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ABSTRACT
Modelling across multiple scales is a current challenge in Sys-
tems Biology, especially when applied to multicellular organ-
isms. In this paper we present an approach to model at dif-
ferent spatial scales, using the new concept of hierarchically
coloured Petri Nets (HCPN). We apply HCPN to model a
tissue comprising multiple cells hexagonally packed in a hon-
eycomb formation in order to describe the phenomenon of
Planar Cell Polarity (PCP) signalling in Drosophila wing.
We illustrate different levels of abstraction that can be used
in order to assist the systematic modelling of such a complex
system involving intra- and inter-cellular signalling mecha-
nisms, and we provide a design pattern for similar modelling
problems. Our initial model describes normal, wild-type
PCP signalling, and we illustrate the power of our approach
by easily adapting it to various tissue sizes and to describe
the phenotype of a well-documented genetic mutation in
Drosophila. We have performed a series of analyses on our
models which require computational experiments over very
large underlying models. All results are reproducible.
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1. INTRODUCTION
With the rapid growth of data being generated in the bi-

ological field, it has become necessary to organise the data
into coherent models that describe system behaviour, which
are subsequently used for simulation, analysis or prediction.
Modelling biological systems beyond one spatial scale in-
troduces a series of challenges which should be addressed.
These include:

Repetition of components – for example the need to describe
multiple cells each of which has a similar definition.

Variation of components – sets of similar components with
defined variations, e.g. mutants.

Organisation of components – for example how cells are
organised into regular or irregular patterns over spatial
networks in one, two or three dimensions.

Communication between components – in general commu-
nication is constrained to occur between immediate
neighbours, but this may be further constrained ac-
cording to the relationship between neighbours, and
the position of a component within a spatial network.

Mobility – for example transport of components within a
system, or actively motile cells.

Hierarchical organisation – enabling the description of (pos-
sibly repeated) components which contain repeated
sub-components. For example, cells containing several
compartments. This feature enables the use of ab-
straction regarding the level of detail used to describe
components.

In this paper we have chosen the biological example of Pla-
nar Cell Polarity (PCP) signalling in Drosophila wing, which
illustrates several of these issues. The epithelial cells in
this organ are hexagonally packed in a 2-dimensional honey-
comb lattice. Signal transduction within each cell is coupled
with inter-cellular communication through the formation of



protein complexes, so that local (transmembrane) signalling
produces a global effect over the entire organ. Our model
of PCP includes the repetition of components in a two-level
hierarchy, permitting abstraction at the level of cells, with
a static two-dimensional organisation which is different at
each level. The first level is that of cells in a rectangular
honeycomb matrix, representing the epithelium tissue, and
the second level being intra-cellular organisation represented
by logical compartments within one cell in a rectangular lat-
tice. Moreover we model variations among cells in the form
of patches of mutant cells which lack a specific signalling
protein.

Modelling in biology tends to emphasise molecular details.
However in biological networks that involve more than a
few components the typical situation is that many details
are unknown, and it is imperative to devise an approach
that can be insightful and predictive even in the absence of
complete knowledge. Our strategy was based on building
first an abstract model of PCP which attempts to identify
the key biological aspects (e.g. formation of intercellular
complexes), and then constructing a more detailed, but still
simplified model which parameterises the many unknowns.

A large variety of modelling approaches have already been
applied to model a wide array of biological systems (see [12]
for a review). Among them, Petri nets are particularly suit-
able for representing and modelling the concurrent and asyn-
chronous behaviour of biological systems. However, stan-
dard Petri nets do not readily scale to meet the challenges
addressed above, and current attempts to simulate biological
systems by standard Petri nets have been mainly restricted
so far to relatively small models.

In contrast, Coloured Petri Nets (CPN) overcome the con-
straints of standard Petri nets by allowing the modelling of
large-scale systems in a compact, parameterised and scal-
able way. Thus coloured Petri nets should be suitable to
address the challenges in the modelling of PCP, motivating
us to use them to realise our modelling methodology.

In this paper, we introduce a general modelling principle
demonstrated by a specific example which illustrates many
of the spatial multiscale problems in biological systems, and
for this purpose we have developed the new modelling con-
cept of Hierarchically Coloured Petri Nets (HCPN). Our
approach is illustrated by a complex and challenging case
study, which requires computational experiments over very
large underlying models.

This paper is structured as follows: in Section 2 we in-
troduce the biological background of planar cell polarity,
followed by Section 3 on related work. Section 4 briefly de-
scribes coloured Petri Nets and in Section 5 we present our
modelling approach by means of the PCP case study, fol-
lowed by Section 6 on the analysis of our PCP model, and
finally the conclusion.

2. PLANAR CELL POLARITY
Planar cell polarity (PCP) refers to the orientation of cells

within the plane of the epithelium, orthogonal to the apical-
basal polarity of the cells. This polarisation is required for
many developmental events in both vertebrates and non-
vertebrates. Defects in PCP in vertebrates are responsible
for developmental abnormalities in multiple tissues includ-
ing the neural tube, the kidney and the inner ear (reviewed
in [30]). The signalling mechanisms underlying PCP have
been studied most extensively in the epithelia of the fruit fly

Figure 1: Drosophila: whole wing (left); scheme of
hexagonal cells with hairs (right).

