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Abstract. In this chapter we review techniques for sequence based pattern discovery
and comparison, and show how these @an be extended to RNA structures and abstrad
representations of protein structure & the fold level. We first define deterministic
patterns over sequences and distinguish pattern matching from string comparison,
reviewing the use of dynamic programming to compute elit distance, and longest
common sub-sequence  We then describe gproaches to pettern discovery in
sequences and describe methods for evaluating the goodness of patterns. Next we
show how string pattern languages can be extended to be gplied to more complex
data structures which can sequence ad structural information, and give some
algorithms for pattern discovery over certain classes of biosequences with structural
content, with spedfic goplicaion to RNA. Finally we describe our work on pattern
discovery and structure cmmparison for topdogicd descriptions of protein structures,
and show how these gproaches can form the basis for pradicd and useful
computational systems.

1. Biological background

This chapter assumes familiarity with moleaular genetics, i.e. the cmposition and
function & DNA and RNA and the processes of transcription from DNA to RNA and
tranglation from RNA to amino adds. We refer the reader to any good uncbrgraduate text on
biochemistry for further detail s, e.g. [1] or [2].

2. Motivation

Given a particular target sequence/structure in which we ae interested, and abou which
we ae ladking certain information, we often wish to find hanologous quences/structuresin
order to make some hypotheses about the function d that sequence/structure. In general we
will have acessto a set of reference sequences/structures which are suitably annaated with
organism of provenance biologica function(s) etc., and which may be grouped into families
acording to certain criteria, e.g. biologica function a phylogenetic relationship. The
reference sets may be very large, e.g. all known nuwcleotide or amino-add sequences — 16
million a 100,000records respedively, or al pulicly available protein structures — 17,000
(February 202). The task is thus to use some effedive method to relate the target to the
reference set, i.e. to perform a seach with the target, where dfectivenessis measured bah by



biologicd usefulnessof the results as well as ‘speed’ of operation. In principle there are two

main approaches to searching

(1) pair-wise compare the target with each member of the reference set,

(2) group the reference set into families, extrad common feaures of each family, and to
match the target with these mmmon descriptions.

In eat case, we will need to rank the results in some way in order to be ale to consider
the most significant. The two approaches can be regarded as being the same if each member
of the reference set forms one singleton family in (2). However, in general, the advantage of
(2) is that ead family usually comprises sveral members and thus there ae fewer families
than the reference individuals, and hence less matching operations have to be made than
comparison ogerations. Moreover, matching may be faster than comparison, depending on
the detail and form of the common descriptions. The disadvantages of (2) are firstly how the
choice is made to form family groupngs, and hav charaderistic ae the @mmon
descriptions. Of course, the groupngs and generation o common descriptions is usually
performed infrequently, andis certainly nat carried ou each time asearch is made.

3. Comparison of sequencesor structures

If we compare a (new) sequence or structure with another sequence or structure, then we
can oltain a measure of distance or simil arity between the two oljeds; the distance measure
shoud idedly be ametric, i.e.

» distances $roud be pasitive and the distance from an oljed to itself shoud be zero

» distances shoud be symmetric

» distances $oud respect the triangle inequality (the direct distanceis the shortest distance
between two oljects)

Comparison d two sequences/structures shoud also produce aset of largest common sub-
sequences or sub-structures (LCS) - it is not guaranteed that the set is a singleton - and a
correlation ketween the two sequences/structures and each LCS. The sequences/structures
can then be digned using the LCS. In fad, pair-wise cmmparison can generalised to n
objeds, athough the complexity of a naive implementation o n-wise cmparison can be very
high. A form of n-wise distance can be obtained by computing the mean o all the pair-wise
distances between the n objects.

In general comparison is a more expensive operation than deterministic matching, and
more dosely related in complexity to probabili stic matching. The most common wse of
comparisonis to pair-wise mmpare anew sequence or structure s with the members of a set
T of sequences or structures, each of which has ssme known biologicd attributes (function,
or at least organism of provenance) — see dove. Aswith probabili stic matching, the result of
the cmparisons will be the asociation with eady member of T of a cmparison value for s,
the task is then to interpret these values. Again, these values can be ordered and aso
asociated with some measure of significance (e.g. E-values or P-values). Thus the
comparisons can be ordered, and only those deamed to be significant considered.

4. Sequences, structures, patternsand motifs

There ae many terms used to describe common similarities between sequences or
structures, for example pattern, motif, fingerprint, template, fragment, core, site, alignment,
weight matrix, profile. For our purposes we will regard a pattern as a description d some
properties of a sequence or structure, and a motif as a pattern associated with some biologicd



meaning [3]. Moreover, if in a new sequence we detect the presence of a pattern known to be
characteristic to a certain family, then we can hypothesise that the new sequence belongs to
that family, even if we do not know its biological properties yet. In thisway patterns may be
used for the classification of bio-sequences and for predicting their properties. A pattern is
said to be diagnostic for a family if it matches al the known sequences in the family, and no
other known sequences. In general, patterns may be characteristic (match most of the
sequences in a family and few other sequences), or classificatory (used to decide to which
family a sequence belongs).

