
A Process Algebra for Synchronous Concurrent

Constraint Programming

Lubo�s Brim

�

Jean-Marie Jacquet

z

David Gilbert

y

Mojm��r K�ret��nsk�y

�

Abstract

Concurrent constraint programming is classically based on asynchronous

communication via a shared store. This paper presents new version of the ask

and tell primitives which features synchronicity. Our approach is based on the

idea of telling new information just in the case that a concurrently running

process is asking for it.

An operational and an algebraic semantics are de�ned. The algebraic

semantics is proved to be sound and complete with respect to a compositional

operational semantics which is also presented in the paper.

1 Introduction

As a consequence of being a generalisation of previous proposals for concurrent

logic programming languages (Concurrent Prolog, Parlog, GHC, etc.), concurrent

constraint programming has naturally inherited one of their main features: the

asynchronous character of the communication. This is obtained by ask primitives

blocking when the information on the store is not complete enough to entail the

asked constraints. Following these lines, a natural way of obtaining synchronous

communication in concurrent constraint programming is to force the reduction of

ask and tell primitives to synchronise. Speci�cally, our approach considers tell prim-

itives as lazy producers of information and views ask primitives as consumers of this

information. From this point of view, a tell operation is reduced when an ask oper-

ation requires the told information. Moreover, the reduction of the two primitives

is performed simultaneously. However, there is no reason to block ask and tell

primitives on information which is already present. Consequently, stress is put on

the novelty of the information and hence any tell(c) and ask(c) operations whose

�

Dept.of Comp.Sci., Masaryk University, Brno, Czech Republic, fbrim|mojmirg@fi.muni.cz

z

Dept.of Comp.Sci., University of Namur, Namur, Belgium, jmj@info.fundp.ac.be

y

Dept.of Comp.Sci., City University, London, U.K., drg@soi.city.ac.uk

constraint argument c is entailed by the current store are reduced without partners.

The scheme is made slightly more general by permitting the synchronisation of more

than two partners.

This framework, called Scc, is presented in [3] and its expressiveness has been

demonstrated through the coding of a variety of examples. It has been argued that

one advantage over related work such as [12, 9, 8], which introduce synchronisation

by special operators and not by altering the behaviour of tell and ask primitives, is

that Scc permits the speci�cation of on what information the synchronisation should

be made, rather than with whom. Synchronisation in Scc is thus data-oriented as

opposed to process-oriented.

In order to motivate its interest and to substantiate the need for novel treat-

ments, it is worth stressing the behavioural di�erence of Scc with, on the one hand,

traditional concurrent constraint programming, as exempli�ed in the cc family of

languages ([12]), and, on the other hand, traditional concurrent programming mod-

els, as exempli�ed by CCS ([10]).

It has been argued in [6] that the main di�erence between ccp and CCS is that

complementary actions do not synchronise in ccp. This property is due to the fact

that telling a constraint never suspends in cc. In contrast, the action of telling a

constraint may suspend until an ask can make use of it. A synchronisation similar

to that in CCS is thus produced. However, this synchronisation does not hold in Scc

in the case that the told or asked constraints are entailed by the current contents of

the store. A novel kind of synchronisation is thus achieved.

Major di�erences appear between the three frameworks. It is to be expected

that these di�erences call for new treatments as well. In order to formalise our

reasoning somewhat, let us turn to the example given in [6]. There CCS and ccp

are compared by interpreting the action a as telling the constraint x = a, and the

co-action a as asking the constraint x = a. To keep our notations consistent, we

shall use \+" for the non-deterministic choice operator and \;" for the sequential

composition operator.

Example 1 (Di�erentiating ccp and CCS (from [6])) Let A

1

= (a; b)+(a; c)+

(a; d) and A

2

= (a; b) + (a; (c + d)): In any compositional semantics for CCS these

two processes must be distinguished. Indeed, they behave di�erently under the con-

text A = a; (b + c): The process A

1

can deadlock, by choosing the third alternative

of the choice, while A

2

cannot. However, in cc, both A

1

and A

2

have the same

behaviour. The process A

2

can deadlock by choosing the second alternative, because

A can independently decide to produce y = b (after x = a).

Example 2 (Di�erentiating ccp and Scc) Using the processes A, A

1

, A

2

of the

above example, the processes A

1

and A

2

are also distinguished by A in Scc for the

same reason as in CCS.