Drosophila melanogaster including the wing, the abdomen,
the eye, and the bristles of the thorax. Genetic studies in
the wing and eye in the 1990s led to the proposal of a PCP
signalling pathway involving the PCP proteins Frizzled (Fz),
Dishevelled (Dsh) and Prickle (Pk) (reviewed in [37]). In the
late 1990s and 2000s further genetic analysis, including the
discovery of more PCP proteins, e.g. Flamingo (Fmi) and
Van-Gogh (Vang), and data on the sub-cellular localisation
of these proteins in normal and mutant situations, led to the
formulation of more complex models of PCP signalling.

The adult Drosophila wing comprises about 300,000
hexagonal cells each of which contains a single hair point-
ing in an invariant distal direction, see Figure 1. This hair
comprises actin bundles and is extruded from the membrane
at the distal edge of the cell during pupal development, at
the conclusion of PCP signalling. Preceding this ultimate
manifestation of PCP, signalling occurs such that the pro-
teins adopt an asymmetric localisation within each cell. At
the initiation of PCP signalling Fmi, Fz, Dsh, Vang and
Pk are all present symmetrically at the cell membrane. At
the conclusion of PCP signalling Fmi is found at both the
proximal and distal cell membrane, Fz and Dsh are found
exclusively at the distal cell membrane and Vang and Pk are
found exclusively at the proximal cell membrane. Through
the interpretation of various genetic experiments a consen-
sus view of the signalling events has been formulated that
centres on the communication between these proteins at cell
boundaries. The distally localised Fmi, Fz and Dsh recruit
Fmi, Vang and Pk to the proximal cell boundary and vice
versa. Since the localisation of the distal and proximal pro-
teins appear to be mutually exclusive a completely polarised
arrangement of protein localisation results. The PCP pro-
teins are thus thought to mediate the cell-cell communica-
tion that comprises PCP signalling and that they are in-
volved in establishing the molecular asymmetry within and
between cells which is subsequently transformed into the
polarisation of the wing hairs (reviewed in [31]). The result
is a polarisation of individual cells and local alignment of
polarity between neighbouring cells. A proposed feedback
loop mechanism was introduced by Tree et al. [32] which
provides a possible insight into how these proteins achieve
their asymmetric distribution while distally localized Fz and
Dsh designating the prehair formation. It is believed that
this feedback loop mediates a competition between proximal
and distal proteins between adjacent surfaces of neighbour-
ing cells. More details of the cellular machinery can be found
in the latest review paper [3]. Thus we will use Flamingo-
Frizzled-Dishevelled complexes (FFD) as a proxy for hairs
in our research.

In this paper, we use HCPN to model PCP signalling in
a generic setting that encompasses a broad class of specific
models, ranging from a single cell model to a multi-cellular
model. To this end, we have developed a model for the



generation of PCP to investigate the signalling by simulating
the dynamic behaviour of the PCP proteins and complexes.

Initially we wish to recapitulate the phenotypes of all
known mutant conditions, both loss and gain of function.
We hope to be able to address questions about the mecha-
nisms underlying the polarising signal, the dynamics of sig-
nalling by the individual components and the signals down-
stream of the PCP proteins which orchestrate the ultimate
morphological manifestation of planar polarity. Ultimately
we hope our model will make predictions about the mecha-
nisms underlying the PCP signalling process which will be
testable in a biological laboratory.

3. RELATED WORK
Modelling PCP. Several mathematical and compu-

tational approaches have been applied to study PCP sig-
nalling. In order to understand how the core proteins in-
teract to produce domineering non-autonomy in Drosophila
wing, Amonlirdviman et al. [1] (extended in [26]) built a
model by applying partial differential equations (PDEs) and
reaction-diffusion equations which abstract from the spatial
dimensions of the PDE model by discretising each cell into
a triangular mesh and used periodic boundary conditions to
select the grid of cells. Agent-based Modelling (ABM) with
stochastic differential equations was used to create a com-
putational model which includes the mechanism in which a
Frizzled gradient occurs through feedback-reinforced forma-
tion of Flamingo-based asymmetric intercellular complexes
in Le Garrec’s research [20] (applied to the Drosophila eye
in [19]). Schamberg et al. [29] built two models by ap-
plying reaction-diffusion equations to study the influence of
feedback loops, intra-inter-cellular diffusion and whether the
re-distribution of proteins depends on the amount of pro-
teins in neighbouring cells during polarisation, which was
based on one-dimensional line of cells. Burak et al. [6]
constructed a semi-phenomenological representation model
involving stochastic equations and used statistical mechan-
ics to study how local interactions between cells impact the
dynamics of the process on parameters. See [3] for an overall
review of this field.

These models lack an approachable way to generate the
cell geometry or a grid of hexagonal cells and are hard to
reproduce by other researchers. Thus, it will be a significant
contribution to provide an approach which allows us to sys-
tematically construct large scale mathematically tractable
models in which cell geometry is clearly formalised. Com-
pared with ODEs and PDEs, hierarchically coloured Petri
nets are more intuitive for users who do not have much
knowledge about modelling. In addition, we include new as-
pects of signalling, such as polarised transport of molecules,
which have not been considered in previous models.

