
Techniques for comparison, pattern matching
and pattern discovery

From sequences to protein topology

David GILBERT1, David WESTHEAD2 and Juris VIKSNA3

(1) Bioinformatics Research Centre, Department of Computing Science
University of Glasgow, Glasgow G12 8QQ, Scotland, UK

(2) School of Biochemistry and Molecular Biology, University of Leeds,
Leeds, West Yorkshire, LS2 9JT, U.K.

(3) Institute of Mathematics and Computer Science, University of Latvia, Latvia

Abstract. In this chapter we review techniques for sequence based pattern discovery
and comparison, and show how these can be extended to RNA structures and abstract
representations of protein structure at the fold level. We first define deterministic
patterns over sequences and distinguish pattern matching from string comparison,
reviewing the use of dynamic programming to compute edit distance, and longest
common sub-sequence. We then describe approaches to pattern discovery in
sequences and describe methods for evaluating the goodness of patterns. Next we
show how string pattern languages can be extended to be applied to more complex
data structures which can sequence and structural information, and give some
algorithms for pattern discovery over certain classes of biosequences with structural
content, with specific application to RNA. Finall y we describe our work on pattern
discovery and structure comparison for topological descriptions of protein structures,
and show how these approaches can form the basis for practical and useful
computational systems.

1. Biological background

This chapter assumes familiarity with molecular genetics, i.e. the composition and
function of DNA and RNA and the processes of transcription from DNA to RNA and
translation from RNA to amino acids. We refer the reader to any good undergraduate text on
biochemistry for further details, e.g. [1] or [2].

2. Motivation

Given a particular target sequence/structure in which we are interested, and about which
we are lacking certain information, we often wish to find homologous sequences/structures in
order to make some hypotheses about the function of that sequence/structure. In general we
will have access to a set of reference sequences/structures which are suitably annotated with
organism of provenance, biological function(s) etc., and which may be grouped into families
according to certain criteria, e.g. biological function or phylogenetic relationship. The
reference sets may be very large, e.g. all known nucleotide or amino-acid sequences – 16
milli on or 100,000 records respectively, or all publicly available protein structures – 17,000
(February 2002). The task is thus to use some effective method to relate the target to the
reference set, i.e. to perform a search with the target, where effectiveness is measured both by

biological usefulness of the results as well as ‘speed’ of operation. In principle there are two
main approaches to searching
(1) pair-wise compare the target with each member of the reference set,
(2) group the reference set into families, extract common features of each family, and to

match the target with these common descriptions.
In each case, we will need to rank the results in some way in order to be able to consider

the most significant. The two approaches can be regarded as being the same if each member
of the reference set forms one singleton family in (2). However, in general, the advantage of
(2) is that each family usually comprises several members and thus there are fewer families
than the reference individuals, and hence less matching operations have to be made than
comparison operations. Moreover, matching may be faster than comparison, depending on
the detail and form of the common descriptions. The disadvantages of (2) are firstly how the
choice is made to form family groupings, and how characteristic are the common
descriptions. Of course, the groupings and generation of common descriptions is usually
performed infrequently, and is certainly not carried out each time a search is made.

3. Comparison of sequences or structures

If we compare a (new) sequence or structure with another sequence or structure, then we
can obtain a measure of distance or similarity between the two objects; the distance measure
should ideally be a metric, i.e.
• distances should be positive and the distance from an object to itself should be zero
• distances should be symmetric
• distances should respect the triangle inequality (the direct distance is the shortest distance

between two objects)
Comparison of two sequences/structures should also produce a set of largest common sub-

sequences or sub-structures (LCS) - it is not guaranteed that the set is a singleton - and a
correlation between the two sequences/structures and each LCS. The sequences/structures
can then be aligned using the LCS. In fact, pair-wise comparison can generalised to n
objects, although the complexity of a naïve implementation of n-wise comparison can be very
high. A form of n-wise distance can be obtained by computing the mean of all the pair-wise
distances between the n objects.

In general comparison is a more expensive operation than deterministic matching, and
more closely related in complexity to probabili stic matching. The most common use of
comparison is to pair-wise compare a new sequence or structure s with the members of a set
T of sequences or structures, each of which has some known biological attributes (function,
or at least organism of provenance) – see above. As with probabili stic matching, the result of
the comparisons will be the association with each member of T of a comparison value for s;
the task is then to interpret these values. Again, these values can be ordered and also
associated with some measure of significance (e.g. E-values or P-values). Thus the
comparisons can be ordered, and only those deemed to be significant considered.

4. Sequences, structures, patterns and motifs

There are many terms used to describe common similarities between sequences or
structures, for example pattern, motif, fingerprint, template, fragment, core, site, alignment,
weight matrix, profile. For our purposes we will regard a pattern as a description of some
properties of a sequence or structure, and a motif as a pattern associated with some biological

meaning [3]. Moreover, if in a new sequence we detect the presence of a pattern known to be
characteristic to a certain family, then we can hypothesise that the new sequence belongs to
that family, even if we do not know its biological properties yet. In this way patterns may be
used for the classification of bio-sequences and for predicting their properties. A pattern is
said to be diagnostic for a family if it matches all the known sequences in the family, and no
other known sequences. In general, patterns may be characteristic (match most of the
sequences in a family and few other sequences), or classificatory (used to decide to which
family a sequence belongs).

Patterns can be deterministic, i.e. can be used to decide if a sequence or structure matches
the pattern or not, or probabilistic, when a value can be assigned to the match. For instance
C-x(2,4)-[DE] is a sequence pattern matching any sequence containing a substring starting
with C followed by between two and four arbitrary symbols followed by either a D or an E.
Examples of probabilistic patterns are profiles and Hidden Markov Models. Deterministic
patterns are simple and pure mathematical concepts, and are easier to interpret than
probabilistic patterns; they are also easier to discover from scratch, especially if the data is
noisy (contaminated). On the other hand, probabilistic patterns have more modelling power
since they permit weights to be attributed to alternatives [4].

