
Specification and implementation of concurrent systems using

PARLOG

David Gilbert

Department of Computer Studies
Loughborough University of Technology

Loughborough
LE11 3TU

UK

email: drg@uk.ac.lut.cs-vaxa

ABSTRACT

The specification and implementation of a class of concurrent systems is

investigated in this paper using PARLOG as the implementation language, guided by

specifications in CCS. This class of systems is restricted to an illustrative subset,

including buffers and queues. A comparison is made between the computational models

of concurrency that are expressed by each language. Illustrative programs are given

which highlight the differences in operational behaviour between programs in the two

languages. We investigate the ways in which equivalences in CCS programs may be used

to compare PARLOG programs, and the areas of PARLOG programming which are not

covered by this comparison. The advantages and disadvantages of CCS compared with

PARLOG as a ‘specification-implementation’ language are discussed.

1. Introduction

Designers of concurrent systems are faced with the problems of firstly specifying the system and secondly

implementing the design. There are several specification techniques available, including LOTOS, CCS,

CSP and Petri Nets. However, the route from specification to implementation is not clear in many cases.

The best that can be done is often proving that the implementation is in some way equivalent to the

specification, rather than generating the implementation directly from the specification.

In this paper we wish to investigate the possibility of using the parallel logic programming language

PARLOG both to specify and implement certain classes of communicating systems.

The PARLOG language has been described elsewhere in detail [Gregory87 , Gilbert87] and we will only

describe its features relevant to this discussion. These are:

• asynchronous and synchronous stream based communication.

- 2 -

• committed choice and no output before commitment.

2. PARLOG

PARLOG as a Concurrent Logic programming language

PARLOG is a language which belongs to the family of committed choice parallel logic programming

languages. It has the ability to explicitly express both OR and stream-AND parallelism. Committed choice

non-determinism is implemented by the use of guards which ensure that committal is made to only one

clause. These features enable the language to use non-determinism as an evaluation strategy if required by

the programmer. They permit the writing of programs which require the separate use of both sequential

and parallel evaluations.

The PARLOG syntax used in this article is given in the Table at the end of this paper. Note that in the

examples in this paper, variable names start with a capital letter.

Mode declarations are used to specify communication restraints on shared variables, which are declared to

be either ? ("input") or ˆ ("output"), thus acting as communication channels. These declarations are made

once for each relation, and each argument of the relation is annotated:

mode name(a1?,..,akˆ,..)

Messages sent along these channels are incrementally constructed from partially determined data structures,

usually consisting of lists of terms acting as message streams.

The general form of a PARLOG clause is:

<head> ← <guard> : <body> <or-op>

where <head> is in the form name(a1,..,ak) , name being the relation name, and a1,..,ak its arguments.

The logical implication symbol is ‘←’ and ‘:’ the guard operator. Both the guard and the body can be a

conjunction of calls, or empty, and the calls are separated by the sequential-AND or parallel-AND

operators; an OR-operator terminates the clause. In the case that a guard is empty, it is omitted along with

the guard operator; if a clause has a guard but no body, the body is replaced by true; a clause with no guard

or body is represented by just the head. A clause is a candidate for evaluation if both input matching in the

head and the evaluation of the guard succeeds, whereas in a non-candidate clause either of these fail. A

clause can be suspended if either the input matching or guard evaluation suspend waiting for an input

variable to become instantiated. A suspended call may eventually become either candidate or non-

candidate. For example, given the following PARLOG program:

Example 1.

mode check(pattern?).

check([H|T]).

a call ? check(foo) will fail, a call ? check([X|Y]) will succeed, and a call ? check(X) will suspend (until X

has become further instantiated). Note that no output bindings are made until committal has been made to a

clause (ie the input and guard conditions are satisfied), and committal may be made to only one clause of a

procedure.

- 3 -

Stream communication

The committed choice aspect of PARLOG give it the ability to express stream communication using

stream-AND-parallelism in a very simple manner. This enables PARLOG to be used constructively in

applications where concurrency and process state are of importance. Since PARLOG allows more than one

call to be evaluated concurrently, the language permits computations which comprise the execution of

several concurrent processes.

The basic paradigm of stream communication is that of producers and consumers. PARLOG’s ability to

perform stream-AND-parallelism gives the language the power to express stream communication in a

very simple manner. Shared variables act as communication channels and messages can be sent by the

incremental construction of partly instantiated data structures such as tuples or lists of terms. This

incremental communication has an analogy with the lazy and eager parallel evaluation of functional

programs. Output variables are produced in an asynchronous manner, but input variables are processed

synchronously if an argument contains a partially instantiated term. Mode declarations mean that in a

situation involving communication only one PARLOG process can be the producer, binding shared

variables, whilst there may be one or more consumers of the communication stream.