Patterns can be deterministic, i.e. can be used to decide if a sequence or structure matches
the pattern or not, or probabilistic, when a value can be assigned to the match. For instance
C-x(2, 4)- [ DE] is asequence pattern matching any sequence containing a substring starting
with C followed by between two and four arbitrary symbols followed by either a D or an E.
Examples of probabilistic patterns are profiles and Hidden Markov Models. Deterministic
patterns are ssimple and pure mathematical concepts, and are easier to interpret than
probabilistic patterns; they are also easier to discover from scratch, especialy if the data is
noisy (contaminated). On the other hand, probabilistic patterns have more modelling power
since they permit weights to be attributed to alternatives [4].

More generally, we will often wish to classify a new sequence or structure s using alibrary
or set of M motifs. If the motifs are deterministic then matching s against the members of M
will result in a subset of motifs which may be diagnostic for s. If M comprises probabilistic
patterns then the result of the matching will be the association with each pattern of a match
value for s; the task is then to interpret these values. It is usua to associate an ordering
relation with match values, for example total ordering over integers or reas, and also to
associate some measure of significance with match value, for example E-values (expectation
values) or P-values (probability values). Thus the matches can be ordered, and only those
deemed to be significant considered.

The use of such motif libraries is predicated on the prior identification of meaningful
families, the selection of (possibly representative) family members, and the ability to generate
patterns (either by hand, or automatically) which are sufficiently characteristic of the family.

5. Protein family analysis using patterns

Thus, the general protocol for family analysisisto

(1) collect sequences (structures) into a family based on biological function or phylogenetic
relationships

(2) make family description by loca multiple alignment, global multiple aignment or
pattern discovery

(3) usethe description to identify more family members

(4) analyse the extended set to see if the members are biologically related to the origina
family members

Regular expressions

We briefly remind the reader of regular expression notation:
Symbol: for each symbol a in the aphabet of the language, the regular expression a
denotes the language containing just the string a



Alternation: Given 2regular expressons Mand N then M | N isanew regular expresson.
A string isin language (M|N) if it is language M or language N. The language (alb) = {a,b}
containsthe 2 stringsa and b.

Concatenation: Given 2 regular expressons M and N then MeN is a new regular
expresson. A string is in language (M<N) if it is the concatenation d two strings o and 3
such that a isin language M and 3 isin language N. Thus the regular expresson (alb)ea =
{aa ba} definesthe language @ntaining the 2 stringsaa andba

Repetition: M* stands for zero or more times repetition d M, M+ one or more times, and
M? for zero or one occurrences of M.

Character ranges: [azA-Z] character set dternation, ‘.’ any single dharader except a
new-line (i.e. awild card),

Regular expressions and biosequences

In general we have the following basic dphabets: Z = { a, t, ¢, g} for DNA nucleotides,
andZ ={ a u,c, g} for RNA nucleotides. In the cae of proteins we have a20 character
alpabet of aminoacidsz ={A,C,D,E,F,G H,|,K,L,M,N,P,Q,R, S, T,V, W, Y}. We
can also have general character group aphabet ' = {g;...0,} - €0. amino-add class— and
wild cards X = { x(n3,nz) | m<nz O N}. Thus V(x(c1,c2)) is the set of all words over X of
length between c; and c,. A pattern P=p;...pn , pOZOMOX. It isaso common pradice to
separate pattern alphabet characters by a dash “-” [4]. Thus, for example, given a pattern
P=A-x(2,6)-[L1]-x(0,0) and a string SSACDEFLGHJKL, we can oltain a match since S =
A+*CDEFsL*GHJKL (where ‘s’ means concatenation) and AOV(A), CDEFOV(x(2,6)),
LOV([LI]), GHIKLOV (x(0,0)).

PROSITE patterns which are regular expressons over amino-adds use the following
notation: ‘x’ any amino add; ambiguities. [ALT] =Ala or Leu or Thr, negation: {AM} any
amino add except Ala and Met, ‘-’ as the separator, ~ < for the N-terminal, * > f or the C-
terminal, and ‘.’ for the end of the pattern. Repetitionisindicaed in genera by e.g. x(2,4) =
X-X Or X-X-X or X-X-X-X and in the speaa case x(3) = x-x-x. An example of a prosite pattern
is[ AC] - x- V-x(4) - {ED}. , which can be expanded to[ Al a or Cys] - x-Val - x- x-
x-x-{any but G u or Asp}. Ancther example is <A-x-[ ST] (2)-x(0, 1)-V.
which starts at the N-terminal of the sequence and is can be expanded to Al a- x-[ Ser or
Thr]-[Ser or Thr]-(x or none)-Val.

Structural sequence patterns

Eidhammer et a [5] introduce CBSDL, a constraint-based structure description language,

where structural patterns contain constraints onthe

(2) length of a substring to match a specific comporent;

(2) distance (in the input string) between substrings to match the different components of a
pattern;

(3) contents of a substring to match a cmporent, e.g. the ssamndsymba shoud be ana or a
t;

(4) positions ontheinpu string where aparticular comporent can match;

(5) correlation between two substrings matching different comporents, e.g. the substrings
shoud beidenticd, or the reverse of each ather.



This definition thus includes purely sequential patterns, which do na include acorrelation
constraint and are within the dass of regular languages, for example PROSITE patterns.
Structural patterns have a least one arrelation constraint, for example repetitions or
palindromes, and may describe @ntext-free languages or even languages beyond the
expressve power of context-free grammars, although there may be some languages in these
classes which they canna describe. From the point of view of bioinformatics, sequential
patterns can thus describe sequences, whereas dgructural patterns can describe ‘folded’
strings, i.e. RNA structures sich as gem-loops and pseudo-knats, and some topdogical
descriptions of protein structures. Some examples of patterns which can be described by this
language are shown below. We use Greek letters to indicate sub-patterns, possbly
superscripted by r for reverse and ¢ for complement, and unaline correspondng sedions of
sequences.