Coloured Petri nets in Systems Biology. While
there is a lot of reported work on the application of different
classes of standard Petri nets to a variety of biochemical
networks, see [5] for a recent review, there are only a few
which take advantage of the additional power and ease of
modelling offered by CPN.

Existing studies usually resort to Design/CPN [7] or its
successor CPN Tools [17] in order to model and analyse bi-
ological systems. However neither tool was not specifically
designed with the requirements of Systems Biology in mind.
Thus they are not suitable for many applications, e.g. they
do not directly support stochastic or continuous modelling,

nor the simulative analysis of the models by stochastic or de-
terministic simulation. The approach taken in [9, 21] to over-
come this problem is to encode the concentration of species
as coloured tokens in order to implement continuous simu-
lation in the given net annotation language ML. While this
is a nice exercise in demonstrating the power of the annota-
tion language, the burden to implement standard simulation
algorithms is left to the modeller.

Coloured Petri nets have been used for qualitative mod-
elling and analysis in [25] to predict pathological pheno-
types based on genetic mutations and in [33] to model sig-
nal transduction networks. Here, colours encode mutations
of the modelled molecules or distinguish between different
molecules via their identifiers (colours). Colours have also
been used to discriminate metabolites which follow different
T-invariants (elementary flux modes) [14, 35, 28]. Bene-
fits of coloured Petri nets in a stochastic setting were first
demonstrated in [4] using a very simple epidemic model.

In our work, we use colour not only to express repeti-
tion, but also to encode (spatial) locality. We will show that
the standard colouring concept can be further enhanced by
hierarchically organised colours, which are able to directly
reflect the hierarchical organisation of the objects modelled.
We demonstrate our approach by a case study which yields
a design pattern for similar modelling problems.

4. MODELLING LANGUAGE

4.1 Coloured Petri nets
Coloured Petri nets (CPNs) [15, 16] are an established

discrete event modelling formalism combining the strengths
of Petri nets with the expressive power of programming lan-
guages. Petri nets provide a sound graphical notation for
modelling systems with concurrency, communication and
synchronisation. Programming languages offer the construc-
tions of data types, which permit the creation of compact
and parameterisable Petri net models. This is the most im-
portant advantage of CPN which we are going to exploit in
this paper.

Syntax. CPNs are – as are standard Petri nets – made of
places, transitions, and arcs. In systems biology, places typ-
ically represent species (chemical compounds), while transi-
tions represent any kind of chemical reactions or transport
steps. In this paper places represent PCP proteins whereas
transitions represent physical interaction and/or signalling
events between proteins and polarised transport of proteins.
Additionally, a CPN model is characterised by a set of colour
sets. Each place gets assigned one colour set and may con-
tain distinguishable tokens coloured with a colour of this
colour set. As there can be several tokens of the same colour
at a given place, the tokens at a place define a multiset over
the place’s colour set. A specific distribution of coloured
tokens at all places constitutes a marking of a CPN. Each
arc is assigned an expression; the result type of this expres-
sion is a multiset over the colour set of the connected place.
Each transition has a guard, which is a Boolean expression,
typically over variables occurring in the expressions of ad-
jacent arcs. The guard must be evaluated to true for the
enabling of the transition. The trivial guard ’true’ is usually
not explicitly given.

Folding and unfolding. Coloured Petri nets with finite
colour sets can be automatically unfolded into uncoloured
Petri nets, which then allows the application of all of the ex-



isting powerful standard Petri net analysis techniques. Vice
versa, uncoloured Petri nets can be folded into coloured Petri
nets, if partitions of the place and transition sets are given.
These partitions of the uncoloured net define the colour sets
of the coloured net. However, the algorithmic identification
of suitable partitions is an open research issue. The con-
version between uncoloured and coloured Petri nets changes
the style of representation, but does not change the actual
net structure of the underlying reaction network.

Behaviour. The variables associated with a transition
consist of the variables in the guard of the transition and
in the expressions of adjacent arcs. Before the expressions
are evaluated, the variables must be assigned values with
suitable data types, which is called binding [16]. A binding
of a transition corresponds to a transition instance in the
underlying unfolded net.

Enabling and firing of a transition instance are based on
the evaluation of its guard and arc expressions. If the guard
is evaluated to true and the preplaces have sufficient and ap-
propriately coloured tokens, then the transition instance is
enabled and may fire. When a transition instance fires, it re-
moves coloured tokens from its preplaces and adds coloured
tokens to its postplaces, i.e. it changes the current marking
to a new reachable one. The colours of the tokens that are
removed from preplaces and added to postplaces are decided
by the arc expressions. The set of markings reachable from
the initial marking constitutes the state space of a given net.
These reachable markings and transition instances causing
the marking change constitute the possibly infinite reacha-
bility graph (state transition system) of the coloured net.

Formal definition. The central CPN notion are the
colour sets. These are in our case discrete finite data types,
which are built starting from some pre-defined basic types,
such as Boolean and integer, using some type constructors,
such as subset or product. If A is a non-empty (colour) set,
then a multiset over A is denoted as AMS.

Moreover, there are different types of expressions, arc ex-
pressions, guards and expressions for defining initial mark-
ings. An expression is built up from constants, variables,
and operation symbols. It is not only associated with a par-
ticular colour set, but also written in terms of a predefined
syntax. In the following, we denote by EXP the set of ex-
pressions that comply with a predefined syntax. Then the
formal definition for coloured Petri nets is as follows [15, 16].