An outline program which illustrates this form of stream communication is:

mode eager_producer(Streamˆ).

eager_producer([Item|Stream])←
produce(Item) , eager_producer(Stream).

mode naive_consumer(Stream?).

naive_consumer([Item|Stream])←
consume(Item) , naive_consumer(Stream).

mode produce(itemˆ) , consume(item?).

call:

? eager_producer(Stream) , eager_consumer(Stream).

Note that we do not give the code for the procedures produce and consume, as these are not relevant to this

particular algorithm; we assume that produce is ‘eager’ (asynchronous). The eager_producer process can

run ahead of the consumer by an arbitrary amount, and we assume the existence of system buffers to permit

this. An obvious question, to which there is no explicit answer since they are not formally part of the

language, is what happens when these buffers become full.

Thus the naive mode of communication in PARLOG, which uses asynchronous sends and synchronous

receives, makes reasoning about communicating systems difficult since the channels act as unbounded

buffers in this case. The PARLOG programmer is, however, able to utilise the completely synchronous

communication facilities offered by the language using back-communication, which can take two forms.

These are firstly mode reversal (lazy evaluation) and secondly cooperative construction of binding terms

- 4 -

("Incomplete messages" [Shapiro83], or "back communication by cooperative construction of binding

terms"[Gregory87]).

PARLOG in the light of Milner’s interpretations

We note some correspondences between the concepts Milner expresses in his recent paper [Milner86] and

those implemented in PARLOG. The interested reader is referred to [Ellis86 , Hussey87] for a discussion

of the translation of PARLOG into CCS.

The "naive" form of communication in PARLOG (asynchronous producer, synchronous receiver) relies on

buffering within the system, and does not conform to Milner’s Principle 1 (all process interactions are

atomic events); co-operative construction of binding terms is excluded for the same reason that Milner

discounts the ‘rendez-vous’ of Ada. However, reverse-mode communication can be considered to conform

to the first principle of Milner if we recognise that in a practical programming language there must be some

physical means by which processes can communicate.

Due to the ability of a PARLOG computation to permit the existence of more than one concurrent process,

the language may be used in a manner which broadly conforms to Principle 2 (every event is an interaction

among processes), although PARLOG computational style is not limited to the process view alone.

Because of the semantics of logic programs, a PARLOG query which is a conjunction of calls can only

succeed when all the calls succeed, and if programming by side-effects is excluded then Principle 3 (every

process constructor f must be such that the behaviour of f(P
1
,...,P

n
) depends only on the behaviours of

(P
1
,...,P

n
) is satisfied.

Milner ’s Principle 4 (Conjunction) is partly satisfied by PARLOG’s stream-AND operator when

considering the synchronous communication expressible in the language. However the language only

supports a 1 to N form of communication (one producer and many consumers). Moreover, multi-way

synchronisation is not the natural paradigm in the language, and it must be enforced by programming

techniques, hence making it difficult to incorporate Milner’s Principle 9 (Simultaneity) into the analysis of

PARLOG. However, Principle 9 is supported to the extent that a PARLOG process may synchronise with

more than one other process by the use of several communication channels. Encapsulation (Principle 5) is

achieved to the extent that the scope rules of Logic Programming which ensure that calls made within the

body of one clause are not "visible" to a procedure which calls that clause. Disjunction (Principle 6) is

reflected by the parallel-OR operator in PARLOG, which coupled with the use of guards and input

matching can be used to ensure either exclusive clause choice or to allow the system to arbitrarily select

one clause for committal if the choice is non- exclusive. Principle 7 (Renaming) is not realisable in

PARLOG. Naturally, as a language orientated towards system programming, PARLOG incorporates

explicit sequencing operators to allow for such a control where needed, for example in enforcing

synchronousity or in i/o operations (Principle 8).

3. Format of the examples

The example ‘programs’ in this paper will generally be given in the following forms:

(i) Standard PARLOG (including modes).

- 5 -

(ii) Calls in the form of ?goal
1
,...,goal

n
to the above PARLOG programs.

(iii) CCS with value passing.

