
Petri Nets for Systems Biology

Monika Heiner, Robin Donaldson and David Gilbert

Abstract In this chapter we introduce qualitative, stochastic as well as continuous
Petri nets and related analysis techniques in a rather informal way, and use as run-
ning example a model of the influence of the Raf Kinase Inhibitor Protein (RKIP)
on the Extracellular signal Regulated Kinase (ERK) signalling pathway. We show
how the qualitative and quantitative analyses complement each other, and how Petri
nets can be used for step-wise modelling and analysis of biochemical networks as
well as for structured design of systems of ordinary differential equations.

1 Motivation

Biochemical reaction systems have by their very nature three distinctive characteris-
tics. (1) They are inherently bipartite, i.e. they consist of two types of game players,
the species and their interactions. (2) They are inherentlyconcurrent, i.e. several in-
teractions can usually happen independently and in parallel. (3) They are inherently
stochastic, i.e. the timing behaviour of the interactions is governed by stochastic
laws. So it seems to be a natural choice to model and analyse them with a formal
method, which shares exactly these distinctive characteristics: stochastic Petri nets.

Classical, i.e. time-free qualitative Petri nets combine an intuitive and executable
modelling style with well-founded analysis techniques. Itis for this reason that they
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are widely used in various application areas, where they have been proven to be use-
ful for a qualitative verification of technical as well as “natural” systems, i.e. bio-
chemical networks like metabolic networks, signal transduction networks, or gene
regulatory networks.

However, any real system behaviour happens in time. Thus thenext step follow-
ing on from qualitative analyses typically consists of quantitative analyses taking
into account timing information. In the case of biochemicalsystems, all atomic ac-
tions, i.e. biochemical reactions, take place stochastically, which can be approxi-
mated continuously for larger quantities. Moreover, the rates of all reactions typ-
ically depend on the concentration of the involved substances. Hence systems of
reaction rate equations (RREs) or ordinary differential equations (ODEs) appear
well suited for quantitative modelling of biochemical networks.

In this chapter we bridge the gap between these two worlds, i.e. the (time-free)
qualitative and the (timed) quantitative one, and demonstrate by means of one of the
standard examples used in the systems biology community - the core model of the
influence of the Raf-1 Kinase Inhibitor Protein (RKIP) on theERK signalling path-
way [CSK+03] - how both sides can interact, providing different but complementary
viewpoints on the same subject.

This chapter can be considered as a tutorial in step-wise modelling and analy-
sis of biochemical networks as well as in structured design of ODEs. The quali-
tative model is introduced as a supplementary intermediatestep, at least from the
viewpoint of the biochemist accustomed to ODE modelling only, and serves mainly
for model validation since this cannot be performed on the continuous level. Hav-
ing successfully validated the qualitative model, the quantitative models are derived
from the qualitative one by assigning rate equations to all reactions in the network.
Thus the quantitative models preserve the structure of the qualitative one, and the
stochastic Petri net is nothing else than a structured description of RREs, and the
continuous Petri net of ODEs.

In the following we deliberately give an informal introduction avoiding formal
notations as far as possible. See [HGD08] for formal definitions of the technical
Petri net terms used in this chapter. All concepts are explained through the running
example, introduced below.

2 Biochemical Context

There are many networks of interacting components known to exist as part of the
machinery of living organisms. Biochemical networks can beregulatory, signal
transduction, or metabolic networks. Regulatory networksare used to control the
ways in which genes are expressed as RNAs or proteins, whereas signal transduc-
tion networks transmit biochemical signals between or within cells. The role of
metabolic networks is to synthesize essential biochemicalcompounds from basic
components, or to degrade compounds. In this chapter we focus on signal trans-
duction, which is the mechanism which enables a cell to sensechanges in its en-
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vironment and to make appropriate responses. The basis of this mechanism is the
conversion of one kind of signal into another.

The ERK pathway (also called Ras/Raf, or Raf-1/MEK/ERK pathway) is a ubiq-
uitous pathway that conveys cell division and differentiation signals from the cell
membrane to the nucleus. Ras is activated by an external stimulus, via one of many
growth factor receptors; it then binds to and activates Raf-1 to become Raf-1* (ac-
tivated Raf) which in turn activates MAPK/ERK Kinase (MEK) which in turn acti-
vates Extracellular signal Regulated Kinase (ERK). This cascade (Raf-1→ Raf-1*
→MEK→ ERK) of protein interaction controls cell differentiation, the effect being
dependent upon the activity of ERK. An important area of experimental scientific
investigation is the role that the Raf-1 Kinase Inhibitor Protein (RKIP) plays in the
behaviour of this pathway. The hypothesis is that RKIP can inhibit activation of Raf-
1 by binding to it, disrupting the interaction between Raf-1and MEK, thus playing
a part in regulating the activity of the ERK pathway. The subsystem we consider
here, taken from [CSK+03], comprises the eleven reactions summarized in Table 1.

Table 1 The reaction equations of the running examplea.

no. precursors products

r1 Raf-1* + RKIP → Raf-1* RKIP
r2 Raf-1* RKIP → Raf-1* + RKIP
r3 Raf-1* RKIP + ERK-PP→ Raf-1* RKIP ERK-PP
r4 Raf-1* RKIP ERK-PP → Raf-1* RKIP + ERK-PP
r5 Raf-1* RKIP ERK-PP → Raf-1* + ERK + RKIP-P
r6 MEK-PP + ERK → MEK-PP ERK
r7 MEK-PP ERK → MEK-PP + ERK
r8 MEK-PP ERK → MEK-PP + ERK-PP
r9 RKIP-P + RP → RKIP-P RP
r10 RKIP-P RP → RKIP-P + RP
r11 RKIP-P RP → RKIP + RP

a Raf-1* is often written as Raf-1Star (if required by the tools used).

3 Qualitative Approach

In this section we introduce place/transition Petri nets, and interpret them in the
standard way to model and analyse the pathway of interest.
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3.1 Qualitative Modelling

Let us start with a bit of history. Petri nets, as we understand them today, have
been initiated by concepts proposed by Carl Adam Petri in hisPh.D. thesis in 1962
[Pet62]. The first substantial results making up the still growing body of Petri net
theory appeared around 1970. The initial textbooks devotedto Petri nets were is-
sued in the beginning of the eighties. Since that time, Petrinets have been em-
ployed for technical and administrative systems in numerous application domains.
The employment in systems biology has been first published in[RML93], [Hof94],
[Red94]. In the meantime, the three biochemical network types as well as combina-
tions of them have been investigated with different kind of Petri nets - qualitative as
well as quantitative ones.