This example illustrates the di�erence between Scc and cc. Stated in other

terms, in the ccp paradigm, since the tell operation is asynchronous, the choice

guarded by tell(a) is a local choice whereas, since the tell operation is synchronous

in Scc, this choice is global in Scc.

Nevertheless, synchronisation is only forced in Scc in the case that a process

tries to tell information which is not already entailed by the store. Otherwise, it can

proceed asynchronously. This fact is used subsequently to di�erentiate CCS and

Scc.

Example 3 (Di�erentiating CCS and Scc) Using again the above processes A,

A

1

, A

2

, let B

1

= b;A

1

and B

2

= b;A

2

: In CCS, these two processes can be distin-

guished by the process B = b;A for the reasons exposed in Example 1. However, in

Scc, both processes have the same behaviour. The process B

2

can now deadlock by

choosing the second alternative because A can now independently proceed by the �rst

alternative as y = b is already entailed by the store.

The distinction between Scc and CCS thus appear to be more subtle than the dis-

tinction between ccp and CCS. The choice guarded by tell is actually a \mixture"

of global and local choice. The choice depends upon actions performed and upon

the results of the past behaviour of the system, i.e. upon the constraint contained

in the store.

The rest of the paper is organised as follows. Section 2 describes informally

Scc and section 3 presents the basic operational semantics O. Section 4 studies

the algebraic semantics. To prove its soundness and completeness, we introduce a

compositional modelM in the section 5 and relate it with the algebraic semantics.

Finally, section 6 draws our conclusions.

2 The Language Scc

This section presents the syntax and the informal semantics of the language un-

derlying the Scc paradigm, also called Scc by abuse of language. For reasons of

simplicity we consider a simpli�ed version of Scc which does not contain recursion.

Recursion can however be treated in the standard way described in [2].

As in [14], the constraint system underlying Scc consists of any system of partial

information that supports the entailment relation. We assume a given cylindric

constraint system hC;`i over a set of variables Svar , de�ned as usual from a simple

constraint system hD;`i. Furthermore, for the purposes of axiomatisation we will

suppose that the cylindric constraint system is embedded into a complemented and

distributive one denoted by dc(D). For detailed de�nitions we refer to [14, 7, 4].

The language description is parametric with respect to hC;`i; and so are the

semantic constructions presented.

In the following, we use G;H; : : : possibly subscripted to range over the set

Sgoal of processes c; d; : : : to range over basic constraints (i.e. constraints which are

equivalent to a �nite set of primitive constraints), and X;Y; : : : to range over the

subsets of Svar .

Processes G 2 Sgoal are de�ned by the following grammar

G ::=4 j � j ask(c) j tell(c) j G;G j G+G j G k G j 9

X

G

The constant 4 denotes a process which is only capable of terminating success-

fully. The constant � is used to denote deadlocking processes.

The atomic constructs ask(c) and tell(c) act on a given store in the following

way: as usual, given a constraint c, the process ask(c) succeeds if c is entailed

by the store, otherwise it is suspended until it can succeed. However, the process

tell(c), of a more lazy nature than the classical one, succeeds only if c is (already)

entailed by the store and in this case it does not modify the store, and suspends

otherwise. It is resumed by a concurrently suspended ask(d) operation provided

that the conjunction of c and of the store entails d. In that case, both the tell

and the ask are resumed synchronously and at the same time the store is atomically

augmented with the constraint c.

The sequential composition G

1

;G

2

is executed by �rst performing G

1

and, if G

1

terminates successfully, by performing G

2

.

The nondeterministic choice G

1

+G

2

selects between the execution of G

1

or G

2

respectively provided that the selected component can perform at least one step of

a computation (i.e. it is not immediately suspended). It is a global nondeterministic

choice since the selection of a component can be inuenced by the (global) store and

by the environment of the process as well.

The parallel composition G

1

k G

2

represents both the interleaving (merge) of

the computation steps of the components involved (provided they can do these

steps independently of each other) and also synchronisation: this is the case of

the tell and ask described above. Note that in the general case there can be a

parallel composition of a �nite sets of tell's and a �nite set of ask's such that the

current store and a conjunction of some of the tell constraints entail the conjunction

of the ask constraints and the other tell's. In this case all the components are

reduced simultaneously. This is sometimes referred to in the literature as multi-

party synchronous communication.

The block construct 9

X

G behaves like a process G with the variables in X

considered as local. It hides the information about variables from X within the

process G. Let us recall that full version of Scc contains recursive procedures too

(see an example below), but for ease of reasoning they are not studied here.