Complements a-u g-c, g-u (wedker)
Table 1: Examples of structural sequence patterns

Tandemreped | a-a acg-aq

Simple repeat a-B-a &Cg-aaa-acg

Multiplerepeat | a-B-0-3-a acg-aa-acg-uu-acg

Palindrome a-a' acg-gca

Stem loop a-B-a' acg-aa-cgu

Pseudoknot a-y1-B-y>-0"-ys-B | augg-cuga-agge-cgau-c-ucag-ggcau-aucg-ccgu

\ 4

ggcauaucgccgu
[N
gacucuage
(RN

auggcugaaggc

String:

auggcugaaggccgaucucagggcauaucgecgu

a 7, P oy ooy, B
Figure 1: pseudoknot

6. Learning —pattern discovery

Brazma et al [4] have surveyed pattern discovery in biosequences; in the following we
generalise their definitions to biostructures as well as biosequences.

A protein family F+ is a set of protein sequences or structures sharing definite functional
or structural properties. If we have alanguage L of strings or structures then F' is a subset of
the total set of al possible sequences/structures that can be generated by the grammar of L,
and F- are al those sequences/structures in L which do not belong to the family. Pattern
discovery is then the problem of automatically finding functions approximating the
characteristic function for the family F+. An agorithm for solving this problem takes as
input a training set consisting of positive examples, which are sequences from F+, and
optionally negative examples which are sequences from F-. This is a machine learning
problem, namely that of learning a general rule from a set of examples. When both positive
and negative examples are given, it is called the classification problem, and when only
positive examples are given, it is called the conservation problem.

In the classification problem, we are given a set of sequences/structures S+ believed to be
members of a family F+, and a set S- of sequences/structures believed not to be members of



F+, i.e. St OF andS O F-. We dso assumethat F+ end F- are digoint. The goal isthen to
find compact “ explanations’ of known sequences, i.e. functions that return true for all s 0 S+
andfasefor al s0S-, and have ahigh likelihoodfor returning true for s [0 F+ andfalsefor s
O F-. Furthermore, we would like to try to predict the family relationship of yet unknovn
sequences. In reality the data may be dirty, i.e. some members of S+ may be members of F-
and some of S- may be in F+. Such contamination may be due to mis-classfication by the
field biologists or else to errors in data processng. If S+ n F- and S- n F+ are small, then
the task is to find compact string functions that return true for most s [ S+ and false for most
s[0 S, and have ahigh likelihoodfor returning true for s [0 F+ andfalsefor s [0 F-.

In the conservation problem we are only given pcasitive examples, i.e. a set S+ of
sequences/structures believed to be members of family F+. The goa is then to find
interesting string functions that return true for all s 0 S+ and have ahigh likelihood for
returning true for s 0 F+. If the data ae mntaminated, hopefully to a small extent, then we
need to find interesting string functions that return true for most s 0 S+, and have ahigh
likelihoodfor returning true for s 0 F+. We can define interesting functions as having alow
probabili ty for returning true for randam sequences.

Classification: + and - examples Characterisation: + examples only

(&
C -

2* 27\'

Figure 2: Clasgficaion and charaderisation, nasy case. (Adapted from [4])

When carrying out pattern discovery we need to construct training and test sets of positive
and opionally of negative examples. Sincein practicewe may not know al members of F+
and F-, we can randamly divide an initial set of positive examplesinto atraining set S+ and a
test set T+, similarly for S- and T-. The goal is to accurately describe “new” members of F+
and F- when we come agcossthem.

In order to solve these problems, we nedd to:

(1) Find a good classof functions from which the gproximating function f will be dosen
for a particular red-world problem. This classis called the solution space, hypothesis
space, or target class.

(2) Define afitness measure, giving aranking of the solution space and thus evaluating how
goodead functionisfor the given training set.

(3) Develop an agorithm returning those dasdfier functions from the given solution space
that rate high enough according to the fitnessmeasure.

The success in solving the prediction part of the problems will depend on hav
succesdully we will have dosen the solution space ad fitness measure, even if the
algorithm is perfed in the sense of finding all the fittest patterns.



7. Pattern discovery algorithms

Pattern discovery algorithms can be divided into two groups. pattern driven and sequence
driven. In the following we adapt from [4].

Pattern-driven (PD) approaches are based on enumerating candidate patterns and
selecting those with the best fitness; the general framework of these algorithmsis:

(1) define the solution space, i.e. a set of patterns, and the fitness measure
(2) enumerate the patternsin the solution space

(3) calculate the fitness of each pattern with respect to the given examples
(4) report the fittest patterns

The most straightforward implementation is to limit the solution space by the size of the
patterns, and to explicitly enumerate all the patterns from this space one by one. The
advantage of this approach is that it is possible to guarantee finding the best patterns up to
some limited size, dmost regardless of the total length of the examples. This is because it is
usually possible to organise the algorithm so that it is linear-time in this length. On the other
hand the size of the pattern-space is exponential in the length of the patterns - for example
there are more than 10® different sub-string patterns of length 10 over the amino acid
alphabet. PD algorithms guaranteed to find the pattern with the highest fitness value, have
worst case time complexity exponentia in the length of the patterns. Thus, guaranteed PD
algorithms can only find patterns of limited complexity. An example of a program which
uses a PD algorithm is PRATT [6,7].