The idea to represent biochemical networks by Petri nets is rather intuitive and
has been mentioned by Carl Adam Petri himself in one of his internal research
reports on interpretation of net theory in the seventies. Place/transition Petri nets (or
nets for short) are weighted, directed, bipartite graphs with the following four basic
ingredients, compare Figure 1.

(1) There are two types of nodes,places, described asS= {s1, . . . ,sm} and in
the figures represented by circles, andtransitions, described asR= {r1, . . . , rn} and
in the figures represented by rectangles. Places usually model passive system com-
ponents like conditions, species or any kind of chemical compounds, e.g. proteins
or proteins complexes, playing the role of precursors or products. Transitions usu-
ally stand for active system components like atomic actionsor any kind of chemical
reactions, e.g. association, disassociation, phosphorylation, or dephosphorylation.

(2) The directed arcs, represented as arrows, (only) connect nodes of different
type. They go from precursors to reactions (ingoing arcs), and from reactions to
products (outgoing arcs). Enzymes establish side conditions and are connected in
both directions with the reaction they catalyse. We define four types of sets:

• the preplaces of a transition, consisting of the reaction’sprecursors,
• the postplaces of a transition, consisting of the reaction’s products,
• the pretransitions of a place, consisting of all reactions,producing this species,
• the posttransitions of a place, consisting of all reactions, consuming this species.

(3) Arcs are weighted by nonnegative integers (natural numbers), whereby the arc
weight may be read as the multiplicity of the arc, reflecting known stoichiometries.
The arc weight 1 is the default value and is usually not given explicitly.

(4) A place carries an arbitrary number oftokens, represented as black dots or
a nonnegative integer. The number zero is the default value and usually not given
explicitly. Tokens can be interpreted as the available amount of a given species in
number of molecules or moles, or any abstract, i.e. discreteconcentration level.

In the most abstract way, a concentration can be thought of asbeing “high” or
“low” (present or absent); we get two levels. Generalizing this Boolean approach,
any continuous concentration range can be divided into a finite number of equally
sized subranges (equivalence classes), so that the concentrations within can be con-
sidered to be equivalent. The current number of tokens on a place will then specify
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the current level of the species’ concentration, e.g. the absence of tokens specifies
level 0. In the following, when speaking in terms of level semantics, we always give
the highest level number.

A place is called marked, if it has at least one token, otherwise clean (unmarked).
The tokens on all places constitute themarking of the net, which represents the
current state of the system.

Having the net structure, the next step is to bring the net to life by moving the
tokens through the net. We need to introduce the firing rule for the token game,
which consists of two parts: the precondition and the firing itself.

• A transition isenabled, if all its preplaces carry at least as many tokens as re-
quired by the weights of the corresponding ingoing arcs.

• An enabled transitionmayfire, i.e. a transition is never forced to fire. The firing
of a transition removes from all its preplaces as many tokensas specified by the
ingoing arc weights, and adds to all its postplaces as many tokens as specified by
the outgoing arc weights. The firing happens atomically and does not consume
any time.

Figuratively, the firing of a transition moves tokens from its preplaces to its post-
places, while possibly changing the amount of tokens. Generally, the firing of a
transition changes the formerly current marking to a new reachable one, where some
transitions are not enabled anymore while others get enabled. The repeated firing of
transitions establishes the behaviour of the net. The wholenet behaviour consists
of all possible partially ordered firing sequences (partialorder semantics), or all
possible totally ordered firing sequences (interleaving semantics), respectively, and
thestate spaceof the net of all reachable markings. In this introduction weconfine
ourselves to the interleaving semantics.
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Fig. 1 The Petri net for the single reaction systemA+2·B→ 3·C+D and three of its markings
(states), each connected by a firing of the transitionr. The transition is not enabled anymore in the
marking reached after these two single firing steps.

In this modelling spirit we create a place/transition Petrinet of our running exam-
ple, see Figure 2, given in [CSK+03] in the style of a bipartite graph. Circles (places)
stand for the (local) states of a protein or protein complex and are labelled with the
corresponding name; complexes are indicated by an underscore “ ” between the
protein names. For example, Raf-1Star and RKIP are proteins, and Raf-1StarRKIP
is a protein complex formed from Raf-1Star and RKIP. A suffix -P or -PP denotes
a single or double phosphorylated protein, for example RKIP-P and ERK-PP. If ap-
propriate, we will use the shortcuts s1, s2, ... instead of the full names. There are 11
species, and each is associated with a discrete concentration. In the most abstract
way, these concentrations can be thought of as being “high” or “low” (present or



6 Monika Heiner, Robin Donaldson and David Gilbert

absent). Later we will refine this Boolean approach to several discrete concentration
levels.
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RKIP
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ERK-PP

s9

MEK-PP_ERK
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Fig. 2 The Petri net for the core model of the RKIP pathway, consisting of 11 places and 11 transi-
tions (by chance). The places{s1, ..., s11} stand for proteins or protein complexes. Complexes are
indicated by an underscore “” between the protein names, phosphorylated forms by the suffix -P
or -PP. The transitions{r1, ..., r11} model the reactions. The preplaces of a transition correspond
to the reaction’s precursors, and its postplaces to the reaction’s products. The layout follows the
suggestions by the graphical notation used in [CSK+03]. The initial marking is constructed sys-
tematically using standard Petri net analysis techniques.At the bottom the two-line result vector
as produced by Charlie [Cha08] is given. Properties of interest for this biochemical network in this
vector are explained in the text.

Rectangles (transitions) stand for reactions, with reversible reactions being mod-
elled by two opposite reactions. In this pathway, reactionscomprise protein com-
plexation and decomplexation events, often accompanied byphosphorylation or de-
phosphorylation. For example, Raf-1Star and RKIP combine in a forwards reaction
to form Raf-1StarRKIP which can disassociate in a backwards reaction into Raf-
1Star and RKIP, or combine with ERK-PP to form the complex Raf1StarRKIP ERK-
PP. Reactions are labelled with r1, r2, ... to ease referencing. In the case of reversible
reactions, the labels are given by rn, rn+1 denoting that rn is the forward reaction
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and rn+1 the backward reaction. E.g., the forward reaction for the combination of
Raf-1Star and RKIP is r1, and the disassociation of Raf-1Star RKIP is r2.