Definition 1. A coloured Petri net is a tuple
N = [P, T, F, Σ, c, g, f, m0], where:

• P is a finite, non-empty set of places.

• T is a finite, non-empty set of transitions.

• F is a finite, non-empty set of directed arcs.

• Σ is a finite, non-empty set of colour sets.

• c : P → Σ is a colour function that assigns to each
place p ∈ P a colour set c(p) ∈ Σ.

• g : T → EXP is a guard function that assigns to each
transition t ∈ T a guard expression of Boolean type.

• f : F → EXP is an arc function that assigns to each
arc a ∈ F an arc expression of a multiset type c(p)MS ,
where p is the place connected to the arc a.

• m0 : P → EXP is an initialisation function that as-
signs to each place p ∈ P an initialisation expression
of a multiset type c(p)MS .

Furthermore, we allow special arcs, e.g. read arcs or in-
hibitor arcs. If transitions are additionally associated with
stochastic (deterministic) firing rates, as discussed in [10],
we will get coloured stochastic (continuous) Petri nets. The
rate functions defining the usually state-dependent rates can
be specified for coloured transitions, or individually for each
transition instance; for more details see [22, 23].

4.2 Hierarchically coloured Petri nets
CPNs enable the modelling of (biological) systems com-

prising repeated components, each of which is associated
with a particular colour.

Moreover, colour can be used to encode spatial locality.
For example, to model cells in a 2-dimensional lattice, we
can represent one cell as a CPN with colour sets denoting
the number of copies (cells), and use functions to describe
the connectivity between the cells. A colour is a 2-tuple
which can then be read as an address identifying locality in
space. This can be easily extended to higher dimensions.
Moreover, the model is adjustable to different lattice sizes
by just changing some constants.

For this purpose, we adopt the notation that colour sets
are described by one, two or three-tuples, corresponding to
the number of spatial dimensions being modelled, and note
that the underlying colour set is given by the Cartesian prod-
uct expansion of the colour set tuple. Thus, for example,
when modelling cells in a rectangular M ×N grid, each cell
is associated with a colour (x, y) where x ∈ {1..M}, y ∈
{1..N}. A colour set can be associated with a set of con-
straints which effectively describe the topology of the one,
two or three-dimensional grid used to model the layout of the
components. Thus we may embed a component in a hon-
eycomb (hexagonal) lattice by imposing the requisite con-
straints over a rectangular grid. Guards over transitions
permit the description of the patterns of connection allowed
between cells.

Furthermore if we want to describe regular organisation
within a cell, we can extend this concept by having a grid
at the intra-cellular level and another set of colours to in-
dicate the position inside the inner grid. A separate set of
arc functions at the intra-cellular level indicates the inter-
component communication at this level. Consequently, we
get a sequence of tuples, each tuple referring to the address
within a certain level. We call this concept hierarchically
structured colours, and the corresponding net class Hierar-
chically Coloured Petri Nets (HCPN).

In order to support the description of hierarchically or-
ganised systems, we extend the notation for colour sets as
follows. The colour set of the highest level of an L hierarchy
is denoted by a tuple TL, that of the next level by a tuple
TL−1 and the lowest level by a tuple T1. When referring
to the colour set of a level, we will give its position in the
hierarchical tree of colour sets by prefixing the colour sets
above it. Thus for example, the colour set for the L − 1
level is given as TL · TL−1, and the colour set for the lowest
level as TL · TL−1 · . . . · T1. The number of colours in the
underlying colour set is given by the product of the number
of underlying colours in the colour set tuple from each level.

In order to further facilitate modelling, we can denote
each level by a descriptive label, thus the levels in a three
level hierarchy could be denoted by wing, cell, subcellular-
location and the entire colour set by wingcs·cellcs·subcellular-
locationcs. We further expand our notation for the guards so



that they are associated with the level at which they operate.
In summary, hierarchically structured colours are useful to

express repetition and (spatial) locality as we will demon-
strate in our case study.

5. MODELLING APPROACH
Overview. We first model each cell as a (standard) Petri

net, initially at a highly abstract level with virtual compart-
ments to detect PCP asymmetry. Because Drosophila wing
cells form a regular honeycomb lattice, we impose this or-
ganisation at the top level of the model as a hexagonal array
of cells, see Figure 2. We get the HCPN model by step-wise
colouring this spatial information. Finally we create a re-
fined description of a cell and reuse the colouring pattern
established by means of the abstract model.

Figure 2: Drosophila wing epithelial cells. (a) A
fragment of the wing tissue; the coordinates (la-
belled in black) in each cell represent the position in
the honeycomb lattice; (b) Cell (3,2) with 7 virtual
compartments.

Abstract Petri net model for a single cell. Our
initial model of the wing epithelial cell, illustrated in Fig-
ure 3, is a high-level representation of the network in order
to establish the colour sets required.

We first sub-divide each cell into four spatial regions (Fig-
ure 3): (1) the extracellular space (labelled as communica-
tion), where the intercellular complexes form, (2) the proxi-
mal cell margin (left-hand side of each cell) in order to pro-
cess intercellular signal between two neighbouring cells, (3)
production (read arcs denoting an infinite supply) and in-
tracellular transport of core species, and (4) the distal cell
margin (right-hand side of each cell).