Sequence or structure-driven (SD) methods find patterns by comparing given strings or
structures and then looking for local similarities between them. For instance an SD algorithm
may be based on constructing a local multiple alignment of given sequences and then
extracting the patterns from the alignment by combining the segments common to most of the
sequences. This may be achieved by
(1) grouping the sequences according to sequence similarity
(2) finding a common pattern, e.g. by dynamic programming that matches all or most of the

sequences described by the parent groups
(3) grouping similar patterns together and repeating step (2) until only one group is left.

In general, more than two patterns may be combined in step (3). SD methods also differ in
how the sets to be combined are chosen, how combination is performed (dynamic
programming, heuristics) and how the (fittest) patterns are chosen, how patterns are
represented and how many patterns are kept from stage (2). It may be possible to discover
patterns of an almost arbitrary size by SD algorithms. However, since the construction of an
optimal alignment or finding the longest sub-sequence are NP-hard problems, SD methods
have to be based on heuristics and hence cannot guarantee optimal results. In general SD
algorithms tend to work well if the sequences are sufficiently similar.

8. Sequence comparison

Comparison of sequences or structures is widely used in bioinformatics. In general, a
probe sequence or structure is compared with a set of example sequences or structures
annotated with attributes established by experiment or trusted computation. The probe
sequence can then be putatively attributed annotations derived from the most closely
matching examples. All against all pair-wise comparison of a set of sequences or structures
can be used to generate data which can then be used as input to a clustering algorithm.



The thesis underlying these approaches is that evolution proceeds by mutations of
nucleotide sequences whose products (RNA or proteins) are subject to selection, and that
sequence or structure homology is a good indication of evolutionary relationship. The basic
mutations that can occur are substitution, insertion, and deletion of nucleotides. These
operations may then affect the amino-acid sequence that is derived from the nucleotide
sequence via transcription and translation. However, the effect of one nucleotide mutation
may not be manifested in the resulting amino-acid sequence and is termed a"silent” mutation.
Thisis due to the triplet nature of codons - 3 nucleotides code for one amino-acid - and hence
the redundancy of the genetic code: 64 triplet combinations are possible on the 4-letter
nucl eotide alphabet, but only 20 amino-acids are used in proteins. Since one amino-acid can
be coded for by several codons it is possible that a change in a single nucleotide in a codon
will merely result in a aternative codon for the same amino-acid. Of course, the insertion or
deletion of one nucleotide will cause a frame-shift with the result that there may be mis-
coding in al codons downstream of the mutation. The fact that the same sequence can
evolve from different ancestors by convergent evolution means that the sequence homology
Is not a straight-forward indicator of evolutionary relationship. Moreover, since structure is
more preserved than sequence (function is heavily dependant on structure, and evolutionary
selection is exercised on function) means that some evolutionary relationships can only be
determined by structure comparison.

Edit distanceand LCS

Levenshtein [8] is attributed with first formalising the concept of edit distance over
strings, which is the minimum number of edit operations - insertion, deletion or substitution
of one symbol - to transform one string into another. Two identical strings have an edit
distance of zero; the higher the score, the less similar are the strings. Given two strings
V=vi..Vv; and Wews. . w then the edit distance is given by the following recurrence
relation:

d(i,0) =i,

d(0,j)=) ese
[M@i-1j)+1
G, j-1)+1

d, J'):min%j(i Lj-Dify =w
HiG(i-1j-1) +1ifv 2w,

In bioinformatics we are generally interested in indels (insertions and deletions) only since
a computation omitting substitution will give us the longest possible common subsequence.
Thus the last term of the minimum relation, d(i-1,j-1)+1 if viZw;, is omitted. Moreover in
practice, we often wish to compute the length of the longest common subsequence (LCS) for
two strings as well as the LCS itself, since thiswill enable us to rate the match by the size of
the LCS. The recurrence relation for the length of the LCS for two strings can ssmply be
derived from that for edit distance:



1(i,0) =0,
[(0,])=0 else
0@ -1,j)
G, ) =maxdi, -1
Hi-1j-1 +1if v =w,

The complexity for a naive implementation d the recurrencerelation is exporentia in the
length of the two strings, and thus a dynamic programming approach is used to compute these
relations which reduces to complexity to O(i,j) for two strings length i andj. In addition, the
LCS can be diredly derived from the dynamic programming table, as can the asciated
aignment of the two strings. Details of the gplicaion of dynamic progranming to
determine dlit distance LCS and extrad alignments can be foundin e.g. [9,10]. Note that in
generd there is not one unique LCS or maximal alignment; the dternatives can be derived
from aternative tracebads.

The recurrence relations given above can be parameterised for different gap penalties and
match/mismatch scores:

O@G-1j)+9
G, ) =maxtd (i, j -1+ g
-1 -1) +t(v, w,)
wheregis agappenaltyand
t(v;, w,) is a tableof match/misratchpenalties

Multiple aligments

Multiple dignments can be used to analyse gene families and revea subtle cnserved
family charaderistics. Such alignments can be obtained by simultaneous N-wise dignment,
generdising the pairwise approadh above and dynamic programming will require an  N-
dimension matrix. The mmplexity of an nwise dynamic programming is O(m") for n
sequences of length m and hencethis approacd is only useful for short sequences. In practice
heuristic dgorithms are used, for example the progessve gproach of ClustalW in which
pairwise sequence identities are computed, similar sequences are digned in pairs, add
distantly related sequences aligned later.