4. Synchronous Communication.

We restrict ourselves to the synchronous form of communication possible in PARLOG using the method of

"Incomplete messages", rather than mode reversal. We represent the encapsulated message by the tuple +/2

1, the first argument being the message item itself, and the second argument the synchronisation variable:

Item + Reply

4.1. Synchronous ‘primitives’ in PARLOG

We can implement synchronous send and receive in PARLOG by the following programs:

Example 2.

mode synch_send(item?,tupleˆ).

synch_send(Item,Item+Reply)← data(Reply).

mode synch_receive(tuple?,itemˆ).

synch_receive(Item+Reply,Item)← Reply=reply.

Note that data/1 suspends until its argument is ground (ie the top level functor of a data-structure is

instantiated). Thus the query ?data(X) suspends, and ?data([H|T]) succeeds. The synchronous PARLOG

programs can be composed as follows:

?synch_send(foo , Msg) , synch_receive(Msg , Item).

We model the call to synch_send/2 as the CCS form o" α"(foo), synch_receive/2 as (*a(x), and their

composition as o" α"(foo) | α(x).

4.2. Producers and Consumers.

Let us consider the situation of a chained producer and consumer in PARLOG. The synchronisation

primitives may be used in the formulation of a simple recursive non-terminating communicating system,

where producer/1 communicates with consumer/1 via a stream consisting of a partly instantiated list of +/2

tuples. Note that the communication is constrained by the ’&’ operator in producer/1, and thus the stream

has a maximum length of 1, ie it may consist at the most of a head element which is a +/2 tuple, and an

uninstantiated tail. The producer will suspend until the consumer acknowledges receipt of the message,

when it will produce the next message. The self-recursive call in the consumer will suspend until the head

of the stream is instantiated, and thus "lock-step" communication is achieved.

1 +/2 is an infix operator in PARLOG

- 6 -

Example 3.

mode producer(Streamˆ).

producer([Msg|Stream])←
synch_send(item,Msg)& producer(Stream).

mode consumer(Stream?).

consumer([Msg|Stream])←
synch_receive(Msg,Item), consumer(Stream).

? producer(Stream) , consumer(Stream).

The situation is analogous to the CCS :

Example 4.

P =α(item) . P

C = α(x) . C

PC = P | C

5. Communication via buffers

5.1. One place buffers

Our first example of buffered communication is that of a simple one place buffer, which may be formulated

in PARLOG as:

Example 5.

mode buffer1a(Ins?,Outs?).

buffer1a([In|Ins],Outs)←
synch_receive(In,X) & buffer1a(X,Ins,Outs).

mode buffer1a(Item?,Ins?,Outsˆ).

buffer1a(X,Ins,[Out|Outs])←
synch_send(X,Out) & buffer1a(Ins,Outs).

A CCS representation of this would be:

B = α(x) . B(x)

B(x) = γ(x) . B

Note that the PARLOG formulation partially evaluates to:

- 7 -

Example 6.

mode buffer1b(Ins?,Outsˆ).

buffer1b([In|Ins],[Out|Outs])←
synch_receive(In,X) & synch_send(X,Out)&

buffer1b(Ins,Outs).

A CCS representation of buffer1b/2 would be:

B = α(x) . γ(x) . B

These PARLOG buffers may be composed with producer/1 and consumer/1 above in the following manner:

|? - producer(A) , buffer(A,B) , consumer(B).

and the CCS buffer may likewise be composed, assuming suitable renaming of event labels:

P | B | C

In general, we would like to reason about the equivalence of the behaviour of two programs regarding both

dynamic and completion behaviour. In this case, we note that there is no completion behaviour for the

producer-buffer-consumer system, which is non-terminating. Partial evaluation can be used to demonstrate

that buffer1a/2 and buffer1a/3 together are ‘equivalent’ in operation to buffer1b/2.

Another way to specify a one place buffer in PARLOG is to reformulate buffer1a to explicitly use a list

rather than an extra argument as a data store:

Example 7.

mode buffer1c(Ins?,Outsˆ).

buffer1c(Ins,Outs)←
buffer1c([],Ins,Outs).

mode buffer1c(Store?,In?,Outˆ).

buffer1c([],[In|Ins],Outs)←
synch_receive(In,Item) & buffer1c([Item],Ins,Outs).

buffer1c([Item],Ins,[Out|Outs])←
synch_send(Item,Out) & buffer1c([],Ins,Outs).