Examples of basic structures in Petri net notation, which could help designing
your own Petri net, are shown in Figure 3.
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concurrency:
r7: N --> O
r8: P --> Q

alternative:
r5: K --> L
r6: K --> M

complexation:
r2: D + E --> F

decomplexation:
r1: A --> B + C

sequence:
r3: G --> H, r4: H -->I

reversible reaction:
r9: R <--> S

enzymatic reaction, mass-action kinetics:
X + Y <--> X-Y --> Z + Y

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

enzymatic reaction, 
Michaelis-Menten kinetics:  r10: U --> W

substance flow signal flow

V

Fig. 3 The Petri net components for some typical basic structures.(a) decomplexation and com-
plexation;(b) - (d) the three basic structural principles: sequence, alternative, concurrency;(e) -
(g) reversible reaction, enzymatic reaction in the Michaelis-Menten approach, and enzymatic reac-
tion in the mass-action approach;(h), (i) the essential distinctive principles of metabolic networks
(substance flow) and signal transduction networks (signal flow).
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3.2 Qualitative Analysis

A preliminary step will usually execute the net, which allows us to experience the
model behaviour by following the token flow1. Having established initial confidence
in the model by playing the token game, the system needs to be formally analysed.
Formal analyses are exhaustive, opposite to the token game,which exemplifies the
net behaviour.

The Petri net enjoys all the pleasant general properties a Petri net insider could
dream of: boundedness, liveness, reversibility, which arethree orthogonal basic be-
havioural net properties.

• boundednessFor every place it holds that: Whatever happens, the maximalnum-
ber of tokens on this place is bounded by a constant. This precludes overflow by
unlimited increase of tokens.

• livenessFor every transition it holds that: Whatever happens, it will always be
possible to reach a state where this transition gets enabled. In a live net, all tran-
sitions are able to contribute to the net behaviour forever,which precludes dead
states, i.e. states where none of the transitions is enabled.

• reversibility For every state it holds that: Whatever happens, the net willal-
ways be able to reach this state again. So the net has the capability of self-
reinitialization.

In most cases these are requirable properties. The decisionabout the first two
properties can be made for our example in a static way, i.e. without constructing
the state space, while the last property requires dynamic analysis techniques, i.e. the
construction of the state space. The essential steps of the systematic analysis pro-
cedure for our running example are given in more detail as follows. They represent
a typical pattern how to proceed. So they may be taken as a recipe how to analyse
your own system.

(1) Structural properties The following three structural properties reflect the
modelling approach and can be taken as preliminary consistency checks to preclude
production faults in drawing the net.

The net ispure (PUR), i.e. there are no place and transition connected in both
directions. So, the net structure is fully represented by the incidence matrix, which
is used for the calculation of the P- and T-invariants, see step (2).

The net isordinary (ORD), i.e. all arc weights equal to 1. This includes ho-
mogeneity (HOM), i.e. the outgoing arcs of each place have the same multiplicity,
which is a necessary prerequisite for the Deadlock Trap Property (DTP), see step
(4) below.

The net isstrongly connected(SC), i.e. there is a directed path between all pairs
of nodes. This precludes boundary nodes, which exist in fourtypes:

• input transition - a transition without preplace (FT0),
• output transition - a transition without postplace (TF0),

1 If the reader would like to give it a try, just download our Petri net tool [Sno08].
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• input place - a place without pretransition (FP0),
• output place - a place without posttransition (PF0).

Boundary nodes model interconnections of an open system with its environment.
However, the given net is self-contained, i.e. a closed system. Therefore, in order to
make the net live, we have to construct an initial marking, see step (3) below.

Finally, there are transitions sharing a preplace; e.g. thetransitions r2 and r3
share the preplace Raf-1StarRKIP. Consequently, these transitions compete for the
tokens on the shared preplace. Such a situation is calledstructural conflict. If each
transition is involved in one conflict at most, the net belongs to the structural class
extended simple(ES), which is the case for our running example. Hence, we know
that the net has the ability to be live independent of time, i.e. if it is live, then it
remains live under any timing. Remarkably, neglecting the backward directions of
all reversible reactions removes all structural conflicts in the net structure, which
makes this reduced net to asynchronisation graph(SG), the structural net class,
which is characterized by being free of structural conflicts(SCF).

(2) Static decision of marking-independent behavioural properties A beneficial
technique in model validation is to check all invariants fortheir biological plausibil-
ity. We shortly recall the essential technical terms.

At the beginning, we need to represent the net structure by a matrix, which opens
the door to analysis techniques based on linear algebra. Theincidence matrixof a
Petri net is an integer matrixC with a row for each place and a column for each
transition. A matrix entryC(s, r) gives the token change on places by the firing
of transitionr. Thus, a preplace ofr, which is not a postplace ofr, has a negative
entry, while a postplace ofr, which is not a preplace ofr, has a positive entry, each
corresponding to the arc multiplicities. The entry for a place, which is preplace as
well as postplace of a transition, gives the difference of the multiplicities of the
transition’s outgoing arc minus the transition’s ingoing arc. In this case we lose
information; the non-ordinary net structure can not be reconstructed uniquely out of
the incidence matrix.

The columns ofC are place vectors, i.e. vectors with as many entries as there are
places, describing the token change on a marking by the firingof the transition defin-
ing the column index. The rows ofC are transition vectors, i.e. vectors with as many
entries as there are transitions, describing the influence of all transitions on the to-
kens in the place, defining the row index. For stoichiometricreaction networks, e.g.
metabolic networks, the incidence matrix coincides with the stoichiometric matrix.

A nonzero and nonnegative integer place vectorx is calledP-invariant, if x·C=
0; in words, for each transition it holds that: multiplying the P-invariant with the
transition’s column vector yields zero.

Thus, the total effect of each transition on the P-invariantis zero, which explains
its interpretation as a token conservation component. A P-invariantx stands for a set
of places over which the weighted sum of tokens is constant and independent of any
firing, i.e. for any markingsm1, m2, which are reachable by the firing of transitions,
it holds thatx·m1 = x·m2. In the context of metabolic networks, P-invariants reflect
substrate conservations, while in signal transduction networks P-invariants often
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correspond to the several states of a given species (proteinor protein complex). A
place belonging to a P-invariant is obviously bounded.