More generally, we will often wish to classify a new sequence or structure s using a library
or set of M motifs. If the motifs are deterministic then matching s against the members of M
will result in a subset of motifs which may be diagnostic for s. If M comprises probabilistic
patterns then the result of the matching will be the association with each pattern of a match
value for s; the task is then to interpret these values. It is usual to associate an ordering
relation with match values, for example total ordering over integers or reals, and also to
associate some measure of significance with match value, for example E-values (expectation
values) or P-values (probability values). Thus the matches can be ordered, and only those
deemed to be significant considered.

The use of such motif libraries is predicated on the prior identification of meaningful
families, the selection of (possibly representative) family members, and the ability to generate
patterns (either by hand, or automatically) which are sufficiently characteristic of the family.

5. Protein family analysis using patterns

Thus, the general protocol for family analysis is to
(1) collect sequences (structures) into a family based on biological function or phylogenetic

relationships
(2) make family description by local multiple alignment, global multiple alignment or

pattern discovery
(3) use the description to identify more family members
(4) analyse the extended set to see if the members are biologically related to the original

family members

Regular expressions

We briefly remind the reader of regular expression notation:
Symbol: for each symbol a in the alphabet of the language, the regular expression a

denotes the language containing just the string a

Alternation: Given 2 regular expressions M and N then M | N is a new regular expression.
A string is in language (M|N) if it is language M or language N. The language (a|b) = { a,b}
contains the 2 strings a and b.

Concatenation: Given 2 regular expressions M and N then M•N is a new regular
expression. A string is in language (M•N) if it is the concatenation of two strings α and β
such that α is in language M and β is in language N. Thus the regular expression (a|b)•a =
{ aa, ba} defines the language containing the 2 strings aa and ba

Repetition: M* stands for zero or more times repetition of M, M+ one or more times, and
M? for zero or one occurrences of M.

Character r anges: [a-zA-Z] character set alternation, ‘ .’ any single character except a
new-line (i.e. a wild card),

Regular expressions and biosequences

In general we have the following basic alphabets: Σ = { a, t, c, g} for DNA nucleotides,
and Σ = { a, u, c, g} for RNA nucleotides. In the case of proteins we have a 20 character
alpabet of amino acids Σ = { A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. We
can also have general character group alphabet Π = { g1…gn} - e.g. amino-acid class – and
wild cards X = { x(n1,n2) | n1<n2 ∈ N}. Thus V(x(c1,c2)) is the set of all words over Σ of
length between c1 and c2. A pattern P=p1…pn , pi∈Σ∪Π∪X. It is also common practice to
separate pattern alphabet characters by a dash “ -” [4]. Thus, for example, given a pattern
P=A-x(2,6)-[LI]-x(0,∞) and a string S=ACDEFLGHJKL, we can obtain a match since S =
A•CDEF•L•GHJKL (where ‘•’ means concatenation) and A∈V(A), CDEF∈V(x(2,6)),
L∈V([LI]), GHJKL∈V(x(0,∞)).

PROSITE patterns which are regular expressions over amino-acids use the following
notation: ‘x’ any amino acid; ambiguities: [ALT] =Ala or Leu or Thr, negation: {AM} any
amino acid except Ala and Met, ‘-’ as the separator, ` <` for the N-terminal, ` >` f or the C-
terminal, and ‘ .’ f or the end of the pattern. Repetition is indicated in general by e.g. x(2,4) =
x-x or x-x-x or x-x-x-x and in the special case x(3) = x-x-x. An example of a prosite pattern
is [AC]-x-V-x(4)-{ED}., which can be expanded to[Ala or Cys]-x-Val-x-x-
x-x-{any but Glu or Asp}. Another example is <A-x-[ST](2)-x(0,1)-V.
which starts at the N-terminal of the sequence and is can be expanded to Ala-x-[Ser or
Thr]-[Ser or Thr]-(x or none)-Val.

Structural sequence patterns

Eidhammer et al [5] introduce CBSDL, a constraint-based structure description language,
where structural patterns contain constraints on the
(1) length of a substring to match a specific component;
(2) distance (in the input string) between substrings to match the different components of a

pattern;
(3) contents of a substring to match a component, e.g. the second symbol should be an a or a

t;
(4) positions on the input string where a particular component can match;
(5) correlation between two substrings matching different components, e.g. the substrings

should be identical, or the reverse of each other.

This definition thus includes purely sequential patterns, which do not include a correlation
constraint and are within the class of regular languages, for example PROSITE patterns.
Structural patterns have at least one correlation constraint, for example repetitions or
palindromes, and may describe context-free languages or even languages beyond the
expressive power of context-free grammars, although there may be some languages in these
classes which they cannot describe. From the point of view of bioinformatics, sequential
patterns can thus describe sequences, whereas structural patterns can describe ‘f olded’
strings, i.e. RNA structures such as stem-loops and pseudo-knots, and some topological
descriptions of protein structures. Some examples of patterns which can be described by this
language are shown below. We use Greek letters to indicate sub-patterns, possibly
superscripted by r for reverse and c for complement, and underline corresponding sections of
sequences.
Complements a-u g-c, g-u (weaker)
Table 1: Examples of structural sequence patterns
Tandem repeat α-α acg-acg
Simple repeat α-β-α acg-aaa-acg
Multiple repeat α-β-α-δ-α acg-aa-acg-uu-acg
Palindrome α-αr acg-gca
Stem loop α-β-αrc acg-aa-cgu
Pseudoknot α-γ1-β-γ2-αrc-γ3-βrc augg-cuga-aggc-cgau-c-ucag-ggcau-aucg-ccgu

Figure 1: pseudoknot

6. Learning – pattern discovery

Brazma et al [4] have surveyed pattern discovery in biosequences; in the following we
generalise their definitions to biostructures as well as biosequences.