In order to facilitate the detection of PCP asymmetry,
we then partition each cell into seven virtual compartments,
three each for the proximal and distal membrane edges, and
one compartment for the cytosol, see cell (3, 2) in Figure 2,
right. It should be noted that our abstract model is an ex-
tremely simplified version of PCP to begin with, which only
includes essential components and structure and eliminates
the duplication of molecular species (places) at the distal
and proximal edges of a cell. Thus, in this model, the po-
larity will arise by the asymmetrical distribution of proteins
at the distal and proximal edges of each cell together with
the intercellular communication.

HCPN model for honeycomb lattice of cells. First,
we define two constants M, N and a two-dimensional colour
set (CS1) representing a rectangular M ×N grid, and select
that subset which denotes the coordinates of the hexagonally
packed cells (CS Cell), see Figure 2. At this level of hierar-
chy (wing tissue comprising folded cells) we obtain a HCPN

Table 1: Declarations for the abstract and refined
HCPN models. Here “cs” denotes “color set”, “var”
“variable”, “con”“constant” and “fun”“function”.
Type Declaration
con int : M = 15, N = 15, R = 3, C = 3;

cs Row = int with 1 − M ;
cs Column = int with 1 − N ;
cs CS1 = product with Row × Column;
cs CS Cell = CS1 with

x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1;
cs ComR = int with 1 − R;
cs ComC = int with 1 − C;
cs CS ComP = product with ComR × ComC;
cs CS2 = product with CS Cell × CS ComP ;
cs CSdistal = CS2 with b = 3;
cs CSproximal = CS2 with b = 1;
cs CSmiddle = CS2 with a = 2&b = 2;
cs CSI = int with 1 − 2;
cs CS3 = product with CSproximal × CSI ;
cs CSproximalInter = CS3 with r = 2&a = 2|r = 1;

var x : Row, y : Column,
a : ComR, b : ComC, r : CSI ;

fun CSproximal NW

(Row x,Column y,ComR a,ComC b,CSI r)
{[(!(x=1|y=1))&(r=1&a=1&b=1|r=2&a=2&b=1)]
((x-1,y-1),(a+1,b+2));}

fun CSproximal SW

(Row x,Column y,ComR a,ComC b,CSI r)
{[(!(x=M|y=1))&(r=2&a=2&b=1|r=1&a=3&b=1)]
((x+1,y-1),(a-1,b+2));}

fun bool MutReg(Row x,Column y)
{x>=4&x<=8&y>=3&y<=7;}

model, which has a similar structure to that of Figure 3, but
each place has assigned the colour set CS Cell.

Next we assign a colour to each of the seven virtual com-
partments of a cell. We do this by using a 3 × 3 matrix
(CS ComP ) and ignoring colours (2,1) and (2,3) so that
the proximal compartments are (1,2), (2,2) and (2,3), the
middle compartment is (2,2), and the distal compartments
are (3,1), (3,2) and (3,3). We combine information about
cell and compartment locality by defining CS2, and we in-
troduce three subsets CSdistal, CSproximal and CSmiddle

of CS2 to more clearly represent the components of a cell in
a specific region, i.e. the distal, proximal or middle region.
The colour sets we define are hierarchical, so we can locate
each place in terms of the coordinates ((x, y), (a, b)), where
(x, y) denotes the position of a cell and (a, b) denotes the
position of a compartment within that cell.

We continue folding using these colours to obtain a more
compact HCPN model (a tissue of cells comprising virtual
compartments). This is achieved by folding the three prox-
imal compartments into one, similarly for the three distal
compartments, by assigning the colour sets CSproximal and
CSdistal to its places. The central compartment (2,2) is de-
noted by the colourset CSmiddle.

Finally, we fold the two similar communication compo-
nents (the red transitions) in compartment (2, 1) into one.



Figure 4: Abstract HCPN model describing cells with seven compartments in a 2-D matrix. Places D and E

are logical nodes which are in the distal compartments of each cells. See Table 1 for all declarations. Dotted
red line indicates proximal cell boundary.
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Figure 3: Abstract PN for a single cell, illustrat-
ing the four spatial regions (coloured for illustration
purposes only): communication, proximal, trans-
port and distal, and the seven virtual compartments
(labelled [1, 1], [2, 1],..., [3, 3]). Each place or transi-
tion belongs to a specific compartment, indicated
by a tuple of coordinates given as a suffix in place
or transition names. NW and SW denote the two
left neighbours of the current cell. Dotted red line
indicates proximal cell boundary.

For this we define a colour set CSI . Then we define a prod-
uct colour set CS3 based on CSI and CSproximal, and one
of its subsets CSproximalInter.

In the following, we describe the necessary steps to con-
struct the compact HCPN model. Having defined the colour
sets, we create variables that are used in transition guards

and arc expressions. In the six virtual compartments for the
proximal and distal cell edges, each arc is assigned an expres-
sion which includes two tuples of coordinates ((x, y), (a, b)),
meaning that the arc links the associated place to a particu-
lar transition in the (a, b) compartment of the (x, y) cell. In
the middle virtual compartment, the arc expression changes
to ((x, y), (2, 2)). In order to represent the neighbourhood
between adjacent cells, we define two neighbour functions,
NW and SW , denoting two left neighbours of a cell. Finally,
we get the HCPN model for PCP, illustrated in Figure 4. See
Table 1 for all declarations of this coloured model.