Likewise, a nonzero and nonnegative integer transition vector y is called T-
invariant, if C ·y= 0; in words, for each place it holds that: multiplying the place’s
row with the T-invariant yields zero. Thus, the total effectof the T-invariant on a
marking is zero. A T-invariant has two interpretations in the given biochemical con-
text.

• The entries of a T-invariant represent a multiset of transitions which by their
partially ordered firing reproduce a given marking, i.e. basically occurring one
after the other. This partial order sequence of the T-invariant’s transitions may
contribute to a deeper understanding of the net behaviour. AT-invariant is called
feasible, if such a behaviour is actually possible in the given marking situation.

• The entries of a T-invariant may also be read as the relative firing rates of tran-
sitions, all of them occurring permanently and concurrently. This activity level
corresponds to the steady state behaviour.

The two transitions modelling the two directions of a reversible reaction make
always a minimal T-invariant; thus they are calledtrivial T-invariants.

The computation of all P-invariants (T-invariants) requires solving the homoge-
nous linear equation systemx ·C = 0 (C · y = 0) over the nonnegative integers. If
there are solutions, then there are infinitely many. To characterize the solution space,
we need a generating system. For this purpose we introduce the next terms, which
hold equally for P- and T-invariants.

The set of nodes corresponding to an invariant’s nonzero entries is called its
support. An invariantx is calledminimal, if its support does not contain the support
of any other invariant, and the greatest common divisor of all nonzero entries ofx
is 1. The set of all minimal invariants of a given net is uniqueand is a generating
system for all invariants. To compute all invariants out of the minimal ones, we
use the following operations: multiplication with a nonnegative integer, addition of
invariants, and division by a common divisor.

A minimal P-invariant (T-invariant) defines a connected subnet, consisting of its
support, its pre- and posttransitions (pre- and postplaces), and all arcs in between.
These minimal self-contained subnets may be read as a decomposition into token
preserving or state repeating modules, which should have anenclosed biological
meaning. However, minimal invariants generally overlap, and in the worst-case there
are exponentially many of them.

A net is covered by P-invariants, shortly CPI, (covered by T-invariants, shortly
CTI), if every place (transition) belongs to a P-invariant (T-invariant). CPI causes
structural boundedness (SB), i.e. boundedness for any initial marking. CTI is a nec-
essary condition for bounded nets to be live.

The net under consideration has five minimal P-invariants covering the net (CPI),
consequently the net is structurally bounded (SB). All the P-invariantsxi contain
only entries of 0 and 1, which allows a short-hand specification by just giving the
names of the places involved.

x1 = (Raf-1Star, Raf-1StarRKIP, Raf-1StarRKIP ERK-PP),
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x2 = (MEK-PP, MEK-PP ERK),
x3 = (RP, RKIP-P RP),
x4 = (ERK, ERK-PP, MEK-PPERK, Raf-1StarRKIP ERK-PP),
x5 = (RKIP, Raf-1StarRKIP, Raf-1StarRKIP ERK-PP, RKIP-PRP, RKIP-P).

Each P-invariantxi stands for a reasonable conservation rule, the species pre-
served being given in bold by the first name in the invariant. Due to the chosen
naming convention, this particular name also appears in allthe other place names of
the same P-invariant.

The net under consideration is also covered by T-Invariants(CTI). Besides the
expected four trivial T-invariants for the four reversiblereactions, there is only one
non-trivial minimal T-invarianty= (r1, r3, r5, r6, r8, r9, r11), comprising the whole
net, but without the backward reactions. The subnet defined by this T-invariant de-
scribes the essential partial order behavior of the modelled system.

The automatic identification of non-trivial minimal T-invariants is in general use-
ful as a method to highlight important parts of a network, andhence aid its compre-
hension by biochemists, especially when the entire networkis too complex to easily
comprehend.

Notably, our running example collapses into a synchronisation graph, if we re-
move the backward directions of the reversible reactions. In a strongly connected
ordinary synchronisation graph, each minimal cycle corresponds to a minimal P-
invariant, and the set of all transitions constitutes a T-invariant. This confirms from
a different perspective the invariants results, which we have just discussed.

All the properties above relate only to the structure, i.e. they are valid indepen-
dently of the initial marking. In order to proceed we first need to generate an initial
marking.

(3) Initial marking construction For a systematic construction of the initial mark-
ing, we consider the following criteria.

• Each P-invariant needs at least one token.
• All (non-trivial) T-invariants should be feasible, meaning, the transitions, making

up the T-invariant’s multiset can actually fire in an appropriate order.
• Additionally, it is common sense to look for a minimal marking (as few tokens

as possible), which guarantees the required behaviour.
• Within a P-invariant, choose the species with the mostinactiveor themonomeric

state.

Taking all these criteria together, the initial marking on hand is: Raf-1Star, RKIP,
ERK, MEK-PP, RP get each one token, while all remaining places are clean. With
this initial marking, the net is covered by 1-P-invariants (exactly one token in each
P-invariant), therefore the net is 1-bounded (indicated as1-B in the analysis result
vector, compare Figure 2). That is in perfect accordance with the understanding that
in signal transduction networks a P-invariant comprises all the different states of one
species. Obviously, each species can be only in one state at any time.

This initial marking differs from the initial concentrations used in [CSK+03] as
part of their method to estimate rate parameters required for their ODE model of the
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RKIP pathway. We will later see that their initial marking isequivalent to the initial
marking which we have constructed, and that in fact both markings are members of
a larger equivalence class of markings.

With the chosen marking we can check the non-trivial minimalT-invariant, see
step (2), for realizability, which then involves the realizability of the trivial T-
invariants. We obtain an infinite partial order run, the beginning of which is given as
labelled condition/event net in Figure 4. We get this run by unfolding the behaviour
of the subnet induced by the T-invariant, whereby any concurrency is preserved.
Here, transitions represent events, labelled by the name ofthe reaction taking place,
while places stand for binary conditions, labelled by the name of the species, set
or reset by the event, respectively. This run can be characterized in a short-hand
notation by the following set of partially ordered words outof the alphabet of all
transition labels R:

{ (r1, (r6; r8)); [(r3; r5);((r9; r11; r1), (r6; r8))]*},

where “;” stands for “sequentiality” and “,” for “concurrency”. This partial order
behaviour gives further insight into the dynamic behaviourof the network which
may not be apparent from the standard net representation. Inour running example,
the partial order representation illustrates the central role of Raf-1Star and the fact
that certain reactions take place sequentially, others cantake place independently
and that some reactions are constrained by the need for the presence of two or more
precursors produced from prior reactions; e.g. the reaction r1 requires the participa-
tion of both proteins Raf-1* and RKIP, which are produced by reactions r5 and r11
respectively.