 A protein family F+ is a set of protein sequences or structures sharing definite functional
or structural properties. If we have a language L of strings or structures then F+ is a subset of
the total set of all possible sequences/structures that can be generated by the grammar of L,
and F- are all those sequences/structures in L which do not belong to the family. Pattern
discovery is then the problem of automatically finding functions approximating the
characteristic function for the family F+. An algorithm for solving this problem takes as
input a training set consisting of positive examples, which are sequences from F+, and
optionally negative examples which are sequences from F-. This is a machine learning
problem, namely that of learning a general rule from a set of examples. When both positive
and negative examples are given, it is called the classification problem, and when only
positive examples are given, it is called the conservation problem.

In the classification problem, we are given a set of sequences/structures S+ believed to be
members of a family F+, and a set S- of sequences/structures believed not to be members of

F+, i.e. S+ ⊂ F+ and S- ⊂ F-. We also assume that F+ and F- are disjoint. The goal is then to
find compact “explanations” of known sequences, i.e. functions that return true for all s ∈ S+
and false for all s ∈ S-, and have a high likelihood for returning true for s ∈ F+ and false for s
∈ F-. Furthermore, we would like to try to predict the family relationship of yet unknown
sequences. In reali ty the data may be dirty, i.e. some members of S+ may be members of F-
and some of S- may be in F+. Such contamination may be due to mis-classification by the
field biologists or else to errors in data processing. If S+ ∩ F- and S- ∩ F+ are small , then
the task is to find compact string functions that return true for most s ∈ S+ and false for most
s ∈ S- , and have a high likelihood for returning true for s ∈ F+ and false for s ∈ F-.

In the conservation problem we are only given positive examples, i.e. a set S+ of
sequences/structures believed to be members of family F+. The goal is then to find
interesting string functions that return true for all s ∈ S+ and have a high likelihood for
returning true for s ∈ F+. If the data are contaminated, hopefully to a small extent, then we
need to find interesting string functions that return true for most s ∈ S+, and have a high
likelihood for returning true for s ∈ F+. We can define interesting functions as having a low
probabili ty for returning true for random sequences.

Figure 2: Classification and characterisation, noisy case. (Adapted from [4])

When carrying out pattern discovery we need to construct training and test sets of positive
and optionally of negative examples. Since in practice we may not know all members of F+
and F-, we can randomly divide an initial set of positive examples into a training set S+ and a
test set T+, similarly for S- and T-. The goal is to accurately describe “new” members of F+
and F- when we come across them.

In order to solve these problems, we need to:
(1) Find a good class of functions from which the approximating function f will be chosen

for a particular real-world problem. This class is called the solution space, hypothesis
space, or target class.

(2) Define a fitness measure, giving a ranking of the solution space, and thus evaluating how
good each function is for the given training set.

(3) Develop an algorithm returning those classifier functions from the given solution space
that rate high enough according to the fitness measure.

The success in solving the prediction part of the problems will depend on how
successfully we will have chosen the solution space and fitness measure, even if the
algorithm is perfect in the sense of f inding all the fittest patterns.

7. Pattern discovery algorithms

Pattern discovery algorithms can be divided into two groups: pattern driven and sequence
driven. In the following we adapt from [4].

Pattern-driven (PD) approaches are based on enumerating candidate patterns and
selecting those with the best fitness; the general framework of these algorithms is:
(1) define the solution space, i.e. a set of patterns, and the fitness measure
(2) enumerate the patterns in the solution space
(3) calculate the fitness of each pattern with respect to the given examples
(4) report the fittest patterns

The most straightforward implementation is to limit the solution space by the size of the
patterns, and to explicitly enumerate all the patterns from this space one by one. The
advantage of this approach is that it is possible to guarantee finding the best patterns up to
some limited size, almost regardless of the total length of the examples. This is because it is
usually possible to organise the algorithm so that it is linear-time in this length. On the other
hand the size of the pattern-space is exponential in the length of the patterns - for example
there are more than 1013 different sub-string patterns of length 10 over the amino acid
alphabet. PD algorithms guaranteed to find the pattern with the highest fitness value, have
worst case time complexity exponential in the length of the patterns. Thus, guaranteed PD
algorithms can only find patterns of limited complexity. An example of a program which
uses a PD algorithm is PRATT [6,7].

Sequence or structure-driven (SD) methods find patterns by comparing given strings or
structures and then looking for local similarities between them. For instance an SD algorithm
may be based on constructing a local multiple alignment of given sequences and then
extracting the patterns from the alignment by combining the segments common to most of the
sequences. This may be achieved by
(1) grouping the sequences according to sequence similarity
(2) finding a common pattern, e.g. by dynamic programming that matches all or most of the

sequences described by the parent groups
(3) grouping similar patterns together and repeating step (2) until only one group is left.

In general, more than two patterns may be combined in step (3). SD methods also differ in
how the sets to be combined are chosen, how combination is performed (dynamic
programming, heuristics) and how the (fittest) patterns are chosen, how patterns are
represented and how many patterns are kept from stage (2). It may be possible to discover
patterns of an almost arbitrary size by SD algorithms. However, since the construction of an
optimal alignment or finding the longest sub-sequence are NP-hard problems, SD methods
have to be based on heuristics and hence cannot guarantee optimal results. In general SD
algorithms tend to work well if the sequences are sufficiently similar.

8. Sequence comparison

Comparison of sequences or structures is widely used in bioinformatics. In general, a
probe sequence or structure is compared with a set of example sequences or structures
annotated with attributes established by experiment or trusted computation. The probe
sequence can then be putatively attributed annotations derived from the most closely
matching examples. All against all pair-wise comparison of a set of sequences or structures
can be used to generate data which can then be used as input to a clustering algorithm.