The CCS formulation for this is (disregarding the rules for ADTs2):

B = B(nil)

B(nil) = α(x) . B([x])

B([x]) = γ(x) . B(nil)

- 8 -

Ignoring the possible overheads of constructing a list, the programs for buffer1a, buffer1b and buffer1c are

operationally equivalent.

5.2. Two place buffers

Building on the formulation of buffer1a, a possible specification of a two place buffer would be:

Example 8.

mode buffer2a(Ins?,Outsˆ).

buffer2a([In|Ins],Outs)←
synch_receive(In,X) & buffer2a(X,Ins,Outs).

mode buffer2a(Item?,Ins?,Outsˆ).

buffer2a(X,[In|Ins],Outs)←
synch_receive(In,Y) & buffer2a(X,Y,Ins,Outs).

buffer2a(X,Ins,[Out|Outs])←
synch_send(X,Out) & buffer2a(Ins,Outs).

mode buffer2a(Item1?,Item2?,Ins?,Outsˆ).

buffer2a(X,Y,Ins,[Out|Outs])←
synch_send(X,Out) & buffer2a(Y,Ins,Outs).

The buffer2a may be run in conjunction with a producer and consumer:

|? - producer(S) , buffer(S,T), consumer(T).

A CCS representation of buffer2a is:

B2 = α(x) . B2(x)

B2(x) = τ . α(y) . B2(x,y) + τ . γ(x) . B2

B2(x,y) = γ(x) . B2(y)

Note that the use of τ on both sides the choice operator in the CCS definition for B2(x) reflects the absence

of guards in buffer2a/3.

In fact, the PARLOG buffer as formulated above does not respond to the demands of its environment. By

this we mean that the buffer itself will decide whether to input or output in the case of buffer2a/2. If, for

example, the second clause of the relation is selected, and the consumer is not ready to receive, the buffer

will not at that point attempt to receive another item from the producer and will suspend. What we really

need is a guarded choice, which in the CCS would be indicated by dropping the τ´s, converting the choice

in B2(x) to

2 We let nil represent the empty list, and [X] represent a list containing one item.

- 9 -

α(y) . B2(x,y) + γ(x) . B2

The ‘equivalent’ PARLOG code should be:

mode buffer2a(Item?,Ins?,Outsˆ).

buffer2a(X,[In|Ins],Outs)←
synch_receive(In,Y) : buffer2a(X,Y,Ins,Outs).

buffer2a(X,Ins,[Out|Outs])←
synch_send(X,Out) : buffer2a(Ins,Outs).

Unfortunately, a property of PARLOG programs is that the guard is unsafe if it binds variables in the call,

and also that no output can be made in a guard. A call to the above program for buffer2a/2 will never

commit to the second clause for the second reason, and the first clause is unsafe due to the second reason.

We can program around this deficiency either by using external monitor processes [Gilbert87b] or reversing

the modes on the buffer-consumer stream (see the program for bufferinf_f, below).

An alternative formulation for a two-place buffer is to chain two one-place buffers. In this case, it does not

matter which program for the one-place buffers is used.

Example 9. An alternative 2-place buffer

mode buffer2b(Ins?,Outsˆ) .

buffer2b(Ins,Outs) ←
buffer1(Ins,Mid) , buffer1(Mid,Outs) .

In CCS, the chaining operation would be represented by:

B2b = B ∩ B

where

B ∩ B = (B[δ/ γ] | B[δ/α]) \ δ

We note that the buffer implemented by buffer2b/2 above has a dynamic size, due to which processes are

holding items. If we represent the cells of the buffer by either 0, a or b where a comes before b in the input

stream, the buffer could be in either of the following states: <0,0> <a,0> <0,a> <b,a>.

Can we say that buffer2a and buffer2b are equivalent in some sense? One transformation we can perform

before answering this question is to reformulate buffer2a to use an explicit data structure as the data store

rather than mutual recursion and arguments:

- 10 -

Example 10.

mode buffer2c(Ins?,Outsˆ).

buffer2c(Ins,Outs)←
buffer2c([],Ins,Outs).

mode buffer2c(Store?,Ins?,Outsˆ).

buffer2c([],[In|Ins],Outs)←
synch_receive(In,Item) & buffer2c([Item],Ins,Outs).

buffer2c([Item],Ins,[Out|Outs])←
synch_send(Item,Out) & buffer2c([],Ins,Outs).

buffer2c([Item1],[In|Ins],Outs)←
synch_receive(In,Item2) & buffer2c([Item1,Item2],Ins,Outs).

buffer2c([Item1,Item2],Ins,[Out|Outs])←
synch_send(Item1,Out) & buffer2c([Item2],Ins,Outs).