Profiles can be generated from multi ple dignments by adding the observed frequencies of
characters at each pasition d the dignment. These can be stored in a databases of profiles,
for example the Prosite database [11] and we can then seach with a sequence against this
database. The advantages of such a search are that it is faster than sequence against sequence
and gives a more general result, e.g. “the inpu sequence matches globin profile”, rather than
“the input sequence matches X,Y and Z sequences with functions Fx, Fy and Fz’. We can
also search with a profil e against a database of sequences - thisis used in PS-BLAST which
constructs a matrix from the top sequence hits for searching a probe sequence against a
sequence database, and then iteratively uses the matrix as the probe.

9. Protein structures - TOPS representations.

In the following sedions we show how tediniques from sequence processng can be
applied to representations of protein structure & the fold, o topdogy, level. For detail s of



pattern discovery and structure cmparison for more detailed representations of protein
structure the reader is referred to the excdlent survey paper by Eidhammer et. al. [3].

Protein structures can be described at a highly simplified ‘topdogicd’ level using TOPS
catoors [121315. These ae schematic astradions of protein three-dimensional
structures in two dmensions. An example is $own in Figure 3. TOPS cartoors were
originaly drawn manually [12]; recently an algorithm that produces the cartoors
automaticdly from protein structures has been devised [13,14,15] and implemented as a
computer program (Figure 3).

N1 C2

(b)
Figure 3: 2BOP: (a) Rasmol view and (b) TOPScartoon

Although the cartoors do nd explicitly display the information abou hydrogen bondng

between strands or chirality connedions between SSEs, the program outputs a data structure
containing, among other things, the information abou these bonds and conrections. We refer
to this richer representation as a TOPS diagram; it is from this form that the catoors are
produced, which can then stored in graphicd format (for example postscript or gif files). The
foll owing definitions for TOPSdiagrams and simple patterns are alapted from [17].
A TOPS diagram is a formalisation d a crtoon, lkased on the underlying topdogica
information from which the catoonis generated - secondary structure dements (SSES), H-
bonds and chirdities. Such a diagram is a sequence of secondary structures and two
asciated sets defining relations, or constraints, over elements in the sequence; relations can
be of the form of H-bonds or chiraliti es.

More formally, a TOPSdiagram is a triple T=(SH,C) where S=(S,,..., &) is a sequence of
length k of secondary structure dements (SSES), H is the set of topdogicd representations of
hydrogen bond, C the set of chirality conredions. In this description an “H-bord” refersto a
ladder of individual hydrogen bond between adjacent strands in a shed and chiralities are a
subset of thase generated by Slidel’ s agorithm16].

An S&E can be ether a (helix) or B(strand) respectively. Since each SSE in a TOPS
diagram is associated with a diredion up @ down we aciate adiredion symbadl, + or -,
with ead SSE as appropriate. An H-bondconstrains the types of the two S&E' sinvolved to
be strands, and ead bondis associated with arelative direction DO{ P,A}, indicating whether
the bond is between paralel or anti-paralel strands. Chiralities are aciated with
handedness CL{ L,R} (left and right respedively), and orly occur between pairs of SSES of
the same type.

Diagram= (S H, C), 2= {a+, a-, B+, (-} where

S=(S,..., &), 1sisk, § 0
H={(S.49) 1SS, AB+, B} 0= P~ §=§,0= A~ 5§75}
C={E.x9 188 0%, x U{LR



As an example, we give a TOPS diagram for 2bop in Figure 4, and represent this TOPS
diagram in our notation as follows:

chirality

Figure 4: TOPS diagram of 2BOP

2bop = (SH,C)
S= (Bl+’ O>-, az-, B4+’ B5+!BG-! a7+, BS‘)
H={ (Bs+, A Be), B+, A Bs-), (Ba+, A Be).(Bst, A Be-)}
C={(Bs+.R, B4t),(Be-.R, B&")}

Simple TOPS patterns

A simple TOPS pattern (or motif) is similar to a TOPS diagram, but is a generalisation
describing severa diagrams which conform to some common topological characteristics.
This generalisation is achieved by specifying the insertion of SSEs (and any associated H-
bond and chiralities) into the sequence of secondary structure elements; indeed a diagram is
just a pattern where no inserts are permitted. An insert is indicated by the length of its
sequence.

Formally a ssmple TOPS pattern is atriple P=(T,H,C) where T (referred to as a T-pattern)
isasequence T= (Io,V1, 11,V2, ....lk1,Vklk) comprising secondary structure elements indicated
by V; and between each of these an insert description. Each insert description I, denotes the
number of SSEs that can be inserted at that position, and ranges from zero to 30 in practice.
Moreover |, does not have to be a compact range, i.e. we can explicitly enumerate the
number of inserts permitted. Thus for example we can have I3 OO {0,1,3,6} which is more
discriminatory than 13[10..6 (i.e. 130{0,1,2,3,4,5,6}).

In principle, just as for TOPS diagrams, each SSE in a TOPS pattern is associated with an
orientation and is a character from the alphabet { a,3} . Since TOPS diagrams exhibit
rotational invariances of 180° about the x and y-axes, orientations (indicated by + and -)
indicate relative opposite directions rather than absolute directions.