Having established and justified our initial marking we proceed to the next steps
of the analysis.

(4) Static decision of marking-dependent behavioural properties The following
advanced structural Petri net properties can be decided by combinatorial algorithms.
First, we need to introduce two new notions.

A nonempty set of placesD⊆ S is calledstructural deadlockif every transition,
which fires tokens onto a place in this structural deadlock set also has a preplace in
this set, i.e. the set of pretransitions ofD is contained in the set of posttransitions
of D. Pretransitions of a structural deadlock cannot fire, if theplace set is clean.
Therefore, a structural deadlock cannot get tokens again, as soon as it is clean, and
then all its posttransitions are dead.

A nonempty set of placesQ⊆Sis calledtrap, if every transition, which subtracts
tokens from a place of the trap set, also has a postplace in this set, i.e. the set of
posttransitions ofQ is contained in the set of pretransitions ofQ. Posttransitions of
a trap always return tokens to the place set. Therefore, oncea trap contains tokens,
it cannot become clean again.

Structural deadlock and trap are closely related, but contrasting notions. When
they come on their own, we get usually deficient behaviour. However, both notions
have the power to complement each other perfectly. A Petri net has theDeadlock-
Trap Property (DTP), if every structural deadlock contains a marked trap. The DTP
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Fig. 4 The beginning of the infinite partial order run of the non-trivial minimal T-invarianty =
(r1, r3, r5, r6, r8, r9, r11) of the place/transition Petri net given in Figure 2. We get this run by
unfolding the behaviour of the subnet induced by the T-invariant, whereby any concurrency is
preserved. Here, transitions represent events, labelled by the name of the reaction taking place,
while places stand for binary conditions, labelled by the name of the species, set or reset by the
event, respectively. On the right, a shorthand notation is given, showing also the cuts between two
“rounds”.
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can still be decided by structural reasoning only. The importance becomes clear by
the following theorem: An ordinary extended simple net having the DTP is live.

Our running example is extended simple and the DTP holds, therefore the net
is live (LIV). So, we are in the fortunate position to be able to decide liveness by
structural reasoning only - the state space does not need to be constructed for this.

(5) Dynamic decision of behavioural properties In order to decide reversibil-
ity (REV) we need to construct the state space. This could be done according the
partial order semantics or the interleaving semantics. To keep things simple we con-
sider here the reachability graph only. The nodes of a reachability graph represent
all possible states (markings) of the net. The arcs in between are labelled by sin-
gle transitions, the firing of which causes the related statechange. Altogether, the
reachability graph gives us a finite automaton representation of all possible single
step firing sequences. Consequently, concurrent behaviouris described by enumer-
ating all interleaving firing sequences; so it reflects the behaviour of the net in the
interleaving semantics.

Because we already know that the net under consideration is bounded, we also
know that the reachability graph has to be finite. Here, the reachability graph
has 13 states (out of 2048 = 211 theoretically possible ones, due to the given 1-
boundedness), see Figure 5 and Table 3. Generally, reachability graphs tend to be
huge. Table 2 shows the size of the reachability graph with different number of
concentration levels.

Table 2 The number of states in the state space as the number of levelsin the model increases.

# Levels # States# Levels # States# Levels # States
1 13 15 368,220 40 79,414,335
5 1,974 20 1,696,618 50 2.834 e+08
7 8,646 25 5,723,991 100 1.591 e+13
9 28,171 30 15,721,464 250 3.582 e+12

10 47,047 35 37,314,537 500 2.231 e+14

It is clear from the table that as the number of levels increase, the number of
states in the reachability graph grows extremely fast. The termstate explosionhas
been coined for this phenomenon. Independently of the size,the reachability graph
we get is strongly connected. Therefore, the Petri net is reversible, i.e. the initial
system state is always reachable again, and the system has the capability of self-
reinitialization. Further, the liveness of the net has already been decided structurally,
so we know that each transition (reaction) appears at least once as arc label in this
reachability graph.

Moreover, from the viewpoint of the qualitative model, all these 13 states are
equivalent, i.e. any of those 13 states could be taken as initial state resulting in ex-
actly the same total (discrete) system behaviour (likewisefor the larger state sets).
That is in perfect accordance with the observations gained during quantitative anal-
yses, see next section.
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Fig. 5 The reachability graph of the place/transition Petri net given in Figure 2. Nodes represent
states (markings), while the arcs are labelled with the transition responsible for a given change
of states. For a list of the complete state descriptions see Table 3. The initial state is highlighted
in gray. In the reachability graph, the two concurrent transition sequences (r6; r8) and (r9; r11;
r1), compare the partial order run in Figure 4, going from m8 to m5, are represented by all possi-
ble totally ordered (interleaving) sequences. Thus, the reachability graph reflects the interleaving
semantics.

This concludes the analysis ofgeneralbehavioural net properties, i.e. of proper-
ties we can speak about in syntactic terms only, without any semantic knowledge.
The next step consists in a closer look atspecialbehavioural net properties, reflect-
ing the expected special functionality of the network.

(6) Model checking of special behavioural properties To validate the model, it is
often of interest to prove - besides the general properties -additional special prop-
erties which reflect the intended functionality of the network. We have to specify
these special properties in an unambiguous language. Temporal logics, a mathemat-
ical mechanism, has been proven to be best suited for this purpose. It provides a
flexible formalism which considers the validity of propositions in relation to the
execution of the model.

One of the widely used temporal logics is theComputational Tree Logic(CTL).
It is called after the data structure used - the computational tree, which we get by
unwinding the reachability graph. Thus, CTL represents a branching time logic with
interleaving semantics. The analysis technique, decidingwhether a temporal-logic
property holds in a model, is calledmodel checking, and the tools implementing the
algorithms are calledmodel checkers. Model checking generally requires bounded-
ness. If the net is 1-bounded, there exists a particularly rich choice of model check-



16 Monika Heiner, Robin Donaldson and David Gilbert

Table 3 States of the reachability graph given in Figure 5, which will be used as the initial 13
‘good’ state configurations in the quantitative analyses.