The CCS formulation for this is (again disregarding the rules for ADTs3):

B = B(nil)

B(nil) = α(x) . B([x])

B([x]) = τ . γ(x) . B(nil) + τ . α(y) . B([x]<>[y])

B([x]<>[y]) = γ(x) . B([y])

As with buffer2a, the choice points should be guarded (remove the τ’s in the CCS, put the calls to

synch_send/2 and synch_receive/2 into guards in buffer2c/3 as appropriate). We can use the same

programming techniques as before to overcome this problem.

There is a fundamental difference between the dynamic behaviour of the different producer-buffer2n-

consumer systems. This difference is due to the number of processes in existence at any one time, but is

not reflected in the CCS forms. Consider the overall behaviour of

?producer(A) , buffer2a(A,B) , consumer(B).

We note that only one of producer or consumer may access the buffer at any one time because buffer2a can

only respond to either the input stream or the output stream, due to the structure of the program for

buffer2a/3. The potential for parallelism in this case is reduced. On the other hand, the overall behaviour

of

3 We use <> as the concatenation operator on lists.

- 11 -

?producer(A) , buffer2b(A,B) , consumer(B).

is quite different: the buffer may communicate with both producer and consumer simultaneously. In both

cases a situation of bounded asynchronousity exists: if the consumer is slower than the producer, the latter

will be constrained by the rate of the former only after the buffer has been filled up for the first time.

During the input of the first two data items, the producer will only be constrained by the rate of execution

of the buffer cells.

The CCS buffers can be conceived of behaving quite differently when composed with a producer and a

consumer: due to the interleaving semantics of the CCS parallel operator, neither buffer can communicate

with more than one other entity at a time.

6. Unbounded buffers and queues

We now consider unbounded buffers. The formulation of an unbounded buffer using the technique of

arguments to store the data items is sketched out below. This method is obviously impracticable due to the

inability to specify an infinite number of relations with an increasing number of arguments:

Example 11. Unbounded buffer using arguments

mode bufferinf_a(Ins?,Outsˆ).

bufferinf_a([In|Ins],Outs)←
synch_receive(In,X1)& bufferinf_a(X1,Ins,Outs).

mode bufferinf_a(X1?,Ins?,Outsˆ).

bufferinf_a(X1,[In|Ins],Outs)←
synch_receive(In,X2)& bufferinf_a(X1,X2,Ins,Outs).

bufferinf_a(X1,Ins,[Out|Outs])←
synch_send(X1,Out)& bufferinf_a(Ins,Outs).

mode bufferinf_a(X1?,...,Xn?,Ins?,Outsˆ).

bufferinf_a(X1,...,Xn,[In|Ins],Out)←
synch_receive(In,Xn+1)& bufferinf_a(X1,...,Xn,Xn+1,Ins,Outs).

bufferinf_a(X1,...,Xn-1,Xn,[In|Ins],Out)←
synch_send(In,Xn)& bufferinf_a(X1,...,Xn-1,Ins,Outs).

The way to avoid the problem of specifying relations with the number of arguments ranging up to infinity is

to use a list to represent the stored data items:

- 12 -

Example 12. ‘Equivalent’ infinite buffer

mode bufferinf_b(Ins?,Outsˆ) .

bufferinf_b(In,Out) ←
bufferinf_b([],In,Out) .

mode bufferinf_b(Store?,Ins?,Outsˆ) .

bufferinf_b([],[In|Ins],Outs) ←
synch_receive(In,Item) & bufferinf_b([Item],Ins,Outs) .

bufferinf_b([Msg|Msgs],[In|Ins],Outs) ←
synch_receive(In,Item) &

append([Msg|Msgs],[Item],Msgs1) ,

bufferinf_b(Msgs1,Ins,Outs) .

bufferinf_b([Msg|Msgs],Ins,[Out|Outs]) ←
synch_send(Msg,Out) & bufferinf_b(Msgs,Ins,Outs) .

The CCS formulation of the above would be (again, ignoring the ADT):

Example 13.

B∞ = B∞(nil)
B∞(nil) = α(x) . B∞([x])
B∞([x] <> l) = τ. α(y) . B∞ ([x] <> l <> [y]) + τ. γ(x) . B∞(l)

Again, we note that PARLOG’s inability to permit output in a guard means that the choices are in effect

unguarded. In the case that the data store of messages is empty (ie, is not of the form [Msg|Msgs]), the first

clause of bufferinf_c/3 would be chosen by the PARLOG evaluator. However, in the case that there was a

message on the input stream, and the store was not empty, the third clause might be selected, and an

attempt made to send a message. If the consumer was never ready to receive, deadlock would occur earlier

than if the buffer responded fairly to the requirements of both consumer and producer.