Number of
msert SSEs

Figure 5: Plait motif

For example a TOPS pattern which describes plaits (2bop is an instance of a plait) is
illustrated in Figure 5; arrows between SSEs in the sequence have been annaated with their
correspondng insert descriptions. The formal definition d this TOPSpattern is below:

Pait = (T,H,C)
T=(lo, B+, l1, 0z, I2, B3+, I3, Ba, 14, U5+, Is, B6-, l6)
H={ (Bt A Bs), (Bt A Be), (Bat, A Bar)}
C= {(Bl+’R’ B3+)1(B4'1R1 BG')}

Pattern matching for TOPS diagrams

TOPSgraphs (diagrams and patterns) are totally vertex ordered, reflecting the underlying
biology whereby an amino add sequence gives rise to a sequence of secondary structure
elements (helices and strands). We have previously developed two methods for matching
TOPS patterns to TOPS diagrams. In [17] we describe afinite domain constraint-based
algorithm which exploits the total ordering of the secondary structure dementsandin [18] we
describe amore sophsticaed agorithm. Two additional ideas are used in this latter method
to make this process more dficient. Firstly, we asgn a number of additional labels to
vertices and edges. Secondy, if an edge e can na be mapped according to the existing
mapping for previous edges, then the next placewhere this edge can be mapped according to
the labels is found,and the minimal match pasitions of previous edges are advanced in order
to be compatible with the minimal position d e.

Pattern discovery for ssimple TOPS patterns

We have previoudly [19,20] described a method which, gven a set of TOPS diagrams,
efficiently discovers a simple pattern that charaderizes that set. The essential difference
between pattern dscovery techniques for sequences [4] and TOPS diagrams is that
tedhniques for the former assume aregular grammar, whilst the grammar of the latter is
context-sensitive, owing to the fact that H-bond and chirality arcs may cross (i.e. they
describe a“copy language”). In a naive version d a pattern-driven approach for TOPS
diagrams not only would we have to enumerate dl the possble combinations of the SSEs
(and their orientations) in a pattern of length k, bu also al the possble H-bondand chirality
conredions over them. Our methodis very simple: by starting with an empty pattern we try
to extendit in al possible ways and dscard extensions that do nd match in the set of positive
examples, urtil we find the largest pattern that canna be extended further. Our algorithm
discovers patterns of H-bonds (and chiralities) based on the properties of sheds for TOPS
diagrams; we dso derive T-patterns, i.e. the asciated sequences of SSEs and insert sizes.
Briefly, the dgorithm attempts to dscover a new shed by finding, common to all the target



set of diagrams, a (fresh) pair of strands, sharing an H-bondwith a particular direction. Then
it attempts to extend the shed by repeaedly inserting a fresh strand that is H-bonded to ore
of the eisting strands in the (current) shed. The dgorithm then finds all further H-bonds
between all the members of the aurrent shed. The entire processis repeded urtil no more
sheds can be discovered; any chirality arcs between the S&Es in the pattern are then
discovered by asimilar process The numbers of inserts at eadh insert position in the pattern
and their probabiliti es of occurrence ae then computed over al the members of the learning
set, and combined with the SSE sequence to give the T-pattern. The result is the least general
common TOPSpattern charaderizing the target set of TOPSdiagrams.

Composite TOPS patterns

A composite TOPSpattern C-Patt comprises adigunction d simple TOPSpatterns, which
wewrite & a set.

C-Pett ={py, ..., Pn} wherep; ,i 0 1.N, isasimple TOPSpattern.

A single smple TOPSpattern p can be written as the mmposite pattern {p}.

Compresson

The compresson d a pattern with respect to a set of structures is computed in a standard
way, and adapted from [21], by reference to the size of the pattern and the total size of the
comporents of the structures which are nat included in the pattern. This value is normalised
to the range O (best) to 1 (worst). In the following, for simplicity, we define the compresson
function for the beta sheda content (Hbonds) of TOPS diagrams; in pradice we use
compresson computed over SEs, Hbonds and chirdity arcs.

Given:

(1) A TOPSpattern P = (T,Hp,Cp) where

T is a T-pattern, Hp is a set of Hbonds, |Hp| is the cardinality of Hp and Cp is a set of
chiraliti es,

(1) A set of n examples E = {ey,....e} that is described by P, whereg (1 =<i =<n)isa
diagram (S,H;,C) with S is a sequence of SSEs, H; is a set of Hbondk, |Hj| is the cardinality
of H;, and C; isaset of chirdlities,

Then

(1) Raw Compresson:

Compraw (P,E) = (3 io1.n [Hi) - (n-1)*|Hp|

(2) Normali sed compresson:
Compnorm (P,E) =1 - ((3 io1.n |Hi|)-Compyaw) / (3 i01.n [Hi])-min(|Hi]))

which is a measure of the goodnhess of compresson, varying from O (best, the pattern
completely describes al the examples) to 1 (no compresson).

Coverage

The coverage cov(P,S,E) of a pattern P which matches a subset S containing n diagrams
out of aset E of mexamplesisn/m.

Goodressof apattern

The goodnessG of a pattern P is computed with resped to a subset S that P matches from
a set of examples E, andis afunction onthe normali sed compresson and the cverage of the



pattern. In pradice we have foundthe best results for our pattern dscovery algorithm to be
given when using G defined as foll ows:

G(P,S,E) = In(Compnrom (P,S)) * Cov(P,S,E)
A “good pttern” is below some given value (“pruneva” or PV in the following) of G.

