
Interactive visualisation and exploration of biological data

David Gilbert and Michael Schroeder
City University, London, UK

fdrg,mschg@soi.city.ac.uk

Jacques van Helden
EBI, Cambridge, UK

jvanheld@ebi.ac.uk

Introduction

In this paper we report on the design of, and background to

an experimental system we are developing to perform inter-

active visualisation and exploration of biological data. This

research is motivated by the need to analyse the large and

rapidly increasing amount of complex data now available to

researchers working in the field of bioinformatics. The sit-

uation has arisen because advances in technology have re-

sulted in a great output of bio-data; however improvements

in methods for analysing and displaying this data have not

kept up with this increase.

Biologists often wish to analyse these databases in order

to understand the relationship between the items that they

contain. The traditional approach is to discover the evolu-

tionary relationship between genes or proteins by analysing

their sequence and structure similarities. More recently,

similar methods have been applied to discover functional

relationships between genes by comparing their transcrip-

tional response to environmental modification. The usual

approach to this is: Given a set of n objects and some pair-

wise comparison, which outputs a similarity or difference

measure, (1) perform an all against all pairwise compari-

son, (2) cluster the items (possibly hierarchically), and (3)

display the clusters in some visually meaningful way, nor-

mally as rooted (dendrograms) or unrooted trees

Dendrograms

Tree representations were first used in the biological field

to represent systematic classifications and their evolution-

ary interpretation. This has been motivated by the similarity

of molecular mechanisms which has let to the widely held

view that all organisms diverged from a common ancestor.

Specifically, the relationship between any set of species is

termed a phylogeny; this relationship can be represented by

an evolutionary, or phylogenetic tree. The task of phyloge-

netics is to infer this tree from observations of living organ-

isms (Durbin et al. 1998).

In their simplest form such trees are binary and can be

used to approximate general n-ary trees. The leaves of

the tree are labelled by the observed data, or taxa (species,

biomolecular sequences, protein structures etc) and internal

nodes can be labelled by hypothesised or known ancestors.

Each edge of the tree has a certain amount of evolution-

ary divergence associated with it, defined by the distance

between the data items. Thus the distance between nodes

(clusters) is biologically meaningful. Although a true phy-

logenetic tree has a root, i.e. common ancestor for all the

species represented at the leaves, some algorithms give no

indication about its position and thus return unrooted trees.

Trees can be constructed from pairwise distances by a

variety of methods, including UPGMA (unweighted pair

group method using arithmetic averages) (Sokal & Mich-

ener 1958) and parsimony e.g (Fitch 1971). Since one,

or in the case of parsimony several, optimal trees can be

generated by tree building algorithms, an approach such as

the bootstrap method (Feldenstein 1985) is commonly used

to assess the significance of some phylogenetic feature and

thus give some measure of confidence for the tree.

Tree/Cluster display

In general each cluster, or node in a tree, can be associated

with a classifier or conservation function (pattern) (Brazma

et al. 1998), a representative member of the cluster, or other

information, for example data sources etc.

For example, hierarchically structured databases of pro-

tein structures (SCOP (Murzin et al. 1995), CATH (Orengo

et al. 1997), annotate the nodes in the tree at certain levels

with representative structures, as well as other (functional

or structural) descriptions.

There two main problems associated with trees as a

means of visualising relationships. First, there are isomor-

phisms if the comparison relation is symmetric, and second,

the trees do not scale up for large amounts of data.

Given these shortcomings of the classical approach, we

have set out to develop a different visualisation technique

avoiding the above problems.

Clustering and Interactive Exploration

In contrast to dendrograms, our method uses a 3D space

to visualise distance between objects directly. To accom-



plish this task, we have to deal with three subproblems:

(1) we have to design distance metrics, (2) given such a

distance metric we have to find points in space accord-

ing to the required distances and (3) we have to visualise

these points. Regarding (1), we need a design methodol-

ogy for mathematical distances which satisfy among oth-

ers triangle inequality, which states that the direct dis-

tance between two objects is the shortest. This is impor-

tant, as it is our intuitive conception of space and there-

fore desirable to apply to the distance metric used. Re-

garding (2), we will develop two approaches, one based

on spring embedding (Quinn & Breuer 1979) and the other

one on singular value decomposition (Schroeder 1999;

Goldberg 1991). Regarding (3), we show how to facili-

tate interactive exploration of the generated worlds using

VRML.