We give below the PARLOG program for the guarded choice formulation indicated by the CCS:

B∞([x] <> l) = α(y) . B∞ ([x] <> l <> [y]) + γ(x) . B∞(l)

In the following PARLOG program, we use a consumer which sends requests to remove items from the

buffer, and hence both consumer/1 and producer/1 have an output mode. The consumer produces a stream

of -/2 tuples which have as the first argument the instruction to remove an item and as the second argument

the item removed from the buffer. The buffer in this case has input modes on both the input and the output

stream, and employs suspension coupled with pattern matching to repond to requests to add or remove

items from the data store. Note that fairness is not guaranteed by this version, and we would need to use a

technique similar to a fair merge [Shapiro84] to ensure fair attention by the buffer to each stream of

- 13 -

requests.

Example 14.

mode bufferinf_b(Ins?,Outs?) .

bufferinf_b(In,Out) ←
bufferinf_b([],In,Out) .

mode bufferinf_b(Store?,Ins?,Outs?) .

bufferinf_b([],[In|Ins],Outs) ←
synch_receive(In,Item) &

bufferinf_b([Item],Ins,Outs) .

bufferinf_b([Msg|Msgs],[Item + R|Ins],Outs) ←
R=reply &

append([Msg|Msgs],[Item],Msgs1) ,

bufferinf_b(Msgs1,Ins,Outs) .

bufferinf_b([Msg|Msgs],Ins,[remove - X |Outs]) ←
X=Msg &

bufferinf_b(Msgs,Ins,Outs) .

mode consumer(Requestsˆ).

consumer([H|T]) ←
request(H,X)&

consumer(T).

mode request(Requestˆ,Itemˆ).

request(remove - Item , Item) ← data(Item).

Reformulating the unbounded buffer using individual processes to store the data items, we face the problem

of creating buffers which never output anything. One such program is presented below, which inputs items,

but can never output them due to infinite tail recursion creating an unbounded buffer ahead of the most

recently created buffer1 cell:

Example 15.

mode bufferinf_d(Ins?,Outsˆ).

bufferinf_d(Ins,Outs)←
buffer1(Ins,Mids), bufferinf_d(Mids,Outs).

The CCS for this buffer is:

- 14 -

B∞ = B ∩ B∞

Alternatively, we can create an unbounded buffer which never outputs since it can never input. In this case,

there is an unbounded buffer between the most recently created buffer1 cell and the input stream.

Example 16.

mode bufferinf_d(Ins?,Outsˆ) .

bufferinf_d(Ins,Outs) ←
bufferinf_d(Ins,Mids) , buffer1(Mids,Outs) .

The CCS for the above is:

B∞ = B∞ ∩ B

We attempt to rectify the problem of no output on an infinite buffer by ensuring that items are input, and

then are output whilst at the same time the buffer grows in length.

Example 17.

mode bufferinf_e(Ins?,Outsˆ) .

bufferinf_e([In|Ins],Outs) ←
synch_receive(In,Item) &

bufferinf_e(Ins,Mids) , buffer1a(Item,Mids,Outs) .

The CCS for this program is:

B1∞ = α(x) . (B1∞ ∩ B(x))

The infinite buffer may be rewritten as:

Example 18.

mode bufferinf_f(Ins?,Outsˆ) .

bufferinf_f([In|Ins],Outs) ←
bufferinf_f(Ins,Mids) , buffer1([In|Mids],Outs) .

This program is not readily expressible in CCS since we are explicitly manipulating the communication

streams in the PARLOG program. We note that the buffers bufferinf_e/2 and bufferinf_f/2 always increase

in length with each data item processed; operationally this may swamp the system with processes. Of more

importance is the fact that in an implementation, communication between buffer cells takes a finite time,

and the overall delay associated with the buffer will increase with the number of items that it has ever

input4. CCS ignores such implementation oriented problems.

4 The buffer may be implemented with individual cells on different processors, so that introducing more cells may not

necessarily introduce greater inefficiency due to the processing time required by each cell regardless of intercell communi-

cation.