This is a generic model able to generate honeycomb tissues
of arbitrary size by adjusting the two constants M, N. The
colour sets define a pattern which can easily be reused to
model similar scenarios of spatial locality.

In summary, the procedure to construct a HCPN model
for a multi-cellular tissue with regularly structured compart-
ments inside each cell can be divided into two steps.

• Fold cells: build up the structure of multi-cells repre-
senting the locality of each cell.

• Fold compartments: create the required localisation of
compartments within a cell.

This can be trivially extended to model systems with more
than two levels of hierarchy.

A refined model of PCP. We develop a more detailed
PCP model by refining the model of Figure 4, which is
available at http://people.brunel.ac.uk/~cspgqqg/. The
refined model of PCP signalling begins with a set of six
core proteins (Fz, Dsh, Vang, Pk, Fmi and Ld, the exper-
imentally undefined directional signal that biases PCP sig-
nalling). In total each cell comprises 102 transitions and 76
places. It is based on by models Amonlirdviman et al. [1]
and Le Garrec et al. [20], extended by polarised transport of
proteins. In our model, we include cells, membranes, nuclei,
cytoplasm and the extracellular space. We also include the
intracellular inhibitory loops which amplifies the cell polar-
ity as a result of which each cell accumulates high levels of
Fz on one side of the cell and high levels of Vang on the
opposite side [18].

To construct the refined model we use the same declara-
tions given in Table 1 as those used for Figure 4; thus, we
do not need to start from scratch. We group transitions
and places into different regions and virtual compartments,
and then assign the same colour sets to each region or com-
partment as done for Figure 4, likewise for arc expressions.
Additionally, we define a function denoted as MutReg (see



Table 1) which will be used to localise mutant cells on the
tissue to model biological mutant clones. Thus, with this
refined model we can not only perform simulations of PCP
signalling in normal, wild-type cells but also on patches of
mutant cells in a wild-type background.

6. ANALYSIS
HCPNs enjoy a large variety of analysis techniques, rang-

ing from informal animation to formal static or dynamic
analysis techniques. In the following, we confine ourselves
to simulative methods to analyse quantitative counterparts
of our refined PCP model, which we get by assigning to
each transition a rate function following mass-action kinet-
ics. The kinetic parameters have been optimised by using
simulated annealing with wet-lab time series target data [2].
It takes approximately an hour to run 100,000 iterations
using our optimisation program. Each simulation begins
with five of the key proteins homogeneously distributed on
the membranes. To simulate wild-type and different mu-
tant conditions, we consider individual marking sets, func-
tion sets, and parameter sets (which are maintained within
one model file).

This quantitative model can be equally read as a stochas-
tic or continuous model, with appropriate scaling of the ki-
netic constants, see [36], which includes in our case scaling
the value of tokens to the number of levels used, see [13].

To limit the computational expense, we use our generic
HCPN model to generate an in-silico tissue based on a 15*15
honeycomb grid consisting of 112 cells in total. The under-
lying unfolded model comprises 8,624 species (places) and
9,184 reactions (transitions), and thus the ODEs system to
be analysed consists of 8,624 equations, because each species
requires one equation; see Table 2. Our modelling approach
can be easily applied to larger in-silico tissues (by changing
two constants in the model), provided sufficient computing
power is available. We conduct our analysis as a proof of
principle that our model has indeed the ability to capture
the given biological phenomena and make sensible predic-
tions. All simulations run over a total time span of 0-180
reported at 100 time points. The time span represents 33
hours of PCP signalling. For performance measures see Ta-
ble 2.

We start off with simulating and analysing the wild-type,
before considering the effect of a patch of cells lacking Friz-
zled on neighbouring wild-type cells.

Experiment 1: Stochastic simulation. We use the
Gillespie stochastic simulation algorithm (SSA) [11] to simu-
late our PCP model and observe that the model behaviour in
the stochastic setting approaches the continuous behaviour
for increasing level numbers and/or increasing number of av-
eraged simulation runs. See Fig. 5 for an example; it shows
an average of the stochastic behaviour of Flamingo-Frizzled-
Dishevelled complexes (FFD) at the three distal compart-
ments (i.e. (1, 3), (2, 3), and (3, 3)) in an arbitrarily chosen
cell, cell (3, 4).

We take this as justification to confine ourselves in the
following to the continuous setting.

Experiment 2: Single cell, time plot. Current bio-
logical models of PCP signalling postulate that as a result of
the intercellular communication between two neighbouring
cells, Fmi, Fz and Dsh accumulate on the distal side of each
cell, designating it as the future site for prehair formation,
while Fmi, Vang and Pk accumulate on the proximal side of
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Figure 6: Continuous simulation result. Note that
plots for (1,1) and (3,1) are identical, as are (1,3)
and (3,3).

its neighbouring cell. Thus, we first look at the behaviour
of a single cell in our in-silico tissue via time series data of
one of the products of the intercellular communication which
mediates the mechanism of PCP. We expect the FFD com-
plexes to accumulate at the distal edges of each cell rather
than the proximal edge.