To ilustrate some features of Scc (synchronous multi-party communication) we

present the dining philosophers example. We have chosen to represent both philoso-

phers and forks as processes; in addition communication is achieved via shared

stream variables as in classical concurrent logic programming.

The inital description of the system is

:- phil(L1,R1) k fork(R1,L2) k phil(L2,R2) k ... kfork(Rn,L1)

and the processes are described as follows:

fork(R,L):- ask(L=[takenjL

0

]); ask(L

0

=[freejL

00

]); fork(R,L

00

)

+

ask(R=[takenjR

0

]); ask(R

0

=[freejR

00

]); fork(R

00

,L)

phil(L,R):- tell(L=[takenjL

0

] , R=[takenjR

0

]);

tell(L

0

=[freejL

00

] , R

0

=[freejR

00

]); phil(L

00

,R

00

)

Finally, it is worth observing that it is quite easy to recover the traditional

cc paradigm from our framework by the introduction of an asynchronous tell by

providing, for each constraint to be told, a concurrent corresponding ask operation.

3 The operational semantics O

It turns out that it is possible to treat the sequential and parallel composition oper-

ators in a very similar way by introducing the auxiliary notion of context . Basically,

a context consists of a partially ordered structure where place holders (subsequently

referred to by 2) have been inserted at a top-level place i.e. a place not constrained

by the previous execution of other atoms. Viewing goals as partially ordered struc-

tures too, the ask and tell primitives to be reduced are those which can be substituted

by a place holder 2 in a context. Furthermore, the goals resulting from the reduc-

tions are essentially obtained by substituting the place holder by the corresponding

syntax structure or the 4, depending upon whether an atom or a ask/tell primitive

is considered.

The formal de�nition of the contexts is a very standard one and can be found

e.g. in [4]. Moreover, we further state that the structure (Sgoal; ; ; k;4) is a bi-

monoid, that is, \ ;" and \ k" are associative binary operations and have 4 as

neutral element. In the following, we will also simplify the goals resulting from the

application of contexts accordingly.

The operational semantics of Scc is de�ned in Plotkin's style [11] by means of a

transition system, where Sstore denotes the set of stores.

De�nition 1 De�ne the transition relation ! as the smallest relation of (Sgoal�

Sstore)� (Sgoal � Sstore) satisfying the rules of Figure 1.

Rules (H) and (C) express the classical treatment of hiding and of choice, re-

spectively. Classical rules for the sequential and parallel composition operators are

tackled by means of the notion of context.

Rule (T) de�nes the reduction of tell and ask primitives. The primitives to be

reduced, there referred to as sp

1

, . . . , sp

m

, are partitioned in three categories:

i) the ask primitives (the multi-set fask(a

1

); � � � ; ask(a

p

)g);

ii) the tell primitives split into those which add information to the store (the

multi-set ftell(rt

1

); � � � ; tell(rt

r

)g) and those which do not (the multi-set

ftell(at

1

); � � � ; tell(at

q

)g);

All these primitives are then simultaneously reduced to the empty goal 4 when

the information on the current store (�) together with the new information told

(rt

1

; : : : ; rt

r

) entails the information of the other primitives. The new store consists

in this case of the old store enriched by the new information told. Note that this

rule reects the laziness feature of our tell primitives.

In the case a constraint c is entailed by the current store � an ask(c) primitive

can be reduced alone following rule (T) by taking the unary context 2, m = 1,

p = 1, q = 0, r = 0 and tell(c) can be reduced alone following rule (T) by taking

the unary context 2, m = 1, p = 0, q = 1, r = 0.

Other tell's and ask's need each other for reduction and reduce simultaneously.

A minimality condition is required to forbid outsider tell's to be reduced by taking

advantage of a concurrent reduction.

Tell and ask reduction

(T) <tc[sp

1

; � � � ; sp

m

]; �>! <tc[4; � � � ;4]; �>

if

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

fsp

1

; � � � ; sp

m

g = f ask(a

1

); � � � ; ask(a

p

);

tell(at

1

); � � � ; tell(at

q

);

tell(rt

1

); � � � ; tell(rt

r

) g

� [frt

1

; � � � ; rt

r

g ` fa

1

; � � � ; a

p

g [fat

1

; � � � ; at

q

g

there is no strict subset S of frt

1

; � � � ; rt

r

g

such that � [S ` fa

1

; � � � ; a

p

g [fat

1

; � � � ; at

q

g

� = � [frt

1

; � � � ; rt

r

g

m > 0

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

Hiding

(H)

<tc[G[Y=X]]; �>! <tc[G

0

]; �

0

>

<tc[9

X

G]; �>! <tc[G

0

]; �

0

>

if fY is a fresh variable g

Choice

(C)

<G;�>! <G

00

; �

00

>

<G +G

0

; �>! <G

00

; �

00

>

<G

0

+G;�>! <G

00

; �

00

>

Figure 1: Scc transition system

We are now in a position to de�ne the operational semantics. Following the logic

programming tradition, it speci�es the �nal store of the successful computations.