# species m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

s1 Raf-1* 1 0 0 1 1 0 0 1 1 1 1 1 1
s2 RKIP 1 0 0 1 1 0 0 0 0 0 0 0 0
s3 Raf-1* RKIP 0 1 1 0 0 1 0 0 0 0 0 0 0
s4 Raf-1* RKIP ERK-PP 0 0 0 0 0 0 1 0 0 0 0 0 0
s5 ERK 1 1 0 0 0 0 0 1 0 0 0 0 1
s6 RKIP-P 0 0 0 0 0 0 0 1 1 1 0 0 0
s7 MEK-PP 1 1 0 0 1 1 1 1 0 1 1 0 1
s8 MEK-PPERK 0 0 1 1 0 0 0 0 1 0 0 1 0
s9 ERK-PP 0 0 0 0 1 1 0 0 0 1 1 0 0
s10 RP 1 1 1 1 1 1 1 1 1 1 0 0 0
s11 RKIP-PRP 0 0 0 0 0 0 0 0 0 0 1 1 1

ers, [SSE03], which get their efficiency by exploiting sophisticated data structures
and algorithms. In the case of our rather simple example, thevariety of model check-
ers is not important, and the properties could even be checked manually. However,
as mentioned above, the state space of more complex networksis subject to the
famous state explosion problem, and therefore calls for automatic evaluation.

The application of this analysis approach requires an understanding of temporal
logics. CTL - as any temporal logic - is an extension of a classical (propositional)
logic. The atomic propositions consist of statements on thecurrent token situation
in a given place. In the case of 1-bounded models, places can be read as Boolean
variables, which allows propositions such as RKIP-P instead of m(RKIP-P) = 1,
wherem(s) yields the number of tokens ons. Likewise, places are read as integer
variables for bounded models.

Atomic propositions can be combined to composed propositions using the stan-
dard logical operators:¬ (negation),∧ (conjunction),∨ (disjunction), and→ (im-
plication), e.g. RKIP-P∨ RKIP-P RP.

The truth value of a proposition may change by the execution of the net; e.g. the
proposition RKIP does hold in state m1, but not in state m2. Such temporal relations
between propositions are expressed by the additionally available temporal operators.
In CTL there are basically four of them (neXt, Finally, Globally,Until), which come
in two versions (E for Existence,A for All), making together eight operators. Let
φ[1,2] be an arbitrary temporal-logic formulae. Then, the following formulae hold in
statem,

• EX φ : if there is a state reachable by one step whereφ holds.
• EF φ : if there is a path whereφ holds finally, i.e., at some point.
• EG φ : if there is a path whereφ holds globally, i.e., forever.
• E (φ1 U φ2) : if there is a path whereφ1 holds untilφ2 holds.
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The other four operators, which we get by replacing theExistence operator by the
All operator, are defined likewise by extending the requirement “there is a path” to
“for all paths” . A formula holds in a net, if it holds in its initial state.

We instantiate some of the generic property patterns provided in [CRCVDS04]
and get the following samples of meaningful statements for our running example,
whose truth can be determined via model checking. Please remember, places are
interpreted as Boolean variables in the following formulae, in order to simplify no-
tation.

• property Q1: There is a reachable state where ERK is phosphorylated and RKIP
is not phosphorylated.

EF [ (ERK-PP∨ Raf-1StarRKIP ERK-PP) ∧
(RKIP∨ Raf-1StarRKIP∨ Raf-1StarRKIP ERK-PP]

The given state specification applies to state m5, and this state is of course reach-
able from m1; the shortest firing sequence is r6; r8, compare Figure 5.

• property Q2: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.

AG [ ( ERK∧ ¬(RKIP-P∨ RKIP-P RP) )→
E [ ¬(RKIP-P∨ RKIP-P RP) U ERK-PP] ]

In words: forever it holds (AG), if we are in a state where ERK is marked, but
neither RKIP-P nor RKIP-PRP, i.e. RKIP is not phosphorylated, then there is a
path (E), along which in all states RKIP is not phosphorylated until (U) we reach
a state were ERK-PP is marked.

• property Q3: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible
forever.

AG [ ( RKIP→ EF (¬RKIP) )∧ (¬RKIP→ EF (RKIP) ) ]
In words: forever it holds (AG), if we are in a state where RKIPis marked, then
there is a path to a state (EF), where RKIP is not marked anymore, and vice versa.
Taking into consideration that the backward reactions are comparatively slow,
compare Table 4, which allows us to neglect them, we are able to expect a much
stronger property: the cyclic behaviour w.r.t. the presence/absence of RKIP is not
only possible forever, it is even guaranteed.

AG [ ( RKIP→AF (¬RKIP) )∧ (¬RKIP→AF (RKIP) ) ]
In words, forever it holds (AG), if we are in a state, where RKIP is marked, then
on all paths we reach finally a state (AF), where RKIP is not marked anymore,
and vice versa. This stronger property does not hold in the full net (with the
backward reactions), because the reversible reactions establish infinite cycles,
i.e. paths, which prevent the system from reaching a state asrequired.

Temporal logic is an extremely powerful and flexible language to describe spe-
cial properties, however needs some experience to get accustomed to it. Applying
this analysis technique requires seasoned understanding of the network under in-
vestigation combined with the skill to correctly express the expected behaviour in
temporal logics. We will see in the next section how to employthe same technique
in a quantitative setting.
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3.3 Summary

To summarize the preceding validation steps, the model has passed the following
validation criteria.

• validation criterion 0 All expected structural properties hold, and all expected
general behavioural properties hold.

• validation criterion 1 The net is CPI, and there are no minimal P-invariant with-
out biological interpretation.

• validation criterion 2 The net is CTI, and there are no minimal T-invariant with-
out biological interpretation. Most importantly, there isno known biological be-
haviour without a corresponding, not necessarily minimal,T-invariant.

• validation criterion 3 All expected special behavioural properties expressed as
temporal-logic formulae hold.

One of the benefits of using the qualitative approach is that systems can be mod-
elled and analysed without any quantitative parameters. Moreover the qualitative
analyses help in identifying suitable initial markings andpotential quantitative anal-
ysis techniques, compare next section.