The time series plot in Figure 6 displays the dynamic
behaviour of FFD in both the proximal ((1, 1), (2, 1) and
(3, 1)) and distal ((1, 3), (2, 3) and (3, 3)) compartments in
cell(3, 4). It clearly shows that at the end of signalling FFD
accumulates at the distal edge of the cell rather than at the
proximal edge, with a very slight peak in the middle distal
compartment (2, 3). FFD accumulates and reaches a stable
state after PCP signalling is activated. Moreover, we find
that the concentration of FFD in different distal compart-
ments reaches a similar level if simulating the model over a
sufficiently long time.

Experiment 3: Single cell, model checking. We ap-



Table 2: The size of the PCP model and runtimea) for unfolding and continuous simulation.
Size Time (seconds)

Grid(M × N) Cells Places Transitions Unfolding Unfolding/Cells Simulation Simulation/Cells
5 × 5 12 924 984 0.665 0.0546 1.192 0.0993

10 × 10 50 3,850 4,100 2.528 0.0506 5.152 0.1030
15 × 15 112 8,624 9,184 6.108 0.0545 11.952 0.1067
20 × 20 200 15,400 16,400 11.705 0.0585 25.272 0.1264
50 × 50 1,250 96,250 102,500 139.594 0.1117 220.735 0.1766

a) done on PC Windows Vista (TM) business Intel(R) Xeon(R), CPN 2.83GHz, Memory(RAM) 4.00 GB;

ply PLTL model checking [8] to analyse traces from the con-
tinuous PCP model in order to check whether the property
observed in the two former experiments holds in all cells in
the considered tissue. We focus on the distal concentrations
of species FFD in each cell, and exploit the following two
types of properties.

(1) For each cell (x,y) in the honeycomb, we want to check
the property: After some time (specified by the constant
init phase), FFD in the middle distal logical compartment
(i.e. position (2,3)) is always (i.e. during the observed sim-
ulation time) greater than all other logical compartments
(i.e. positions (1,3) and (3,3)). For this, we form the fol-
lowing query, where A, B and C denote FFD (x,y) (1,3),
FFD (x,y) (2,3) and FFD (x,y) (3,3), respectively:

P=?[G(time > init phase → ([B] > [A]&[B] > [C]))]

We simulate the continuous model for the 15*15 honey-
comb grid consisting of 112 cells in total over 180 time units,
and use this query with init phase set to 0 to check all cells.
The query holds for all these cells except the cells in the last
column, i.e. cells (2,15), (4,15) . . . (14,15).

(2) For FFD in each distal compartment of each cell, we
also want to check how many peaks exist in their traces. For
this, we define the following queries (take FFD (x,y) (2,3)
as an example):

P=?[F ((d[B] > 0)&F ((d[B] < 0)&F ((d[B] > 0))))]
P=?[F ((d[B] > 0)&F ((d[B] < 0)))]
P=?[F ((d[B] > 0))]

Here we use the function d(species) to get the derivative
of the concentration of the species at each time point. Using
the same traces as above we get the following results.

• For the cells in Row 1, Row 15 and Column 15,
FFD (x,y) (2,3) has no peak.

• Except for these boundary cells, other cells have ex-
actly one (slight) peak for FFD (x,y) (2,3).

• For FFD in other distal compartments, there are no
peaks.

Experiment 4: Wild-type tissue. This experiment
aims to show how the signalling flows through the whole in-
silico tissue via a network of communicating cells to produce
the pattern of the whole tissue of wild-type cells.

We selected the time point when the signal between the
distal and proximal edges in a cell is the greatest, which
indicates that the signal is strongly effective. In our model,
we choose time step 60 as such a time point to compute
the overall concentration of FFD at the distal edge of each
cell. We sum the concentration of FFD in the three distal
compartment to give the overall concentration.

In order to analyse the orientation of hairs, we display the
distribution of FFD within each cell in the in-silico tissue in
the following way. We assume that

• if the FFD level at the distal edge of a cell is higher
than that at the proximal edge, the hair points distally
(denoted by red right-arrows);

• if the level of FFD at the distal edge of a cell is lower
than that at the proximal edge, the hair points proxi-
mally (denoted by green left-arrows);

• if the level of FFD is equal at the distal and prox-
imal side, the hair’s orientation is decided randomly
(denoted by black circle).

For the wild-type tissue, we get a figure similar to Figure 7,
left, but trivially with all hairs pointing distally (not given
in this paper).

Experiment 5: Mutated tissue. We have modelled
the effect of a patch of cells lacking the key signalling
molecule Frizzled in an otherwise wild-type field of cells by
completely knocking out the concentration and transport of
the corresponding places in our model. For demonstration
purpose, we present the results of Fz mutant clone as an
example [34]. Using the MutReg function (see Table 1),
we produce a mutant clone of Fz- inside our in-silico tis-
sue, comprising seven cells ((4, 5),(5, 4), (5, 6), (6, 5), (7, 4),
(7, 6), (8, 5)). Cells in a Fz- clone have incorrect polarity
and occasional multiple hairs. Wild-type cells distal, but
not proximal to the clone have incorrect polarity, pointing
more proximally towards the clone [18]. Regarding the ca-
pability of our current model, we expect: (1) cells in the
clone have incorrect polarity (FFD does not form); (2) wild-
type cells distal to the clone have FFD accumulated at the
proximal rather than distal edge of cell. We apply the same
approach as described in the analysis of the wild-type tissue.

