destructive assignment, is restricted
to changing a variable only once in a clause. The general form of becomes is

Var1, Var2, ... VarN becomes Expr1, Expr2, ... ExprN

A POLKA program is compiled into PARLOG, and the becomes cliche is converted into an argument
replacement operation, thus giving it a simple declarative meaning.

It is not necessary to define the input stream to an object, and termination and error clauses are added by
default to the PARLOG code by the POLKA-PARLOG compiler.

Other recent work has attempted to use PARLOG in an object-oriented style to encode problems
[Buckley87]. This approach has to represent the problem directly in PARLOG without first writing the
code in an OOP language; the domain investigated was the taxi scheduling algorithm.

5. Implementations of PARLOG

A sequential implementation of PARLOG, the Sequential PARLOG Machine (SPM), using an emulator
written in C, is the major system currently used by the PARLOG research group [Foster86]
[PARLOG Group87a] and is based on an abstract PARLOG machine design [Gregory87b]. The PPS, a
PARLOG programming environment, has been developed to run on the SUN-3, allowing the user to
interact with and control multiple evaluations using windows and mouse [Foster87]. In this system a
program is a collection of databases (modules) with local name spaces, programs in one database being
able to call relations defined in another database. Built into the system is an integrated editor which
automatically retrieves old versions of programs. Various program development tools are being
constructed, for example debuggers [Huntbach87], type checkers [Gilbert87b], and static analysis tools
[PARLOG Group87b]. Licences for the SPM implementation on Hewlett Packard 9000, Sun or Vax are
available from the PARLOG Research Group.

A new implementation of PARLOG is being developed which will execute on multiprocessors faster than
the SPM, and should be available in 1988. It is being developed on a Sequent Balance 8000 six-processor
and the emulator has been designed in such a way that it ports to other multi-processors with a similar
(Unix based) parallel programming environment. The initial results on the Sequent show good parallel
speed-ups running on up to six processors (the maximum available) [Crammond88].

An implementation scheme [Gregory87c], designed to map PARLOG onto DACTL [Glauart87] is under
way, with a view to executing PARLOG on the Alvey Flagship machine [Watson87].

Acknowledgements

This tutorial paper has been compiled whilst the author was employed on Alvey grant "Implementation and
Applications of PARLOG", Project number 043/098.

I would like to thank all the members of the PARLOG group, and students past and present, whose work
has contributed to this paper.

6. Appendix

6.1. The syntax of a PARLOG program.

The PARLOG syntax used in this article is given in the Table below.
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Table 1 PARLOG syntax

Symbol Meaning

<- logical implication

& sequential-AND

parallel-AND

; sequential-OR

. parallel-OR

: guard operator

? input mode annotation

ˆ output mode annotation

6.2. Unification primitives in PARLOG :

=/2 : full unification

<=/2 : one way unification

==/2 : test unification, which does not bind any variables.

6.3. Modes and suspension

Mode declarations are used to specify communication constraints on shared variables, which are declared
to be either ? ("input") or ˆ ("output"), thus acting as communication channels. These declarations are
made once for each relation, and each argument of the relation is annotated:

mode name(a1?,..,akˆ,..)
Messages sent along these channels are incrementally constructed from partially determined data structures,
usually consisting of lists of terms acting as message streams. Suspension is the method used to
synchronise concurrently evaluating calls, and thus a PARLOG call may succeed, fail or be in suspended
state waiting for information on a communication channel to be further instantiated.

6.4. Negation

Negation is implemented in PARLOG as negation by failure [Clark78].
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