Now we are ready for a more sophisticated quantitative analysis of our model.
Please note, up to now we employed a time-free model. However, the qualitative
analysis techniques consider all behaviour possible underany timing. Adding tim-
ing constraints to our Petri net usually restricts the behaviour. So it should not come
as a surprise if under the given timing assumptions certain behaviour disappears.
However we know that what has not been possible in the qualitative model can-
not become possible in the quantitative one; e.g. a bounded model cannot become
unbounded.

4 Quantitative Approaches

In this section we transform our validated qualitative model, given as a place/transi-
tion Petri net, into quantitative ones, specified as stochastic or continuous Petri nets,
and employ related analysis techniques.

4.1 Quantitative Modelling

To transform a qualitative Petri net into quantitative ones, we need to assign to
all transitions (reactions) their rate functions, which generally depend on the cur-
rent state of the reactions’ substrates, or - in Petri net terms - the current marking
of the transitions’ preplaces. Technically, rate functions can be any mathematical
functions. However, often they follow some kinetic patterns, with the mass-action
kinetics and the Michaelis-Menten kinetics being the most famous ones. Table 4
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gives for each reaction: the reaction equation, the rate function and the involved
rate constants. The rate functions (employing the stochastic rate constants) are used
in the stochastic model as the propensity (hazard) functions, determining the cur-
rent stochastic firing rates, and in the continuous model as the deterministic rate
functions (employing the deterministic rate constants), determining the current de-
terministic firing rates. The conversion of stochastic and deterministic rate constants
into each other is well understood, see e.g. [Wil06]; especially it holds that they are
equivalent for first-order reactions. For second-order reactions we get the stochastic
rate constant by multiplying with a scaling factor (level semantics).

Table 4 The reaction equation, rate function, and rate constants for each reaction (transition),
compare Figure 2. For better readability we use the abbreviations s1 ... s11 for the involved species.
All reactions employ mass action kinetics. Please note thatthe backward reactions constants are
by two orders of magnitude smaller than for the forward reactions.

# reaction equation rate function vi rate constanta

stochastic deterministic

r1 s1 + s2 → s3 c1· s1 · s2 c′1 = c1 · fs c1 = 0.53
r2 s3 → s1 + s2 c2· s3 c′2 = c2 c2 = 0.0072
r3 s3 + s9 → s4 c3· s3 · s9 c′3 = c3 · fs c3 = 0.625
r4 s4 → s3 + s9 c4· s4 c′4 = c4 c4 = 0.00245
r5 s4 → s1 + s5 + s6 c5· s4 c′5 = c5 c5 = 0.0315
r6 s5 + s7 → s8 c6· s5 · s7 c′6 = c6 · fs c6 = 0.8
r7 s8 → s5 + s7 c7· s8 c′7 = c7 c7 = 0.0075
r8 s8 → s7 + s9 c8· s8 c′8 = c8 c8 = 0.071
r9 s6 + s10→ s11 c9· s6 · s10 c′9 = c9 · fs c9 = 0.92
r10 s11 → s6 + s10 c10· s11 c′10 = c10 c10 = 0.00122
r11 s11 → s2 + s10 c11· s11 c′11 = c11 c11 = 0.87

a The stochastic and deterministic rate constants are equivalent for first-order reactions.fs is a
scaling factor to map the givenmassin the continuous concentration onto a finite number of levels
(i.e tokens), with N being the highest level number, i.e.fs = mass/N.

Finding the rate constants may turn out to be a difficult and time consuming
process. It usually involves both searches for scientific papers and also discussions
with the biologists knowledgeable in the pathway under investigation. We obtain the
deterministic rate constants from [CSK+03].

In the following we illustrate the strength of quantitativeapproaches by a few
analysis examples only. We start with the stochastic approach to exclude eccentric
system behaviour caused by stochastic noise before considering the averaged be-
haviour in the deterministic continuous approach.
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4.2 Stochastic Analysis

As with a qualitative Petri net, a stochastic Petri net maintains a discrete number of
tokens on its places. But contrary to the time-free case, an exponentially distributed
firing rate (waiting time) is associated with each transition r, specified by a parame-
terλ . Generally,λ is state-dependent and defined by a propensity (hazard) function.
The firing itself does not consume time and again follows the standard firing rule
of qualitative Petri nets. Thus, all waiting times can theoretically still occur, but
the likelihood depends on the probability distribution. Consequently, the system be-
haviour is described by the same discrete state space, and all the different execution
runs of the underlying qualitative Petri net can still take place.

More formally, the semantics of a stochastic Petri net (withexponentially dis-
tributed waiting times for all transitions) is described bya continuous time Markov
chain (CTMC). The CTMC of a stochastic Petri net without parallel transitions is
isomorphic to the reachability graph of the underlying qualitative Petri net, while
the arcs between the states are now labelled by the transition rates. This allows the
use of the same powerful analysis techniques for stochasticPetri nets as already
applied for qualitative Petri nets.

Table 4 provides the details which permit reading the net in Figure 2 as a stochas-
tic Petri net, specifying at the same time reaction rate equations (RREs).

(1) Equivalence check by transient analysis Due to the isomorphy of reachabil-
ity graph and CTMC, all qualitative analysis results obtained in the former section
are still valid. The influence of time does not restrict the possible system behaviour.
Specifically it holds that the CTMC in our case study is reversible, which ensures
ergodicity; i.e. we could start the system in any of the reachable states, always re-
sulting in the same CTMC with the same steady state probability distribution.

Additionally, probabilistic analyses of the transient andsteady state behaviour
are now available. Generally, this can be done in an analyticas well as in a sim-
ulative manner. The boundedness of the underlying qualitative model allows the
application of standard Markov analysis techniques which are based on the state
transition matrix. However, stochastic simulation algorithms (SSA), e.g. Gillespie’s
exact simulation algorithm [Gil77], are computationally less expensive and work
also for huge or even infinite state spaces.

Applying SSA produces data describing the dynamic evolution of the biologi-
cal system over time. Figure 6 shows the behaviour of a subsetof the species in
the model (phosphorylated proteins or complexes of them) over time, for various
numbers of levels (tokens). The noise decreases as the number of levels increases,
thus the behaviour of the stochastic Petri net approaches that of the deterministic
net. Moreover it is obvious that the system reaches a steady state in all shown cases,
determining the value at which the response saturates.