It also indicates those stores associated with deadlock situations, namely situations

corresponding either to the absence of suitable data on the store or to the absence

of concurrent process(es) that would allow tell and ask primitives to proceed, i.e. to

resume suspended tell's and ask's. Note that the two situations may be distinguished

by a simple criterion: the existence of a store richer than the current one that would

enable the computation to proceed. Note also that real failure, corresponding to

the absence of suitable procedure declaration, does not occur since recursion is not

treated here.

The following de�nition follows directly from this intuition. The symbols �

+

and �

s

are used to indicate the computations ending by a success and a suspension,

respectively.

De�nition 2 De�ne the operational semantics O : Sgoal ! P(Sstore � f�

+

; �

s

g)

as the following function: for any goal G,

O(G) = f <�; �

+

> : <G; true>! � � � ! <4; �> g

[f <�; �

s

> : <G; true>! � � � ! <G

0

; �> 6!

G

0

6= 4 and there are �

0

; G

00

; �

00

such that <G

0

; �

0

>! <G

00

; �

00

> g:

4 Algebraic Semantics

Now we describe an axiomatisation in the style of process algebras for Scc. Part of

the axioms is borrowed from traditional work on process algebras (see e.g. [2]) and

from work already published on concurrent constraint programming (see e.g. [7]).

Other axioms are speci�c to our work (see [4] for comparisson of our axioms with

the axioms for asynchronous ccp given by deBoer and Palmidessi [7]).

Axioms from general process algebra

The �rst group (A) consists of axioms in Figure 2. They deal with the general

requirements found in any process algebra of communicating systems. As usual, we

use two auxiliary operators to axiomatise the parallel composition operator k. They

are k

�

for left merge and j for communication merge. In the following �; �; �(c)

and �(c) represent asks or tells on constraints, the constraint c when an axiom is

parametric with respect to it. The system A axiomatises a notion of equivalence

which is known as bisimulation (see e.g. [2]).

The next group of axioms (T) in Figure 3 permits the abstraction from silent

steps � . In the context of concurrent constraint programming � corresponds to a

tell(c) or ask(c) action where c is entailed by the current store, e.g. tell(true) or

ask(true). Failure is axiomatised by axioms (F) given in Figure 3 (cf. [2], p.215).

A axioms General

(A1) A+A = A (A6) �;A = �

(A2) A+ B = B +A (A7) � + A = A

(A3) A + (B + C) = (A+B) + C (A8) �;A = A

(A4) A; (B;C) = (A;B);C (A9) A; � = A

(A5) (A+B);C = A;C +B;C

(A10) A k B = A k

�

B + B k

�

A+ A j B

(A11) (A+ B) k

�

C = (A k

�

C) + (B k

�

C)

(A12) (�;A) k

�

B = �; (A k B)

(A13) (A+B) j C = A j B +A j C (A16) � k

�

A = �

(A14) A j (B + C) = A j B +A j C (A17) � j A = �

(A15) �;A j �;B = (� j �); (A k B) (A18) A j � = �

Figure 2: A-axioms

T and F axioms � -abstraction and Failure

(T1) A; � = A

(T2) � ;A+B = � ;A+ � ; (A+ B)

(F1) �; (�;A

1

+ B

1

) + �; (�;A

2

+B

2

) = �; (�;A

1

+ �;A

2

+ B

1

)

+�; (�;A

1

+ �;A

2

+B

2

)

(F2) �; (� + B

1

) + �; (�;A+B

2

) = �; (� + �;A+B

1

) + �; (� + �;A+B

2

)

(F3) �;A+ �; (B + C) = �;A+ �; (A+B) + �; (B + C)

Figure 3: T&F-axioms

Axioms from work on ccp

The group of axioms (H) in Figure 4 axiomatises hiding (quanti�cation) in terms

of the auxiliary operator 9

c

x

.