The thesis underlying these approaches is that evolution proceeds by mutations of
nucleotide sequences whose products (RNA or proteins) are subject to selection, and that
sequence or structure homology is a good indication of evolutionary relationship. The basic
mutations that can occur are substitution, insertion, and deletion of nucleotides. These
operations may then affect the amino-acid sequence that is derived from the nucleotide
sequence via transcription and translation. However, the effect of one nucleotide mutation
may not be manifested in the resulting amino-acid sequence and is termed a "silent" mutation.
This is due to the triplet nature of codons - 3 nucleotides code for one amino-acid - and hence
the redundancy of the genetic code: 64 triplet combinations are possible on the 4-letter
nucleotide alphabet, but only 20 amino-acids are used in proteins. Since one amino-acid can
be coded for by several codons it is possible that a change in a single nucleotide in a codon
will merely result in a alternative codon for the same amino-acid. Of course, the insertion or
deletion of one nucleotide will cause a frame-shift with the result that there may be mis-
coding in all codons downstream of the mutation. The fact that the same sequence can
evolve from different ancestors by convergent evolution means that the sequence homology
is not a straight-forward indicator of evolutionary relationship. Moreover, since structure is
more preserved than sequence (function is heavily dependant on structure, and evolutionary
selection is exercised on function) means that some evolutionary relationships can only be
determined by structure comparison.

Edit distance and LCS

Levenshtein [8] is attributed with first formalising the concept of edit distance over
strings, which is the minimum number of edit operations - insertion, deletion or substitution
of one symbol - to transform one string into another. Two identical strings have an edit
distance of zero; the higher the score, the less similar are the strings. Given two strings
V=v1..vi and W=w1..wj then the edit distance is given by the following recurrence
relation:











≠+−−

=−−
+−
+−

=

=
=

ji

ji

wvjid

wvjid

jid

jid

jid

jjd

iid

if1)1,1(

if)1,1(

1)1,(

1),1(

min),(

else),0(

,)0,(

In bioinformatics we are generally interested in indels (insertions and deletions) only since
a computation omitting substitution will give us the longest possible common subsequence.
Thus the last term of the minimum relation, d(i-1,j-1)+1 if vi≠wj, is omitted. Moreover in
practice, we often wish to compute the length of the longest common subsequence (LCS) for
two strings as well as the LCS itself, since this will enable us to rate the match by the size of
the LCS. The recurrence relation for the length of the LCS for two strings can simply be
derived from that for edit distance:









=+−−
−

−
=

=
=

ji wvjil

jil

jil

jil

jl

il

if1)1,1(

)1,(

),1(

max),(

else 0),0(

,0)0,(

The complexity for a naïve implementation of the recurrence relation is exponential in the
length of the two strings, and thus a dynamic programming approach is used to compute these
relations which reduces to complexity to O(i,j) for two strings length i and j. In addition, the
LCS can be directly derived from the dynamic programming table, as can the associated
alignment of the two strings. Details of the application of dynamic programming to
determine edit distance, LCS and extract alignments can be found in e.g. [9,10]. Note that in
general there is not one unique LCS or maximal alignment; the alternatives can be derived
from alternative tracebacks.

The recurrence relations given above can be parameterised for different gap penalties and
match/mismatch scores:

penaltiesatch match/mism of tablea is),t(

 andpenalty gap a iswhere

),t()1,1(

)1,(

),1(

max),(

ji

ji

wv

g

wvjil

gjil

gjil

jil








+−−
+−
+−

=

Multiple aligments

Multiple alignments can be used to analyse gene families and reveal subtle conserved
family characteristics. Such alignments can be obtained by simultaneous N-wise alignment,
generalising the pairwise approach above and dynamic programming will require an N-
dimension matrix. The complexity of an n-wise dynamic programming is O(mn) for n
sequences of length m and hence this approach is only useful for short sequences. In practice
heuristic algorithms are used, for example the progessive approach of ClustalW in which
pairwise sequence identities are computed, similar sequences are aligned in pairs, add
distantly related sequences aligned later.

Profiles can be generated from multiple alignments by adding the observed frequencies of
characters at each position of the alignment. These can be stored in a databases of profiles,
for example the Prosite database [11] and we can then search with a sequence against this
database. The advantages of such a search are that it is faster than sequence against sequence
and gives a more general result, e.g. “ the input sequence matches globin profile”, rather than
“ the input sequence matches X,Y and Z sequences with functions Fx, Fy and Fz” . We can
also search with a profile against a database of sequences - this is used in PSI-BLAST which
constructs a matrix from the top sequence hits for searching a probe sequence against a
sequence database, and then iteratively uses the matrix as the probe.

9. Protein structures - TOPS representations.

In the following sections we show how techniques from sequence processing can be
applied to representations of protein structure at the fold, or topology, level. For details of

pattern discovery and structure comparison for more detailed representations of protein
structure the reader is referred to the excellent survey paper by Eidhammer et. al. [3].

Protein structures can be described at a highly simpli fied ‘ topological’ level using TOPS
cartoons [12,13,15]. These are schematic abstractions of protein three-dimensional
structures in two dimensions. An example is shown in Figure 3. TOPS cartoons were
originally drawn manually [12]; recently an algorithm that produces the cartoons
automatically from protein structures has been devised [13,14,15] and implemented as a
computer program (Figure 3).

 Figure 3: 2BOP: (a) Rasmol view and (b) TOPS cartoon

Although the cartoons do not explicitly display the information about hydrogen bonding
between strands or chirali ty connections between SSEs, the program outputs a data structure
containing, among other things, the information about these bonds and connections. We refer
to this richer representation as a TOPS diagram; it is from this form that the cartoons are
produced, which can then stored in graphical format (for example postscript or gif f iles). The
following definitions for TOPS diagrams and simple patterns are adapted from [17].
A TOPS diagram is a formalisation of a cartoon, based on the underlying topological
information from which the cartoon is generated - secondary structure elements (SSEs), H-
bonds and chiraliti es. Such a diagram is a sequence of secondary structures and two
associated sets defining relations, or constraints, over elements in the sequence; relations can
be of the form of H-bonds or chiraliti es.