Algorithm to derive a cover of a set of examples (division into
subsets and associated patterns)

Given: a set of domains E, and a cutoff prunevalue PV
Initialise count i:=1, covering set K=[]
while E is not empty do
Set pattern P; = empty, hence match set S; = E (since the empty pattern
matches any example)
While G(P;, Si, E) > PV /*find a “good” pattern P; for an acceptable subset
Si of the examples E */
Extend P; using the simple pattern discovery algorithm
Si={d | d O E and match(P;,d)=true}
end_while
E=E-S;
K := K O{(P;,S)}
=i+l
end_while
Output: K, the cover set of (Pattern,DomainSet) pairs

We asme the eistence of a function match s.it. match(P,d) is true if pattern P matches
protein damain description d,according to the definitionin [17].

Note: it is not guaranteed that any P; exclusively matches domains from its match set S
and to no other domains from any other set § (j2i). l.e. the grouping generated on the
example set is not a partition, and P, is therefore characteristic of S, na a dassfier function.
We refer to these groups as clusters in the manner of [22] [23].

We can trivially extrad the foll owing from K:

D The mmpaosite pattern P for the initial set of examples:
P:{ Pi | (Pi,Si) [l K}

(2 The set of clusters C for K
C :{ Si | (Pi,Si) 0 K}

Complexity of the dgorithms

The task of matching a TOPSpattern and a TOPSdiagram is esentially that of sub-graph
isomorphism, and hence NP-complete since the maximal clique problem is NP-complete; this
result is not changed for vertex ordered graphs. Also, the relatively small number of edges
canna be exploited to oltain pdynomial agorithms, since in [24] and [25] similar graph
structures are considered that are even simpler (the vertex degree is O or 1) and for such
graphs the subgraph isomorphism problem is proven to be NP -complete. There ae several
nonpoaynomial algorithms for subgraph isomorphism problem, the most popuar being by
Ullimann[26] and McGregor [27]. Our agorithm can be regarded as a variant of McGregor’'s
method which is based on constraint satisfadion; however there is an additional medanism
of re-computing constraints which is periodically invoked. For pradical purposes it is also
worth naing the complexity of graphs that have to be dealt with in TOPS formalism — the
maximal number of verticesis around 50and the number of edges is comparatively small and
similar to the number of vertices. A similar classof graphs has been considered by Koch et



a. [28] whaose authors describe amaximal common subgraph algorithm based on searching
for maximal cliques in a vertex product graph. Although this method would seem to be
applicable to TOPS it is only pradica for finding maxima common subgraphs for two
graphs andis nat diredly useful for finding motifs for larger sets of proteins.

The worst time @mplexity for the simple pattern extension algorithm for n TOPS
diagrams with k secondary structure dements (helices and strands) is O(n*kY), i.e
propartional to the size of the set of examplesin the leaning set [18]. For a set of n TOPS
diagrams, which eventually can be grouped into j clusters, our clustering algorithm has
complexity order n%j.

Comparisonwith aher clustering techniques

Traditional clustering techniques based on mir-wise @mparison and then herarchicd
clustering have mmplexity order n? for n okjects, based onthe mmparison operation, and an
additional penalty for the dustering. We ould have used ou protein topdogy distance
method, described in [19] to provide the data for such clustering. However, if charaderistic
patterns are to generated for significant clusters, then having identified in some way these
sets, pattern dscovery still has to be performed, and thus there is a further overhead arder at
least linea in the number of topdogy diagrams. The alvantage of the method presented in
this paper is that clustering and pettern dscovery are performed concurrently, with the lower
complexity described above.

Evaluation onNAD binding domains

We seleded the set of 14 NAD binding domains listed in Table 2 as examples, and
constructed TOPS diagrams for each ore. The sequence identity for these domains varied
from 5% to 9% We then generated a cover of this st using our algorithm, and extraded the
clusters (i.e. the DomainSet from each (Pattern,DomainSet) pair in the wver). In ader to
evauate the groupngs we performed a pairwise mmparison d the domains using our
structure comparison pogram described in [19], and then performed single linkage dustering
on the pairwise distances.

Charaderising CATH using pettern unons

We have generated covers for CATH H-level superfamilies based on the Nreps non
redundant set from CATH version 2.0 (http://www.biochem.ucl.acuk/bsm/cah). Since our
pattern dscovery method is designed to work with damains with significant beta sheet
content, we have restricted ou data set to families with significant beta shed content, i.e.
CATH classes 2 and 3. Coversfor ead superfamily were generated using various pruneval
values and the @rrespondng composite patterns extraded from the @ver; we dso generated
compasite pattern comprising one simple pattern for each family, indicated in the following
by pruneval=gl. We then evaluated the patterns for each family against the entire CATH
database, computing the sensitivity and spedficity as foll ows:.,

sensitivity sn = TP/(TP+FN) and specificity sp = TN/(TN+FP)
where TP stands for true positive, FP for false positive, TN for true negative and for FN
false negative. Given a ompasite pattern P={p4, ..., pn} Inthiscase,

e TPindcatesamatch of any simple pattern p; [ Pto adomain of the correct Hfamily
e FPindicates amatch of any simple pattern p; J Pto adomain of an incorrect Hfamily
e TN indicaes afailed match of al simple patterns p; [0 Pto adomain of an incorrect Hfamily



e FNindicates afailed match of al simple patterns p; 0 Pto adomain of the correct Hfamily
Note that a false negative can result because the patterns were generated from atraining set, but
evaluated over the entire database.