To axiomatise the communication merge j we shall also need another auxiliary

operator 9

c

. To that end we extend the notion of cylindric constraint system by

adding the identity function 9 : C ! C. 9 clearly satis�es the required conditions.

Hence, we must add an extra transition rule to the rules from Figure 1 to cover 9

c

:

H axioms Hiding (Quanti�cation)

(H1) 9x:A = 9

true

x

A (H4) 9

c

x

:� = �

(H2) 9

c

x

:� = � (H5) 9

c

x

:�(d);A = �(8

x

(c! d)); 9

c

x

:A

(H3) 9

c

x

:(A+B) = 9

c

x

:A+ 9

c

x

:B (H6) 9

c

:ask(d) = � if c ` d

Figure 4: H-axioms

L axioms

(L1) �(c); (�(d);A+ B) = �(c); (�(c^ d);A+ B)

(L2) �(c); (�(c);A+ B) = �(c); (� ;A+B)

(L3) ask(c); (ask(d);A+ B) = ask(c); (ask(d);A+B) + ask(c ^ d);A

(L4) ask(c) j tell(d) = ask(c) j tell(d) + ask(d) j tell(d) if d ` c

(L5) ask(c);A+ ask(c ^ d);B = ask(c);A+ ask(c); (A+ ask(d);B)

(L6) (tell(c) j ask(d));A+B = 9

c

(ask(d)); (tell(c) j ask(c));A+B

(L7) tell(c) j tell(d) j ask(e) = tell(c ^ d) j ask(e) if c ^ d ` e; c 6`; d 6` e

(L8) ask(c) j ask(d) = ask(c ^ d)

(L9) �(c); (�(d);A+ B) = �(c); (�(d);A+ B) + �(d);�(c);A

(L10)

P

i

�;

P

j

ask(c

i

j

);A

i

j

=

P

i

�;

P

j

ask(c

i

j

);A

i

j

+ �;

P

k

ask(c

k

);A

k

if for all f 2 I J; k2 K � fi

j

j i2I; j2Jg : ask(^

i

c

i

f(i)

) 2

S

i;j

fask(c

i

j

);A

i

j

g

whenever ^

i

c

i

f(i)

6` c

k

Figure 5: L-axioms

(R)

<tc[G]; � ^ �>! <tc[G

0

]; �

0

>

<tc[9

�

:G]; �>! <tc[9

�

0

:G

0

]; � ^ �

0

>

The idea of hiding the empty set of variables is to allow a separate local compu-

tation. A local computation step proceeds from a store which consists of the entire

global store seen \locally". The resulting global store of a local computation is the

same as the one before starting the local computation.

Axioms speci�c to Scc

Now we present a group of axioms (L) which characterise the speci�c treatment

of \lazy" tell in concurrent constraint programming. The axioms are presented in

Figure 5.

The axiom (L1) expresses that once a constraint has been established by telling

it, it remains in the store. The axiom (L2) expresses that asking or telling an entailed

constraint results in a silent action � .

The axiom (L3) permits the composition of ask actions, and the axiom (L4)

permits the strengthening of an ask-guard in a suitable parallel context. The axiom

(L5) allows the restricted decomposition of ask actions.

The justi�cation of (L6) is as follows. Suppose that the current store together

with c entails d. In this case the left-hand side process synchronizes, allowing both

components to proceed, and the resulting store is enriched by c. The right-hand

side process results in exactly the same store, namely it �rst \checks" whether the

current store together with c implies d by performing a local computation of ask(d)

and if this is true it then just \tells" c. Note that if this occurs in a parallel context,

then telling c means \waiting" for a partner who asks for this information.

The axiom (L7) permits the restricted composition of tell actions and reects

our minimality condition (see rule (T) in Figure 1). The axiom (L8) permits the

composition of ask actions.

The axiom (L9) is informally justi�ed as follows. Suppose that the current store

implies the constraint d. In this case the process represented by the right-hand side

of the axiom can select the � branch, execute the � action and proceed with A. But

this behaviour can be mimicked by the other branch, the order of the actions being

unobservable. In the case the current store does not imply d, the only choice left is

to execute the � branch.

5 Soundness and Completeness

This section discusses the soundness and completeness properties of our axiomatisa-

tion. Classically, algebraic theories identify computations which not only exhibit the

same �nal results but also behave identically when they are placed in any context.

We are thus lead to relate our algebraic semantics with a compositional semantics.