More formally, a TOPS diagram is a triple T=(S,H,C) where S=(S1,..., Sk) is a sequence of
length k of secondary structure elements (SSEs), H is the set of topological representations of
hydrogen bonds, C the set of chirali ty connections. In this description an “H-bond” refers to a
ladder of individual hydrogen bonds between adjacent strands in a sheet and chiraliti es are a
subset of those generated by Slidel' s algorithm [16].

An SSE can be either α (helix) or β(strand) respectively. Since each SSE in a TOPS
diagram is associated with a direction up or down we associate a direction symbol, + or -,
with each SSE as appropriate. An H-bond constrains the types of the two SSE' s involved to
be strands, and each bond is associated with a relative direction D∈{ P,A} , indicating whether
the bond is between parallel or anti-parallel strands. Chiraliti es are associated with
handedness C∈{ L,R} (left and right respectively), and only occur between pairs of SSEs of
the same type.

Diagram = (S, H, C), Σ = {α+, α-, β+, β-} where
 S=(S1,..., Sk), 1≤i≤ k, Si ∈Σ
 H = {(Si,δ,Sj), | Si,Sj, ∈{β+, β-} δ = P < Si=Sj, δ = A < Si≠Sj}
 C = {(S1, $,Sj) | Si,Sj, ∈ Σ, , $ ∈ {L,R}

As an example, we give a TOPS diagram for 2bop in Figure 4, and represent this TOPS
diagram in our notation as follows:

Figure 4: TOPS diagram of 2BOP

2bop = (S,H,C)
 S = (β1+, α2-, α3-, β4+, β5+,β6-, α7+, β8-)
 H = { (β1+, A β6-), (β1+, A β8-), (β4+, A β6-),(β5+, A β6-)}
 C = {(β1+,R, β4+),(β6-,R, β8-)}

Simple TOPS patterns

A simple TOPS pattern (or motif) is similar to a TOPS diagram, but is a generalisation
describing several diagrams which conform to some common topological characteristics.
This generalisation is achieved by specifying the insertion of SSEs (and any associated H-
bond and chiralities) into the sequence of secondary structure elements; indeed a diagram is
just a pattern where no inserts are permitted. An insert is indicated by the length of its
sequence.

Formally a simple TOPS pattern is a triple P=(T,H,C) where T (referred to as a T-pattern)
is a sequence T= (I0,V1, I1,V2, ...,Ik-1,Vk,Ik) comprising secondary structure elements indicated
by Vi and between each of these an insert description. Each insert description Im denotes the
number of SSEs that can be inserted at that position, and ranges from zero to 30 in practice.
Moreover Im does not have to be a compact range, i.e. we can explicitly enumerate the
number of inserts permitted. Thus for example we can have I3 ∈ {0,1,3,6} which is more
discriminatory than I3∈0..6 (i.e. I3 ∈ {0,1,2,3,4,5,6}).

In principle, just as for TOPS diagrams, each SSE in a TOPS pattern is associated with an
orientation and is a character from the alphabet {α,β}. Since TOPS diagrams exhibit
rotational invariances of 180° about the x and y-axes, orientations (indicated by + and -)
indicate relative opposite directions rather than absolute directions.

Figure 5: Plait motif

For example a TOPS pattern which describes plaits (2bop is an instance of a plait) is
ill ustrated in Figure 5; arrows between SSEs in the sequence have been annotated with their
corresponding insert descriptions. The formal definition of this TOPS pattern is below:

Plait = (T,H,C)
T = (I0 , β1+, I1, α2-, I2, β3+, I3, β4-, I4, α5+, I5, β6-, I6)
H = { (β1+, A β4-), (β1+, A β6-), (β3+, A β4-)}
C= { (β1+,R, β3+),(β4-,R, β6-)}

Pattern matching for TOPS diagrams

TOPS graphs (diagrams and patterns) are totally vertex ordered, reflecting the underlying
biology whereby an amino acid sequence gives rise to a sequence of secondary structure
elements (helices and strands). We have previously developed two methods for matching
TOPS patterns to TOPS diagrams. In [17] we describe a finite domain constraint-based
algorithm which exploits the total ordering of the secondary structure elements and in [18] we
describe a more sophisticated algorithm. Two additional ideas are used in this latter method
to make this process more eff icient. Firstly, we assign a number of additional labels to
vertices and edges. Secondly, if an edge e can not be mapped according to the existing
mapping for previous edges, then the next place where this edge can be mapped according to
the labels is found, and the minimal match positions of previous edges are advanced in order
to be compatible with the minimal position of e.

Pattern discovery for simple TOPS patterns

We have previously [19,20] described a method which, given a set of TOPS diagrams,
eff iciently discovers a simple pattern that characterizes that set. The essential difference
between pattern discovery techniques for sequences [4] and TOPS diagrams is that
techniques for the former assume a regular grammar, whilst the grammar of the latter is
context-sensitive, owing to the fact that H-bond and chirali ty arcs may cross (i.e. they
describe a “copy language”). In a naive version of a pattern-driven approach for TOPS
diagrams not only would we have to enumerate all the possible combinations of the SSEs
(and their orientations) in a pattern of length k, but also all the possible H-bond and chirali ty
connections over them. Our method is very simple: by starting with an empty pattern we try
to extend it in all possible ways and discard extensions that do not match in the set of positive
examples, until we find the largest pattern that cannot be extended further. Our algorithm
discovers patterns of H-bonds (and chiraliti es) based on the properties of sheets for TOPS
diagrams; we also derive T-patterns, i.e. the associated sequences of SSEs and insert sizes.
Briefly, the algorithm attempts to discover a new sheet by finding, common to all the target

set of diagrams, a (fresh) pair of strands, sharing an H-bond with a particular direction. Then
it attempts to extend the sheet by repeatedly inserting a fresh strand that is H-bonded to one
of the existing strands in the (current) sheet. The algorithm then finds all further H-bonds
between all the members of the current sheet. The entire process is repeated until no more
sheets can be discovered; any chirali ty arcs between the SSEs in the pattern are then
discovered by a similar process. The numbers of inserts at each insert position in the pattern
and their probabiliti es of occurrence are then computed over all the members of the learning
set, and combined with the SSE sequence to give the T-pattern. The result is the least general
common TOPS pattern characterizing the target set of TOPS diagrams.