A design methodology for distance metrics

In this section we develop a design methodology for dis-

tance metrics. A distance metric is defined as follows:

Definition 1 Distance Metric/Table

A matrix D = (di j) 2 R n;n is a distance metric/table

if it is non-negative, i.e. di j � 0 if i 6= j and dii = 0, and

if it is symmetric, i.e. di j = d ji, and

if it satisfies the triangle inequality, i.e. di j � dik +dk j.

Often it is desirable to transform a distance table given

the distance property is not violated. For example, one may

simply want to re-scale a distance table by a factor of 1000.

Or one may want to scale-up clusters and but still leave the

bigger picture untouched. To this end, one can simply ap-

ply a logarithmic function, which increases small distances

relatively more than it does large ones.

The following three general operations do not affect the

property of being a distance table: Addition of two distance

tables, multiplying with a scalar, and applying a monotonic

and concave function. Intuitively, a function f is concave

iff the image of the function is below its tangents; formally,

this means that f 00

� 0. Two examples of monotonic and

concave functions are square root and logarithm. As out-

lined above, the latter is extremely useful to scale-up clus-

ters.

To apply any of the above operations to a distance ta-

ble, we need methodologies for converting raw data into a

meaningful distance table. Although many approaches will

do this ad hoc and possibly violating some of the distance

properties, there are various functions which will lead to a

distance table. A commonly used similarity measure, which

forms a distance is the cardinality of symmetric set differ-

ence. We use this approach for example to compare hy-

drogen bonds and chiralities in the TOPS systems (Gilbert

et al. 1999). Furthermore, the edit distance of two strings

(Levenshtein 1965) - as the name suggests - is a distance.

However, an exception are asymmetrically defined derived

edit distance measures, which penalise mismatches with

different weights. A disadvantage of the basic edit distance

is that it is not normalised. A relatively close match of two

very long strings may be, for example, much higher than

a complete mismatch of two small strings. As it turns out,

we can normalise edit distance by dividing by the maximal

length of the two strings. Interestingly, other candidate nor-

malisations with the minimal length or the sum of the two

lengths does not work.

Two visual clustering algorithms

Given a distance table, we are interested in clusters and

their visualisation. In this section, we describe two alterna-

tive clustering and visualisation approaches by Schroeder

(Schroeder 1999) to the classical dendrograms and related

techniques (Durbin et al. 1998). Rather than clustering ob-

jects directly based on their distance table, we want to find

points in a possibly higher-dimensional space, which sat-

isfy the required distances and visualise this space directly

for the user, who can then explore the visualisation.

Since we require a mathematical distance, we can guar-

antee that such points exist. Unfortunately, their dimension

may be higher than three, so that we additionally aim to

find a three-dimensional solution with least error. Further

requirements are a rating of the layout, i.e. how reliable is

it, and an anytime-behaviour, which allows us to improve

layout with more computational resources available.

Problem Statement So, given the distance table D =

(di j) 2 R n;n we want to position the objects. Us-

ing Euclidian distance, which is defined as jjv;wjj2 =

p

∑m
h=1(vh�wh)

2 for v;w 2 R m, we can formulate our

problem formally: We have to define an algorithm which

computes a matrix X = (x1; : : : ;xn) 2 R m;n for a distance

table D = (di j) 2 R n;n such that jjxi;x jjj2 = di j, i.e. the

distance between xi and x j is di j.

Singular Value Decomposition (SVD) First of all, let us

note that there are always many solutions to the problem

as we can shift a solution and it still is a solution. This

means that we can always find a solution, which is centered

around null. We make our way from the original distances

D to the sought points in space X through a matrix A, which

is derived from D by assigning to an entry at position i; j

the value � 1
2

times the squared distance minus the average

squared distances to point i and j plus the average overall

squared distances. This rather complicated matrix A turns

out to be exactly X2, so that we have reduced the problem

of find X to taking the root of A. For this task, matrix theory

provides singular value decomposition (see e.g. (Goldberg

1991)), given the matrix is positive semidefinite, which is

the case for A.

The full algorithm works as follows:



1. Compute A as defined above. If A is not positive semidef-

inite then exit.

2. Compute A = USUT by singular value decomposition

with S having the eigenvalues λi in decreasing order on its

diagonal.

3. X = (

p

λ1uT
1 ;
p

λ2uT
2 ;
p

λ3uT
3 )

T where U = (u1; : : : ;un)

4a. If λ1 > :: : > λm > 0 and λm+1 = : : := λn = 0, then there

is only a solution in R m and X contains a mapping to R 3

which is best since it is based on the greatest eigenvalues λ1

and λ3.