However, the semantics O is not compositional, as shown by considering the goals

tell(c), ask(c), tell(c) k tell(c), and tell(c) k ask(c): for any store � such that � 6` c,

the �rst three suspend whereas the last succeeds. Consequently, we �rst de�ne a

compositional operational semantics, prove that it is correct with respect to the

semantics O and then relate it to the algebraic semantics just developed.

A Compositional Operational Semantics

Two problems need to be tackled in order to transform O into a compositional

semantics. Firstly, the semantics should be modi�ed in order to allow suspended

goals to resume thanks to the store as computed by concurrent goals. This is sub-

sequently achieved by reporting in the semantics not just the �nal results coupled

to a status mark but sequences corresponding to the computation steps. Progress

made by the concurrent goals is then indicated by steps of the form ��; ��

e

indi-

cating the update of the store � in the store � . Secondly, tell and ask primitives

of goals should also be able to synchronise with primitives provided by concurrent

processes. This is subsequently achieved by introducing in semantic sequences the

steps of the form ��; �

0

�

(A;At;Rt)

, where the (A;At;Rt) triple denotes the actors of

the synchronisation, according to the three categories detailed in section 3. In fact

each of these multi-sets is a pair composed of (the store argument of) the primitives

of the considered goal and of (the store argument of) the primitives provided by its

concurrent processes.

It is possible to extend the transition system of Figure 1 so as to reect these

extensions. The slight modi�cations to rules (T), (H), and (C) are given in Figure 6.

They consist of adding labels describing the pair of initial and �nal values of the

store for the steps under consideration. Note that rule (R) introduced in section 4

can likewise be modi�ed straightforwardly.

(T) <tc[sp

1

; � � � ; sp

m

]; �>

��;��

!
<tc[4; � � � ;4]; �>

if

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

fsp

1

; � � � ; sp

m

g = f ask(a

1

); � � � ; ask(a

p

);

tell(at

1

); � � � ; tell(at

q

);

tell(rt

1

); � � � ; tell(rt

r

) g

� [frt

1

; � � � ; rt

r

g ` fa

1

; � � � ; a

p

g [fat

1

; � � � ; at

q

g

there is no strict subset S of frt

1

; � � � ; rt

r

g

such that � [S ` fa

1

; � � � ; a

p

g [fat

1

; � � � ; at

q

g

� = � [frt

1

; � � � ; rt

r

g

m > 0

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(H)

<tc[G[Y=X]]; �>

l

!
<tc[G

0

]; �

0

>

<tc[9

X

G]; �>

l

!
<tc[G

0

]; �

0

>

if fY is a fresh variable g

(R)

<tc[G]; � ^ �>

l

!
<tc[G

0

]; �

0

>

<tc[9

�

:G]; �>

l

!
<tc[9

�

0

:G

0

]; � ^ �

0

>

(C)

<G;�>

l

!
<G

00

; �

00

>

<G +G

0

; �>

l

!
<G

00

; �

00

>

<G

0

+G;�>

l

!
<G

00

; �

00

>

Figure 6: Reformulation of the Scc transition system

Extensions required to achieve compositionality are given in Figure 7. Rule (E)

deals with the �rst problem mentioned above. Rule (A) provides a solution to the

second problem: a synchronisation similar to that of rule (T) is performed but by

means of concurrent tell and ask primitives.

Rules (Sn) and (Ss) deal with suspension and success. The last one reects the

intuition already embodied in de�nition 2.

The treatment of suspension requires some care. Our solution, illustrated in rule

(Sn), is to report, in a single mark, for each suspended con�guration, the set of stores

and the set of concurrent tell and ask primitives (split as before) that would allow

a transition to take place. Suspension marks disappear when combining components

in the case where the tell and ask primitives required by the components are mutually

provided.

The intuition has now been provided for the following de�nitions.