Composite TOPS patterns

A composite TOPS pattern C-Patt comprises a disjunction of simple TOPS patterns, which
we write as a set.

C-Patt = {p1, …, pn} where pi , i ∈ 1..N, is a simple TOPS pattern.
A single simple TOPS pattern p can be written as the composite pattern {p}.

Compression

The compression of a pattern with respect to a set of structures is computed in a standard
way, and adapted from [21], by reference to the size of the pattern and the total size of the
components of the structures which are not included in the pattern. This value is normalised
to the range 0 (best) to 1 (worst). In the following, for simplicity, we define the compression
function for the beta sheet content (Hbonds) of TOPS diagrams; in practice we use
compression computed over SSEs, Hbonds and chirali ty arcs.

 Given:
(I) A TOPS pattern P = (T,Hp,Cp) where
T is a T-pattern, Hp is a set of Hbonds, |Hp| is the cardinali ty of Hp and Cp is a set of

chiraliti es,
(II) A set of n examples E = { e1,...,en} that is described by P, where ei (1 =< i =< n) is a

diagram (Si,Hi,Ci) with Si is a sequence of SSEs, Hi is a set of Hbonds, |Hi| is the cardinali ty
of Hi, and Ci is a set of chiraliti es,

Then
(1) Raw Compression:

Compraw (P,E) = (∑ i ∈ 1..n |Hi|) - (n-1)*|Hp|

(2) Normalised compression:
Compnorm (P,E) = 1 - ((∑ i ∈ 1..n |Hi|)-Compraw) / ((∑ i ∈ 1..n |Hi|)-min(|Hi|))

which is a measure of the goodness of compression, varying from 0 (best, the pattern
completely describes all the examples) to 1 (no compression).

Coverage

The coverage cov(P,S,E) of a pattern P which matches a subset S containing n diagrams
out of a set E of m examples is n/m.

Goodness of a pattern

The goodness G of a pattern P is computed with respect to a subset S that P matches from
a set of examples E, and is a function on the normalised compression and the coverage of the

pattern. In practice we have found the best results for our pattern discovery algorithm to be
given when using G defined as follows:

G(P,S,E) = ln(Compnorm (P,S)) * Cov(P,S,E)
A “good pattern” is below some given value (“pruneval” or PV in the following) of G.

 Algorithm to derive a cover of a set of examples (division into
subsets and associated patterns)

Given: a set of domains E, and a cutoff prunevalue PV
Initialise count i:=1, covering set K=∅

while E is not empty do
Set pattern Pi = empty, hence match set Si = E (since the empty pattern

matches any example)
While G(Pi, Si, E) > PV /*find a “good” pattern Pi for an acceptable subset

Si of the examples E */
Extend Pi using the simple pattern discovery algorithm
 Si = {d | d ∈ E and match(Pi,d)=true}

 end_while
 E := E - Si

 K := K ∪ {(Pi,Si)}
 i := i+1
end_while
Output: K, the cover set of (Pattern,DomainSet) pairs

We assume the existence of a function match s.t. match(P,d) is true if pattern P matches
protein domain description d, according to the definition in [17].

Note: it is not guaranteed that any Pi exclusively matches domains from its match set Si

and to no other domains from any other set Sj (j≠i). I.e. the grouping generated on the
example set is not a partition, and Pi is therefore characteristic of Si, not a classifier function.
We refer to these groups as clusters in the manner of [22] [23].

We can trivially extract the following from K:
(1) The composite pattern P for the initial set of examples:

P = { Pi | (Pi,Si) ∈ K}
(2) The set of clusters C for K

C = { Si | (Pi,Si) ∈ K}

Complexity of the algorithms

The task of matching a TOPS pattern and a TOPS diagram is essentially that of sub-graph
isomorphism, and hence NP-complete since the maximal clique problem is NP-complete; this
result is not changed for vertex ordered graphs. Also, the relatively small number of edges
cannot be exploited to obtain polynomial algorithms, since in [24] and [25] similar graph
structures are considered that are even simpler (the vertex degree is 0 or 1) and for such
graphs the subgraph isomorphism problem is proven to be NP -complete. There are several
non-polynomial algorithms for subgraph isomorphism problem, the most popular being by
Ullmann [26] and McGregor [27]. Our algorithm can be regarded as a variant of McGregor’s
method which is based on constraint satisfaction; however there is an additional mechanism
of re-computing constraints which is periodically invoked. For practical purposes it is also
worth noting the complexity of graphs that have to be dealt with in TOPS formalism – the
maximal number of vertices is around 50 and the number of edges is comparatively small and
similar to the number of vertices. A similar class of graphs has been considered by Koch et

al. [28] whose authors describe a maximal common subgraph algorithm based on searching
for maximal cliques in a vertex product graph. Although this method would seem to be
applicable to TOPS, it is only practical for finding maximal common subgraphs for two
graphs and is not directly useful for finding motifs for larger sets of proteins.

The worst time complexity for the simple pattern extension algorithm for n TOPS
diagrams with k secondary structure elements (helices and strands) is O(n*kk), i.e.
proportional to the size of the set of examples in the learning set [18]. For a set of n TOPS
diagrams, which eventually can be grouped into j clusters, our clustering algorithm has
complexity order n2/j.