- 15 -

The difference in the number of items stored in the two types of buffers (ie using a list or processes) is not

apparent operationally here. Both buffers have a store in the range of 0 ≤ size < ∞ ; however the size of

the data-structure store can range dynamically within these limits, whilst the size of the process buffer

monotonically increases during its execution.

Another way of formulating the infinite buffer is to use a variation of the one slot buffer, but allowing

unconstrained recursion so that the producer can run ahead of the consumer. Note that the difference with

buffer1b/2 is the use of the parallel-AND operator between the receive_send calls (which we bracket for

clarity) and the self-recursive call to the buffer. The size of such a buffer may grow or shrink according to

the rates of the producer and consumer. Messages are held in the suspended calls to synch_send/2 rather

than in a system buffer as in PARLOG’s naive asynchronous form of communication. The clausal form is

the same as the regular one-slot buffer. In this case there is no easy inductive reasoning path towards the

formulation of an n-place buffer from the one-place buffer.

Example 19.

mode bufferinf_g(Ins?,Outsˆ).

bufferinf_g([In|Ins],[Out|Outs])←
(synch_receive(In,X) & synch_send(X,Out)) ,

bufferinf_g(Ins,Outs).

This program is harder to model in CCS than the previous ones. If we naively translate bufferinf_g/2 as

follows, we get an infinite bag, ie the order of output of items is not preserved:

B∞ = (α(x) . γ(x)) | B∞

We note that one way of programming an infinite bag in PARLOG is:

Example 20.

mode bag(Ins?,Outsˆ).

bag([In|Ins],Out_all)←
synch_receive(In,X)&

synch_send(X,Out),

bufferinf_g(Ins,Outs),

merge([Out],Outs,Out_all).

where merge/3 is non-deterministic.

The problem is that the streams in PARLOG impose an ordering which is lost in the CCS version. Thus in

the CCS formulation above, we cannot guarantee in which order the items input into the bag will be output.

We can impose an order, however, by using synchronisation signals:

- 16 -

Example 21.

B∞ = Start ∩ B´∞
Start =δ .δ

B´∞ = Cell ∩ B´∞
Cell = ε . α(x)δ . ε . γ(x) . δ .

where def

P ∩ Q = (P[γ/β] | Q[γ/α]) \ γ

In this case, the ε andδ signals are used to sequence the input and output of items; each α(x). γ(x) pair is

guarded by an ε which is not activated until a previous α(x). γ(x) pair has input a value. Likewise, the

output of the pair cannot take place until a synchronisation signal has been received from the previous pair

on successful output of its value. The renaming in the definition of the chaining operation ‘∩’ is the

equivalent of an infinite number of different synchronisation flags.

However, this formulation allows the ‘eager’ creation of buffer cells, a condition which is not strictly

necessary, since more buffer cells may be created than are needed. This is not the case in the PARLOG

program above, where the spawning of new buffer cells is restricted by the rate at which the input stream is

being partially instantiated. Thus in the PARLOG version, no more buffer cells are spawned than are

required by the producer.

To force the spawning of buffer cells to be in step with the production of messages from the producer, we

formulate the following CCS ‘program’. The main point to note is that the spawning of new buffer cells is

guarded by the initial ε action, which waits until it receives a synchronisation signal from a previous buffer

pair.

Example 22.

B∞ = Start ∩ B´∞
Start =δ .δ

B´∞ = ε . (Cell ∩ B´∞)

Cell = α(x)δ . ε . γ(x) .δ

7. Bounded buffers

We may formulate a bounded buffer using either the data-structure technique or an explicit number of one

place buffer processes. The buffer formulated using processes as stores is:

- 17 -

Example 23. Bounded Buffer - processes

mode bounded(Bound?,Ins?,Outsˆ).

bounded(Size,Ins,Outs) <-

Size > 0 :

Size1 is Size-1 ,

buffer1(Ins,Mids) , bounded(Size1,Mids,Outs).

bounded(0,Outs,Outs).

Note that this program is quite different to that proposed by [Takeuchi87], which is closer to a program

which uses data-structures as stores. The following example uses a difference list as a store, making the

operation of adding to the end of the list more efficient (the second clause of bounded/5), and doing away

with the need for a call to append.