Environment

(E)

<G;�>

��;�

0

�

e

!
<G;�

0

> if f �

0

` �; G 6= 4 g

Reduction by means of auxiliary tell's and ask's

(A)

<tc[sp

1

; � � � ; sp

m

]; �>

��;��

(A;At;Rt)

!
<tc[4; � � � ;4]; �>

if

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

fsp

1

; � � � ; sp

m

g = f ask(a

1

); � � � ; ask(a

p

);

tell(at

1

); � � � ; tell(at

q

);

tell(rt

1

); � � � ; tell(rt

r

) g

� [frt

1

; � � � ; rt

s

g [frrt

1

; � � � ; rrt

i

g

` fa

1

; � � � ; a

p

g [faa

1

; � � � ; aa

k

g [fat

1

; � � � ; at

q

g

[faat

1

; � � � ; aat

l

g

there is no strict subset S of

frt

1

; � � � ; rt

s

g [frrt

1

; � � � ; rrt

i

g such

that � [S ` fa

1

; � � � ; a

p

g [faa

1

; � � � ; aa

k

g [fat

1

; � � � ; at

q

g

[faat

1

; � � � ; aat

l

g

A = (fa

1

; � � � ; a

p

g; faa

1

; � � � ; aa

j

g)

At = (fat

1

; � � � ; at

q

g; faat

1

; � � � ; aat

k

g)

Rt = (frt

1

; � � � ; rt

r

g; frrt

1

; � � � ; rrt

i

g)

� = � [frt

1

; � � � ; rt

r

g [frrt

1

; � � � ; rrt

i

g

m > 0

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

Suspension

(Sn)

<G;�>

��;�

s(
;S)

�

!
<Susp; �>

if

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

G 6= 4

<G; �> 6!

there are G

00

, �

0

, �

00

such that �

0

` � and <G; �

0

>! <G

00

; �

00

>

 is the set of all such stores �

0

S is the set of all triples (A;At; Rt) ful�lling the conditions

of rule (A) together with some sp

1

; : : : ; sp

m

such that

G = tc[sp

1

; � � � ; sp

m

]

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

Success

(Ss)

<4; �>

��;�

+

�

!
<Succ; �>

Figure 7: Rules induced by the compositionality requirement

De�nition 3

1) The set Sspair of synchronisation pairs is de�ned as the set (Sstore�Sstore)�

(Sstore�Sstore)�(Sstore�Sstore)�(Sstore�Sstore)�(Sstore�Sstore).

2) The set Smark of marks is de�ned as the set feg[Sspair. Marks are typically

denoted by the letter M, possibly subscripted.

3) The set Sstep of steps is de�ned as the set (Sstore � Sstore) [(Sstore �

Sstore � Smark). Steps are typically denoted in an exponential fashion as

��; ��

[M]

; the notation [M] indicating a possibly absent mark.

4) The set Sterm of terminators is de�ned as the set Sstore� (f�

+

g [f�

s(
;S)

:

 � Sstore; S � Sspairg). In the following, terminators are typically denoted

as ��; �

z

�, Terminators not involving �

+

are typically denoted as ��; �

S

�,

when there is no need to specify further the mark S.

5) The set of semantic histories is de�ned as Shist = Sstep

<!

� Sterm

De�nition 4 Let Susp and Succ be fresh names appearing in no set previously

mentioned. De�ne the transition relation 7! as the smallest relation of ((Sgoal [

fSusp; Succg) � Sstore) � (Sstep [Sterm) � ((Sgoal [fSusp; Succg) � Sstore)

satisfying the rules of Figures 6 and 7, where P is assumed to be given and the

notation <G;�>

l

!
<G

0

; �

0

> is employed instead of (<G;�>; l;<G

0

; �

0

>) 27!.

The operational semantics M basically collects the labels appearing in the

�nitely ended computations. To obtain compositionality, those computations are

allowed to start in any store.

De�nition 5 De�ne the operational semantics M : Sgoal ! P(Shist) as the fol-

lowing function: for any goal G,

M(G) = f l

1

� � � l

m

: <G;�>

l

1

!
� � �

l

m

!
C;

� 2 Sstore; C 2 (fSucc; Suspg)� Sstore g

The semantics M can be proved compositional. It is also correct with respect

to the semantics O in the following sense. A few de�nitions are �rst in order.

De�nition 6 Let h = ��

1

; �

1

�

[M

1

]

: : :��

n

; �

n

�

[M

n

]

:��

n+1

; �

z

� be a history,n � 0.

1) h is continuous i� there is no gap of stores between the steps ie i� �

i+1

= �

i

for i = 1; : : : ; n.

2) h starts in � i� �

1

= �.

3) h is non-hypothetical i� it contains no step of Sstore� Sstore� Smark.

4) ��

n+1

; �

z

� is called the �nal step of h and h is said to end by this step.

For any goal G, the semantics O(G) can be obtained from M(G) in the fol-

lowing way: (i)by retaining the histories of the latter which are continuous, non-

hypothetical, and which start in true; (ii) by taking their �nal steps; (iii) by changing

all the symbols �

S

by the symbol �

s

.