Comparison with other clustering techniques

Traditional clustering techniques based on pair-wise comparison and then hierarchical
clustering have complexity order n2 for n objects, based on the comparison operation, and an
additional penalty for the clustering. We could have used our protein topology distance
method, described in [19] to provide the data for such clustering. However, if characteristic
patterns are to generated for significant clusters, then having identified in some way these
sets, pattern discovery still has to be performed, and thus there is a further overhead order at
least linear in the number of topology diagrams. The advantage of the method presented in
this paper is that clustering and pattern discovery are performed concurrently, with the lower
complexity described above.

Evaluation on NAD binding domains

We selected the set of 14 NAD binding domains listed in Table 2 as examples, and
constructed TOPS diagrams for each one. The sequence identity for these domains varied
from 5% to 95% We then generated a cover of this set using our algorithm, and extracted the
clusters (i.e. the DomainSet from each (Pattern,DomainSet) pair in the cover). In order to
evaluate the groupings we performed a pairwise comparison of the domains using our
structure comparison program described in [19], and then performed single linkage clustering
on the pairwise distances.

Characterising CATH using pattern unions

We have generated covers for CATH H-level superfamilies based on the Nreps non-
redundant set from CATH version 2.0 (http://www.biochem.ucl.ac.uk/bsm/cath). Since our
pattern discovery method is designed to work with domains with significant beta sheet
content, we have restricted our data set to families with significant beta sheet content, i.e.
CATH classes 2 and 3. Covers for each superfamily were generated using various pruneval
values and the corresponding composite patterns extracted from the cover; we also generated
composite pattern comprising one simple pattern for each family, indicated in the following
by pruneval=g1. We then evaluated the patterns for each family against the entire CATH
database, computing the sensitivity and specificity as follows:,

sensitivity sn = TP/(TP+FN) and specificity sp = TN/(TN+FP)
where TP stands for true positive, FP for false positive, TN for true negative and for FN
false negative. Given a composite pattern P = {p1, …, pn} In this case,
• TP indicates a match of any simple pattern pi ∈ P to a domain of the correct Hfamily
• FP indicates a match of any simple pattern pi ∈ P to a domain of an incorrect Hfamily
• TN indicates a failed match of all simple patterns pi ∈ P to a domain of an incorrect Hfamily

• FN indicates a failed match of all simple patterns pi ∈ P to a domain of the correct Hfamily
Note that a false negative can result because the patterns were generated from a training set, but
evaluated over the entire database.

 Results

NAD binding domains
With a pruneval cutoff value of 5, we generated 5 clusters, shown below with their

functions and organisms, and illustrated in Figure 6.

Figure 6: Grouping data by discovered patterns

The groupings generally respect those arrived at by considering function:

Table 2: clustering of NAD/NADP binding domains
Domain Function & organism Group
1hdr00 Dihydropteridine reductase (human) 1
1dhr00 Dihydropteridine reductase (rat) 1
9ldtA1 Lactate dehydrogenease (pig) 2
1lldA1 Lactate dehydrogenase (bacterial) 2
4mdhA1 Malate dehydrogenase (pig) 2
1bdmA1 Malate dehydrogenase (bacterial) 2
1qorA2 Quinone oxido-reductase (bacteria) 2
1dehA2 Alcohol dehydrogenase (human) 2
1psdA2 D-3-phosphoglycerate dehydrogenase (bacteria) 2
1ra900 Dihydrofolate reductase (bacterial) 3
1drf00 Dihydrofolate reductase (human) 3
1nhp01 NADH peroxidase FAD binding (bacteria) 4
1gd1P1 D-glyceraldehyde-3-phosphate dehydrogenase bacteria 4
1nhp02 NADH peroxidase NAD binding (bacteria) 5

In Figure 7 we illustrate the pattern for Group 2.

Figure 7: Group 2

Figure 8 shows a dendrogram, generated with the OC program [29] of the complete
linkage analysis of the pairwise comparison data, annotated with the functions and organisms
of the domains. We have marked on the dendrogram the clusters obtained using our pattern
discovery method in red, showing that the groups found using our pattern method correspond
well to the functional groupings and also clusters determined by pairwise comparison.

Figure 8: Dendrogram of pairwise comparisons annotated by discovered groups

CATH H-level superfamilies
Figure 9 shows the specificity of automatically discovered patterns for various values of

pruneval.

Figure 9: Specificity of automatically discovered patterns

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

Specificity

%

class=2, pv=5

class=2, pv=2

class=2, pv=1

class=2, pv=0.5

class=3, pv=5

class=3, pv=2

class=3, pv=1

class=3, pv=0.5

These results are summarised in Table 3, and show clearly that the specificity of the
patterns increases as the pruneval decreases.

Table 3: Pattern specificities for CATH classes, generated by different prunevals

Pruneval
Class 0.5 1 2 5
2 96.6 93.0 85.6 79.0
3 95.9 92.9 90.4 77.8
2&3 94.3 89.4 85.9 77.8

In Figure 10 we have plotted sensitivity against specificity for composite patterns
discovered for the CATH H-level superfamilies, using different prunevalues.

Figure 10: Sensitivity vs Specifity CATH patterns 2&3,
pruneval=g1

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Sensitivity

sp
ec

if
ic

it
y

It is of interest to note that patterns rarely exhibit both poor sensitivity and poor
specificity, but there are many families whose patterns have high sensitivity but low
specificity, or vice-versa. This result is likely to be cause by the way in which the CATH
families are generated, and for example the training set (N-reps) not being topologically
representative of the test set (entire superfamily). In Figure 11 we have plotted the number S-
level subfamilies for each H-level superfamily against the number of sub-patterns for that H-
level superfamily. The results show that as the pruneval is decreased, the relationship

becomes more linear, giving an indication that our algorithm is dividing up the superfamilies
into the same number of subfamilies as defined by the CATH group.