Example 24. Bounded buffer - data structures

mode bounded(Bound?,Ins?,Outsˆ) .

bounded(Bound,In,Out) ←
bounded(Bound,0,Var/Var,In,Out) .

mode bounded(Bound?,Size?,Store?,Ins?,Outsˆ) .

bounded(Bound,Size,Msgs/Tail,[In|Ins],Outs) ←
Size =< Bound :

synch_receive(In,Item) ,

Tail=[Item|NewTail] , Size1 is Size + 1 ,

bounded(Bound, Size1, Msgs/NewTail,Ins,Outs) .

bounded(Bound, Size, [Msg|Msgs]/Tail,Ins,[Out|Outs]) ←
Size > Bound :

synch_send(Msg,Out) ,

Size1 is Size - 1 ,

bounded(Bound, Size1, Msgs/Tail,Ins,Outs) .

8. Conclusions

We have discussed a class of communication based algorithms, restricted to a producer-buffer-consumer

scenario. PARLOG programs have been formulated, and informal equivalences between them noted. In

order to enable such comparisons, formulations in CCS have been given for the same algorithms. We note

that PARLOG lacks a formal denotational semantics based on logic, and that the most recent work on

semantics has been to model PARLOG in CCS [Ellis86 , Hussey87]. The inability of a PARLOG clause to

- 18 -

produce output before committal means that in some cases choice is unguarded, and thus the behaviour of

resulting programs may not be desirable. There are ways to avoid this, based on the use of external stream

monitoring processes [Gilbert87b], mode reversal, or by metalevel programming. The above inability is a

deficiency that PARLOG needs to rectify before it could be used effectively as a specification language.

Advantages that PARLOG has over CCS as a ‘specification-implementation’ language include its ‘truly

parallel’ model of execution whereby any number of processes may be in existence at any instant. We also

note that the stream based model of communication employed by PARLOG permits easier specification of

a process-based infinite buffer with non-monotonically increasing size than does the event gate model of

CCS.

Acknowledgements

This paper was written while the author was funded by Alvey on "Implementation and Applications of

PARLOG", Project number 043/098.

I would like to thank Reem Bahgat, Chris Hogger, Iain Phillips and Steve Vickers of Imperial College for

all the time that they gave me, and the helpful comments that they made during the preparation of this

paper.

References

Ellis86.

Mark R. Ellis, ‘‘A Relational Language into ECCS,’’ M.Sc, Imperial College of Science &

Technology, London. UK, 12th September 1986.

Gilbert87.

David Gilbert, ‘‘PARLOG: a tutorial introduction.,’’ Proceedings of Parallel Processing and

Supercomputing, Begian Institute for Automatic Control, Antwerp, Belgium, November 19-20, 1987.

Gilbert87b.

David Gilbert, ‘‘Executable LOTOS: Using PARLOG to implement an FDT,’’ Proceedings of IFIP

Protocol Specification, Testing and Verification: VII, Zurich, Switzerland, 5-8 May 1987, Elsevier

Science, North-Holland, Amsterdam, Netherlands, 1987.

Gregory87.

Steve Gregory, Parallel Logic Programming in PARLOG: The Language and its Implementation,

Addison-Wesely, London, UK, 1987.

Hussey87.

Charlie Hussey, ‘‘Interpreting PARLOG Programs as CCS agents,’’ Report for MSc degree in

Engineering, Imperial College of Science and Technology, London, September 1987.

- 19 -

Milner86.

Robin Milner, ‘‘Process Constructors and Interpretations,’’ Proceedings of IFIP 10th International

World Computer Congress, vol. 10, pp. 507-514, North Holland, Dublin, Ireland, September 1-5,

1986.

Shapiro83.

Ehud Shapiro and Akikazu Takeuchi, ‘‘Object Oriented Programming in Concurrent Prolog,’’

CS83-08, Department of Applied Mathematics, Weizmann Institute of Sciences, Rehovot, Israel,

June 1983.

Shapiro84.

E. Shapiro and C. Mierowsky, ‘‘Fair, Biased, and Self-Balancing Merge Operators: Their

Specification and Implementation in Concurrent Prolog,’’ CS84-07, Weizmann Institute, Rehovot,

Israel, 1984.

Takeuchi87.

Akikazu Takeuchi and Koichi Furukawa, ‘‘Bounded Buffer Communication in Concurrent Prolog,’’

in Concurrent Prolog, ed. Ehud Shapiro, vol. 1, pp. 464-475, MIT Press, 1987.

Tables

The PARLOG syntax used in this article is given in the Table below.

Symbol Meaning

← logical implication

& sequential-AND

parallel-AND

; sequential-OR

. parallel-OR

: guard operator

? input mode annotation

ˆ output mode annotation

Table 1 PARLOG syntax