Proposition 7 De�ne the function � : Sstore! P(Shist)! P(Sstore�f�

+

; �

s

g)

as follows: for any store � 2 Sstore, any subset S � Shist,

�(�)(S) = f ��; �

+

� : h 2 S; h continuous, non-hypothetical

h starts in �; h ends by ��; �

+

� g

[f ��; �

s

� : h 2 S; h continuous, non-hypothetical

h starts in �; h ends in ��; �

S

� g:

Then, for any program P and any goal G, O(G) = �(true)(M(G)):

Soundness and completeness

We �nally relate the algebraic semantics with the semantics M. This is achieved

following the classical lines, illustrated among others in [2].

The proof of soundness of our axiomatisation consists of a simple veri�cation

establishing M(G) = M(H), for any axiom G = H. As far as completeness is

concerned, every process is �rst proved equal to a basic process, namely a process

built up from the ask, tell and (tell j ask) constructs, and �; � constants using

sequencing and choice only. Completeness is then established for basic processes by

inductively reasoning on their structure.

Summing up, the following theorem can be established.

Theorem 8 For any processes G and H

` G = H i� M(G) =M(H)

An interesting relationship between the algebraic semantics and the semantics

O can be derived therefrom and from proposition 7.

Proposition 9 For any processes G and H, if ` G = H then O(G) = O(H).

6 Conclusions

This paper has presented an algebraic semantics for a synchronous version of concur-

rent constraint programming. This version is based on new variants of the tell and

ask primitives where the former behave as lazy producers of new pieces of informa-

tion which are consumed by the latter at the same time they are produced. Stress on

the novelty of the information permits tell and ask to proceed asynchronously in the

case their corresponding constraint argument is entailed by the current contents of

the store. This framework, called Scc, has been argued to be (in some aspects) dif-

ferent from traditional algebraic languages, exempli�ed by CCS, and from classical

concurrent constraint programming, exempli�ed by the cc family of languages.

These di�erences call for semantic treatments, which have been proposed and

compared with existing ones. Soundness and completeness of the proposed axiomatic

system have been established by relating it to a compositional operational semantics,

which has also been presented.

References

[1] Krzysztof Apt, editor. Proceedings of the Joint International Conference and

Symposium on Logic Programming, Washington, USA, 1992. The MIT Press.

[2] J.C.M. Baeten and W.P Weijland. Process Algebra. Cambridge University

Press, 1990.

[3] L. Brim, J-M. Jacquet, D. Gilbert, and M. K�ret��nsk�y. New Versions of Ask and

Tell for Synchronous Communication in Concurrent Constraint Programming.

Technical Report No. 1996/03. ISSN 1364-4009, Northampton Square, London

EC1V 0HB, 1996.

[4] L. Brim, J-M. Jacquet, D. Gilbert, and M. K�ret��nsk�y. A Process Algebra

for Synchronous Concurrent Constraint Programming. Technical Report No.

1996/06. ISSN 1364-4009, Northampton Square, London EC1V 0HB, 1996.

[5] F. S de Boer, J. W. Klop, and C. Palamidessi. Asynchronous communication in

process algebra. In Proceedings, 7th Annual IEEE Symp. on Logic in Computer

Science, pages 137{147. IEEE Computer Society Press, 1992.

[6] F. S. de Boer and C. Palamidessi. A fully abstract model for concurrent con-

straint programming. In S. Abramsky and T.S.E. Maibaum, editors, Proc.

of TAPSOFT/CAAP91, Lecture Notes in Computer Science, pages 296{319.

Springer-Verlag, 1991.

[7] F. S. de Boer and C. Palamidessi. A process algebra of concurrent constraint

programming. In Apt [1], pages 463{477.

[8] M. Falaschi, G. Levi, and C. Palamidessi. A Synchronization Logic: Axiomatics

and Formal Semantics of Generalized Horn Clauses. Information and Control,

60:36{69, 1994.

[9] J.-M. Jacquet and L. Monteiro. Communicating clauses: Towards synchronous

communication in contextual logic programming. In Apt [1], pages 98{112.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[11] G. Plotkin. A structured approach to operational semantics. Technical report,

DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

[12] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[13] V. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of

17th POPL, pages 232{245, 1990.

[14] V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concur-

rent constrant programming. In Proc. of 18th POPL. ACM, 1991.