Figure 11: Number of sub-patterns versus number of
groups in CATH Hfams

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50

Number of S sub-fams

N
u

m
b

er
 o

s
su

b
-p

at
te

rn
s

Summary

Bioinformatics is often about adapting existing techniques to new problem domains, and
in doing so coming up with novel solutions. In this tutorial paper we hope to have ill ustrated
this process. We have reviewed some pattern description, pattern discovery and string
comparison techniques which have been designed to analyse biological sequences, and
showed how essential ideas from these algorithms these can be adapted for application to
abstract representations of protein structures.

Acknowledgements

DG’s work has been partially supported by an EPSRC Visiting Research Fellowship at the
European Bioinformatics Institute (1998) and a Leverhulme Research Fellow at University
College, University of London (2000). JV’s work has been partially supported a Wellcome
Trust International Research Development Award.

References
1 W. H. Elli ott and D. P. Elli ott, Biochemistry and Molecular Biology, OUP, 1997
2 L. Stryer. Biochemistry. W. H. Freeman & Co, 2001
3 I. Eidhammer, I. Jonassen and W. Taylor: Structure Comparison and Structure Patterns, Journal of

Computational Biology, 7:5 pp 685-716, 2000
4 A. Brazma, I. Jonassen, I. Eidhammer and D. R. Gilbert: Approaches to the automatic discovery of patterns in

biosequences, Journal of Computational Biology. 5:2 277-303, 1998
5 I. Eidhammer, D. R. Gilbert, I. Jonassen, M. Ratnayake and S. V. Grindhaug: A Constraint Based Structure

Description Language for Biosequences, Journal of Constraints 6:2/3, 2001
6 I. Jonassen, J. F. Colli ns and D. G. Higgins: Finding flexible patterns in unaligned sequences. Protein Science

4(8):1587-1595, 1995.
7 I. Jonassen: Efficient discovery of conserved patterns using a pattern graph. CABIOS, 13:509-522, 1997.
8 V.I. Levenshtein: Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii

nauk SSSR (in Russian), 163(4):845-848, 1965. Also in Cybernetics and Control Theory, 10(8):707-710,
1996.

9 D. Gusfield. Algorithms on strings, trees and sequences, CUP 1997
10 P. A. Pevzner. Computational Molecular Biology. MIT press, 2000

11 A. Bairoch, P. Bucher, and K. Hofman. The PROSITE database, its status in 1995. Nucleic Acids Research,

24(1):189-196, 1996.
12 M.J.E. Sternberg and J.M. Thornton. On the conformation of proteins: The handedness of the connection

between parallel beta strands. Journal of Molecular Biology, 110:-283, 1977
13 T.P. Flores, D.M. Moss, and J. M. Thornton: An algorithm for automatically generating protein topology

cartoons. Protein Engineering, 7(1):31-37, 1994
14 D. R. Westhead, T. W. F. Slidel, T. P. J. Flores, and J. M. Thornton. Protein structural topology: automated

analysis and diagrammatic representation. Protein Science, 8(4):897-904, 1999.
15 D. R. Westhead, D. C. Hutton, and J. M. Thornton. An atlas of protein toplogy cartoons available on the

World Wide Web. Trends in Biochemical Sciences, 23, 1998
16 T.W.F. Slidel and J.M. Thornton, Chirali ty in Protein Structure , in Protein Folds: a distance-based approach,

Henrik Bohr and Soren Brunak (eds), CRC press, 1996, 253-264
17 D. R. Gilbert, D. R. Westhead, N. Nagano, and J. M. Thornton. Motif-based searching in tops protein

topology databases. Bioinformatics, 15(4):-326, 1999
18 J. Viksna and D. R. Gilbert, Pattern matching and pattern discovery algorithms for protein topologies, WABI

2001: 1st Workshop on Algorithms in BioInformatics, August 2001, , LNCS 2149 pp 98-111, ISBN 3-540-
42516-0

19 D. R. Gilbert, D. R. Westhead, J. Viksna and J. M. Thornton, Topology-based protein structure comparison
using a pattern discovery technique, Journal of Computers and Chemistry, 26:1, 23-30, 2001

20 D. R. Gilbert and D. R. Westhead, A topology-based pattern discovery method for protein structure
characterization and comparison, submitted to Proteins

21 A. Brazma, I. Jonassen, J. Vilo and E. Ukkonen, Pattern Discovery in Biosequences., Proceedings of Fourth
International Colloquium on Grammatical Inference (ICGI-98) (1433) (pp. 255--270) July 1998. Springer.

22 B. Mirkin (1998) Least-Squares Structuring, Clustering, and Data Processing Issues, The Computer Journal,
41, no. 8, 519-536.

23 B. Mirkin and I. Muchnik (1998) Combinatorial Optimization in Clustering, in D.-Z. Du and P.Pardalos
(Eds.) Handbook of Combinatorial Optimization, 2, Boston, Ma.: Kluwer Academic Publishers, 261-329.

24 P. A. Evans, Finding common subsequences with arcs and pseudoknots. Proceedings of Combinatorial
Pattern Matching 1999, LNCS 1645 (1999) 270–280.

25 K. Zhang., L. Wang, B. Ma: Computing similarity between RNA structures. Proceedings of Combinatorial
Pattern Matching 1999, LNCS 1645 (1999) 281–293.

26 J. R. Ullmann,. An algorithm for subgraph isomorphism. Journal of the ACM 23 (1976) 31–42
27 J. J. McGregor,. Relational consistency algorithms and their application in finding subgraph and graph

isomorphisms. Information Science 19 (1979) 229–250.
28 I. Koch., T. Lengauer, E. Wanke.: An algorithm for finding maximal common subtopologies in a set of

protein structures. Journal of Computational Biology 3 (1996) 289–306.
29 G.J. Barton,. The OC program: http://barton.ebi.ac.uk/new/software.html, 1997