4b. Else X is the solution, i.e. jjxi;x jjj2 = di j.

Spring Embedding An alternative to the above layout al-

gorithm is spring embedding (Quinn & Breuer 1979). We

use the physical metaphor of springs connecting the ob-

jects and leading to attractive forces based on the desired

distance between them. Additionally, there are repulsive

forces between any pair of objects. The algorithm starts

with a random layout and then computes for a number of

iterations the forces for each object and moves it a bit into

the direction of the overall force.

The advantage of this approach is that it is a flexible

anytime-algorithm which comes up with an approximation

of a solution with any time limitations. However, it is diffi-

cult to theoretically evaluate the quality of solutions and to

optimally adjust the springs automatically. They are appli-

cation dependent and thus difficult to find.

Comparison of the Two Approaches As described in

(Schroeder 1999), the SVD approach computes the least er-

ror when mapping down the higher dimensional solution

onto three dimensions. However, in practice it turned out

that the spring embedder was sometimes more accurate,

which may have to do with accuracy of internal compu-

tations. However, the spring embedder may get stuck in

locally optimal solutions. Since the spring embedder is an

anytime-algorithm, it can be interrupted at any time to pro-

vide an approximated solution. In our current implementa-

tion this is not so for the SVD algorithm, but it could be

added by computing eigenvalues incrementally using the

power method. For the spring embedder testing of the lay-

outs’ reliability can be achieved by running it several times

and comparing the variances of the resulting layout dis-

tances. For SVD, we can permute the original distance ma-

trix to check for layout variance.

Interactive Exploration

In data visualization, one distinguishes intrinsic and extrin-

sic approaches (Benedikt 1991). The former maps object

relations to spatial distance, the latter maps objet properties

to colour, shape, texture, etc. The theory developed above

caters for the intrinsic approach. In the current prototype,

Figure 1: Screenshot of case study system showing inte-

grated view of classical dendrograms, 3D view and textual

representation. The sphere in the foreground is 4gpd.

we generate from the layout computed by the above algo-

rithms VRML code. In accordance with (Ware & Franck

1994), we argue that such three dimensional virtual worlds

are far more flexible than 2D diagrams, such as traditional

dendrograms (Durbin et al. 1998), as they are scalable (the

space is infinite, and therefore suitable for large amounts

of data), as they provide continuous local and global views

(the user can focus on details and get the big picture at the

same time), as they provide navigation and exploration aids

(labels, specific viewpoints, guided tours, interactivity).

Besides VRML’s excellent visualisation properties and

our intrinsic layout approach, the visualisation benefits even

more from extrinsic features. In the case of gene expression

data for example, it desirable to interactively colour inter-

esting functional families in the same colour. This feature

allows the user to check whether the distance measure cho-

sen reflects the functional properties of the objects.

To maximize the benefits to the user, it is desirable to

combine existing visualisation approaches such as dendro-

grams with novel ideas. In a case study, we created a web-

enabled user-interface including dendrograms, our novel

3D visualisation, and text window for detailed information

on specific objects. Figure 1 shows a screenshot of our case

study.

The above technique can also be applied to multi-

attribute data and the next section discusses some prelim-

inary results.

Multi-attribute clustering

Classifications of organisms were originally based on mor-

phological and anatomical criteria, but with the advent of

molecular biology, the concept expanded to include com-

parison of protein sequences and structures. With the emer-

gence of functional genomics (Hieter & Boguski 1997), a



big challenge became to compare genes on the basis of their

functional similarities rather than structural features. The

development of large-scale gene expression measurement

methods (deRisi, Iyer, & Brown 1997) has resulted in the

need to analyse and visualise multi-dimensional data (i.e.

each item in the database is associated with more than one

attribute), and a lot of effort is currently being put into the

development of dedicated clustering and visualization tools

(e.g. (Eisen et al. 1998)).

Gene expression data have been collected from different

experiments, where each experiment can itself be a time se-

ries with several scalar values. In the case of yeast, 6200

genes are considered, and for each of them, the number

of expression measurement under different conditions is

rapidly growing. Currently, about 60 values per genes are

publicly available, and probably many more will soon be

published. For higher organisms, the order of magnitude

is of approximately 100,000 genes. Eisen’s clustering al-

gorithm (Eisen et al. 1998) permits the weighting of the

different experimental values through a linear transform of

the expression measurement vector. The gene expression

profiles can thus generate alternative trees, depending on

the precise experiments one wants to emphasize. This is

an indirect way of mimicking non-hierarchical clustering,

which would possibly be more appropriate to analyze such

multidimensional data.