The result shows the impact of a clone of Fz- mutant
cells on their distal neighbouring cells (see Figure 7, bottom
right). In addition, we find that the level of FFD at the
distal edge of wild-type cells adjacent to the Fz- clone has
been reduced compared to wild-type tissue as shown from
our simulation. Thus, our model has made a predication
that can be tested in a biological experiment.

Discussion. We have shown that our model recapitulates
the signalling phenomena known to occur in wild-type and in
and around Fz-clones as a first attempt to demonstrate the
basic principles of implementing of CPN to PCP signalling
and show the usefulness of CPN to multi-scale modelling of
a multi-cellular system. We will reproduce the phenotype
of other mutations in our future research. We intend to
continue elaborating a more sophisticated model which will
be able to answer the questions addressed at the end of
Section 2.



Figure 7: Analysis result from our simulation vs
Fz- clone in wild-type background: (a) Analysis re-
sult: red right-arrows represents that the overall
FFD at the distal edge is higher than the proxi-
mal edge, green left-arrows represents the overall
FFD at the distal edge is lower than the proxi-
mal edge, black circles represent the overall FFD is
equal at distal and proximal edges (Fz- clone causes
non-production of FFD in the mutated cells in our
model); (b) The biological image: the red arrows
show the orientation of most wild-type cells sur-
round the Fz- clone and the green arrow follows the
orientation of hairs in cells from the distal neigh-
bourhood of the clone.

Another crucial point is how many cells we can simulate in
terms of current computational capabilities, i.e. what tissue
size can we actually analyse. For this, we have to address
three technical key problems: unfolding, ODEs construc-
tion (in the continuous case), and simulation. The coloured
(stochastic or continuous) Petri nets are automatically un-
folded which can be considered as a kind of compilation. In
the continuous case, for each place the corresponding ordi-
nary differential equation needs to be constructed. Finally,
the established model has to be simulated using an appro-
priate continuous or stochastic simulation algorithm.

Using the refined coloured Petri net model, we performed
a simple test by increasing the number of cells in the tis-
sue. We report the unfolding/simulation time for different
size of the PCP model in Table 2. From the ratio of unfold-
ing/simulation time to number of cells, we can see that both
the unfolding and simulation time increase approximately
linearly.

7. REPRODUCIBILITY
All Petri net models in this paper were constructed with

Snoopy [27], recently extended to support coloured Petri
nets [22], which can be obtained from http://www-dssz.

informatik.tu-cottbus.de/DSSZ/Software/Snoopy.
Simulations were done with Snoopy’s built-in stochastic

and continuous simulators, simulation traces have been writ-
ten to csv files, which have then been further processed by
MC2 [8] for model checking and Matlab R©7.11.0 [24], specif-
ically to derive Figure 7, left.

The models in Snoopy format and high resolution di-
agrams, and the simulation data can be found at http:

//people.brunel.ac.uk/~cspgqqg/.
Thus, all our results can be easily reproduced by the in-

terested reader.

8. CONCLUSION
In this paper, we have presented our current work ap-

plying Petri net techniques to construct a generic computa-
tional model in order to explore the mechanisms that drive
Planar Cell Polarity in Drosophila wing tissue. Our ap-
proach has involved developing a sophisticated pattern of
communicating sub-models. We have demonstrated the use-
fulness of coloured Petri nets in this scenario and identified
the need for hierarchically organised colours. Our prime
motivation in this paper has been to develop the modelling
methodology based on the new concept of hierarchically
coloured Petri nets, and to demonstrate its usefulness.

Our model has allowed us to generate behaviours as a first
step to explaining the complex behaviours observed in the
biological system under study, and to explore the effects of
mutations by introducing variations in patches of cells in
our computational model. Our analysis confirms that the
behaviour of the model correctly demonstrates that the ma-
jor accumulation of actin (from which the hairs are formed)
occurs in the most distal part of wild-type cells, correspond-
ing to the location of the prehair formation in wing cells
of Drosophila. Moreover our model confirms that the in-
troduction of mutant clones disrupts the pattern of actin
accumulation and hence hair orientation in wild-type cells
on the distal side of the clone.

The construction of sufficiently large models of Drosophila
wing epithelial tissue has required computational experi-
ments over several thousands of ordinary differential equa-
tions. Our HCPN model and the software required to sim-
ulate and analyse it are freely available, thus ensuring that
our results are reproducible by the scientific community.

Our current model serves as a proof of concept. However,
its the ability to make predictions and provide an accurate
picture of PCP signalling is limited by its lack of sufficient
biological detail. In ongoing work we are using CPN to con-
struct more realistic PCP models which incorporate more
detailed descriptions of the signalling pathways involved.
Our overall aim is to facilitate a better understanding of
the mechanisms that drive PCP, and to make predictions
about the behaviour of the system when it is perturbed by
the loss of specific signalling components. Furthermore we
are also challenging our modelling framework by other case
studies including motile elements.
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