Results

NAD binding domains
With a pruneval cutoff value of 5, we generated 5 clusters, shown below with their
functions and organisms, and illustrated in Figure 6.

/ 1dhr00 1hdr00 \ Pattern 1

1bdm A1l 1dehA2

111dA1 1psdAz Pattern 2
1qorA2 4mdhAl

91dtAl

1drf00 1ra900 Pattern 3
1gd1P 1nhpo01 Pattern 4
1nhp02 Pattern 5

- /

Figure 6: Grouping data by discovered patterns

The groupings generally respect those arrived at by considering function:

Table 2: clustering of NAD/NADP binding domains
Domain Function & oraganism Group
1hdr00 Dihydropteridine reductase (human)

1dhr00 Dihydropteridine reductase (rat)

OldtA1 Lactate dehydroaenease (piq)

11dA1 L actate dehydrogenase (bacterial)

4mdhAl  Malate dehydrogenase (piq)

1bdmA1  Malate dehydrooenase (bacterial)

laorA2 Quinone oxido-reductase (bacteria)

1dehA2 Alcohol dehydrogenase (human)

1psdA2 D-3-phosphodl ycerate dehydrogenase (bacteria)

1ra900 Dihydrofolate reductase (bacterial)

1drfO0 Dihydrofolate reductase (human)

1nhp01 NADH peroxidase FAD binding (bacteria)

1lad1P1 D-alyceraldehyde-3-phosphate dehydroaenase bacteria
1nhp02 NADH peroxidase NAD binding (bacteria)

ORBRWWNNNNNNNRERE

In Figure 7 we illustrate the pattern for Group 2.



1bdmAl,1dehA2, 111dA1, 1psdA2,
1qorA2, 4mdhAl, 91dtAl

10 nodes, 5 Hbonds, 4 chiralities

Pattern sequence :
[[0.1,3].e(1).h(2),e(3),[0,1,2].e(4)h(5).[ 0. 1].e(6).h(7),e(8).
[0,1],h(9),[0,1],e(10),[0,1,2]]

Hbond pattern :
[3-h(1)-4,8-h(1)-10,6-h(1)-8,1-h(1)-6,1-h(1)-3]

Chirality pattern : [(1,1,3).(4,1,6),(6,1,8),(8,1,10)]

Fattern based on:lbdmAl

Figure 7: Group 2

Figure 8 shows a dendrogram, generated with the OC program [29] of the complete
linkage analysis of the pairwise comparison data, annotated with the functions and organisms
of the domains. We have marked on the dendrogram the clusters obtained using our pattern
discovery method in red, showing that the groups found using our pattern method correspond
well to the functional groupings and also clusters determined by pairwise comparison.

1dhr00

9ldiAl

MdAl
4mdhA 1

|JlbrlmA1
lgorA2
1dehA2

1psd A2

| 1nohpOl

1gdiP1

4

Dihydropteridine reductase (human)
Dihydropteridine reductase (rat)

Lactate dehydrogenease (pig)
Lactate dehydrogenase (bacterial)
Malate dehydrogenase (pig)
Malate dehydrogenase (bacterial)
Quinone oxido-reductase (bacteria)
Alcohol dehydrogenase (human)
D-3-phosphoglycerate delrydrogenase (bacteria)
NADH peroxidase (bacteria)

D-glyceraldehyde-3-phosphate dehydrogenase
(bacteria)
Dihydrofolate reductase (bacterial)

Dihydrofolate reductase (human)

Figure 8: Dendrogram of pairwise comparisons annotated by discovered groups

CATH H-level superfamilies

Figure 9 shows the specificity of automatically discovered patterns for various values of

pruneval.
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Figure 9: Specificity of automatically discovered patterns

These results are summarised in Table 3, and show clearly that the specificity of the
patterns increases as the pruneval decreases.

Table 3: Pattern specificitiesfor CATH classes, generated by different prunevals

Pruneval
Class 0.5 1 2 5
2 96.6 93.0 85.6 79.0
3 95.9 92.9 90.4 77.8
283 94.3 89.4 85.9 77.8

In Figure 10 we have plotted sensitivity against specificity for composite patterns
discovered for the CATH H-level superfamilies, using different prunevalues.
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Figure 10: Sensitivity vs Specifity CATH patterns 2&3,
pruneval=g1

It is of interest to note that patterns rarely exhibit both poor sensitivity and poor
specificity, but there are many families whose patterns have high senstivity but low
specificity, or vice-versa. This result is likely to be cause by the way in which the CATH
families are generated, and for example the training set (N-reps) not being topologically
representative of the test set (entire superfamily). In Figure 11 we have plotted the number S-
level subfamilies for each H-level superfamily against the number of sub-patterns for that H-
level superfamily. The results show that as the pruneval is decreased, the relationship



becomes more linear, giving an indicaion that our algorithm is dividing up the superfamilies
into the same number of subfamilies as defined by the CATH group.
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Figure 11: Number of sub-patterns versus number of
groups in CATH Hfams

Summary

Bioinformatics is often abou adapting existing tedhniques to new problem domains, and
in dang so coming up with nowe solutions. In thistutorial paper we hope to have ill ustrated
this process  We have reviewed some pattern description, pettern discovery and string
comparison techniques which have been designed to analyse hiological sequences, and
showed how esentia ideas from these dgorithms these can be alapted for applicaion to
abstrad representations of protein structures.
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