We are in the process of adapting our experimental pro-

totype in order to treat gene expression, and other multi-

attribute data. The adaptations include the ability to group

and weight different attributes using linear transforms, and

the use of colour in the VRML display in order to high-

light those parts of the 3D cluster whose grouping has been

caused by different attributes. Initial results on clustering

gene expression data are promising. This ongoing work

has already provided us with some insights into the ways

in which different visual attributes can be exploited in or-

der to display this highly complex data.

Conclusion

Interactive display is clearly a useful method to aid the com-

prehension and analysis of large amounts of complex data;

developing such approaches is a significant challenge for

computer scientists (and cognitive psychologists) working

in bioinformatics. However the bottom line is that biolo-

gists must find such methods useful.

In this paper, we aimed to provide an alternative visuali-

sation technique to dendrograms. We have developed a de-

sign methodology for distance metrics and two layout algo-

rithms. In contrast to dendograms our approach is scalable.

As an essential pratical requirement, we have also outlined

how to compute confidence values for the layout. Finally,

we have described our experimental prototype, which caters

for interactive exploration and we have outlined some on-

going work on multi-variate data visualisation.

References
Benedikt, M. 1991. Cyberspace: Some proposals. In Benedikt,
M., ed., Cyberspace: First Steps. MIT Press. 273–302.

Brazma, A.; Jonassen, I.; Eidhammer, I.; and Gilbert, D. R.
1998. Approaches to the automatic discovery of patterns in
biosequences. Journal of Computational Biology 5(2):277–303.

deRisi, J.; Iyer, V. R.; and Brown, P. O. 1997. Exploring the
metabolic and genetic control of gene expression on a genomic
scale. Science 278:680–686.

Durbin, C.; Eddy, S.; Krough, A.; and Mitchison, G. 1998. Bio-
logical Sequence Analysis. CUP.

Eisen, M. B.; Spellman, P. T.; Brown, P. O.; and Botstein, D.
1998. Cluster analysis and display of genome-wide expression
patterns. PNAS 95(25):14863–14868.

Feldenstein, J. 1985. Confidence limits on phylogenies: an ap-
proach using the bootstrap. Evolution 39:783–791.

Fitch, W. M. 1971. Toward defining the course of evolution:
minimum change for a specified tree topology. Systematic Zool-
ogy 20:406–416.

Gilbert, D.; Westhead, D.; Nagano, N.; and Thornton, J. 1999.
Motif-based searching in tops protein topology databases. Bioin-
formatics. to appear.

Goldberg, J. L. 1991. Matrix Theory with Applications. Mcgraw-
Hill.

Hieter, P., and Boguski, M. 1997. Functional genomics : it’s all
how you read it. Science 278:601–602.

Levenshtein, V. 1965. Binary codes capable of correcting dele-
tions, insertions, and reversals. Doklady Akademii nauk SSSR
(in Russian) 163(4):845–848. Also in Cybernetics and Control
Theory, vol 10, no. 8, pp 707–710, 1996.

Murzin, A.; Brenner, S.; Hubbard, T.; and Chotia, C. 1995. scop:
a structural classification of proteins database for the investiga-
tion of sequences and structures. Journal of Molecular Biology
247:536–540.

Orengo, C. A.; Michie, A. D.; Jones, D. T.; Swindells, M. B.;
and Thornton, J. M. 1997. CATH – a hirearchic classification of
protein domain structures. Structure 5(8):1093–1108.

Quinn, N. R., and Breuer, M. A. 1979. A force directed compo-
nent placement procedure for printed cicuit boards. IEEE Trans-
actions on Circuits and systems CAS-26(6):377–388.

Schroeder, M. 1999. Using singular value decomposition to
visualise relations within multi-agent systems. In Proc. of the
Conf. on Autonomous Agents. Seattle, USA: ACM Press.

Sokal, R. R., and Michener, C. D. 1958. A statistical method for
evaluating systematic relationships. University of Kansas Scien-
tific Bulletin 28:1409–1438.

Ware, C., and Franck, G. 1994. Viewing a graph in virtual reality
display is 3 times as good as a 2D diagram. In Proc. of Visual
Languages, 182–183. IEEE Press.