We proceed with transient analysis to prove the sufficient equivalence between
the stochastic model in the level semantics and the corresponding continuous model,
justifying the interpretation of the properties gained by the stochastic model also in
terms of the continuous one. Probabilistic model checkers such as PRISM [PNK06]
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Fig. 6 Diagrams displaying the output of deterministic (ODE) and stochastic (SSA) simulation
for a subset of the species in the system. This shows that the averaged stochastic behaviour (over
100 runs) tends towards the deterministic behaviour as the number of levels increases. The species
shown are the phosphorylated species.

and IDD-CSL [SH09] permit the analysis of the transient behaviour of the stochastic
model, e.g., the concentration of MEK-PP at timet is given by:

CMEK−PP(t) = M
N ·

N

∑
i=1

(
i ·P(LMEK−PP(t) = i)

)

︸ ︷︷ ︸

expected value o f LMEK−PP(t)

.

whereN is the highest level number andM is the maximum concentration, 2.5µMol.
The random variableLMEK−PP(t) stands for the level of MEK-PP at time t. Figure 7
shows the output of MEK-PP and Raf-1StarRKIP in the time interval[0..100] ac-
cording to the continuous and the stochastic models respectively. These results con-
firm that 7 levels is sufficient to approximate the continuousmodel, and that there
is little discernible difference in output between the number of levels used in the
figure.

(2) Analytical stochastic model checking In the former section we employed CTL
to express behavioural properties. Since we now have a stochastic model, we can ap-
ply the branching-time Continuous Stochastic Logic (CSL),which replaces the path
quantifiers (E, A) in CTL by the probability operatorP⊲⊳p, whereby⊲⊳ p specifies
the probability of the given formula. First we introduce in CSL the abbreviations
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Fig. 7 Comparison of the concentration traces for 5, 7, and 9 levelsin the stochastic model against
the continuous behaviour.

Fφ for trueUφ andGφ for !F !φ . The CTL formulaEFφ now becomes the CSL
formula P>0[Fφ ], andAG φ becomesP≥1[Gφ ]. CSL also defines a steady state
operatorS⊲⊳p which specifies the probability of the given formula in the long run.

The probabilistic model checkers PRISM and IDD-CSL use CSL logic, see
Chapter 6 in this book. Both tools take an analytical approach, where the proba-
bilities in the probability operator are exact and the result of CTMC analysis. IDD-
CSL reads a Petri net standard format. In order to use the PRISM model checker,
we have to encode our running example in its modelling language. This translation
requires knowledge of the boundedness degree of all speciesinvolved, which we
acquire by the structural analysis technique of P-invariants. We consider here the
level semantics, where we divide the concentration range (0...2.5µMol) into N+1
discrete levels. Thus withM, the maximum concentration, 2.5µMol, we define lev-
els as such: 0,(0∗M/N,1∗M/N],(1∗M/N,2∗M/N], ...((N−1)∗M/N,N∗M/N].
The discrete tokens in the stochastic Petri net now relate tothe levels. We use the
result from transient analysis that 7 levels are sufficient to describe the behaviour of
the system and continue with a 7-level model.

We can now check our stochastic Petri net with CSL propertiesequivalent to the
qualitative CTL properties described in the previous section, whereby places are
now interpreted as integer variables.

• property S1a: There are reachable states where ERK is phosphorylated and
RKIP is not phosphorylated.

P>0 [ F (ERK-PP+ Raf-1StarRKIP ERK-PP≥ 1 ∧
RKIP + Raf-1StarRKIP ERK-PP+ Raf-1StarRKIP = 7)]
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• property S2a: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.

P=? [ G ((ERK = 7 ∧ RKIP-P= 0∧ RKIP-P RP= 0 )→
P>0 [ (RKIP-P= 0∧ RKIP-P RP= 0) U (ERK-PP≥ 1) ] ) ]

We take this opportunity to use theP=? operator which returns (rather than com-
pares) the probability of the property. As this property always holds true, the
returned probability is 1.

• property S3a: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible
forever.

S>0 [ (RKIP= 0) ]
S>0 [ (RKIP≥ 1) ]

This property is expressed using the steady state operator,which states that in the
long run there are nonzero probabilities of RKIP being present or absent; hence
it can cycle.

Analytical model checking constructs and analyses the entire state space which
can become infeasible due to the state explosion problem. Thus we now move to a
simulative approach.

(3) Simulative stochastic model checking A simulative approach handles large
state spaces through approximating results by analysing only a subset of the state
space – a finite set of finite paths through the CTMC produced bya simulation
algorithm.

The type of logic now suitable for describing properties changes from branching-
time (e.g., CSL operating over the CTMC) to linear-time. A linear-time logic oper-
ates in-turn over paths through the CTMC, equivalent to operating on simulation
outputs. We use a probabilistic linear-time temporal logic(PLTL) which extends
standard LTL [Pnu81] to a stochastic setting. PLTL is LTL extended with aP⊲⊳p op-
erator and a filter construct,{φ }, defining the initial state from which the property
is checked. As PLTL is a linear-time logic, there can be no embedded probability
operators.

We use the PLTL Monte Carlo model checker, MC2, with Gillespie’s algorithm
as featured in Snoopy. The input to the model checker was 100 simulation outputs
from Gillespie’s algorithm, with a simulation time of 10,000s. We follow the result
that 7 tokens are sufficient and use 7 molecules in the simulation. We now check the
following PLTL properties.

• property S1s: There are reachable states where ERK is phosphorylated and
RKIP is not phosphorylated.

P>0 [ F (ERK-PP+ Raf-1StarRKIP ERK-PP≥ 1 ∧
RKIP + Raf-1StarRKIP ERK-PP+ Raf-1StarRKIP = 7)]

• property S2s: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.

P≥1 [ (RKIP-P+ RKIP-P RP= 0) U (ERK-PP≥ 1) ]
As PLTL cannot have embedded probability operators, we are restricted here to
a much weaker property. This property says from the initial state of the system,
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ERK can phosphorylate without RKIP being phosphorylated. In fact, from the
initial state this is always true.

• property S3s: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible
forever.

P>0 [ F (RKIP≥ 1){ time≥ 5000∧ RKIP = 0} ]
P>0 [ F (RKIP = 0){ time≥ 5000∧ RKIP≥ 1} ]

PLTL cannot directly perform steady state analysis. Steadystate behaviour can be
approximated through long SSA simulations with the property checked towards
the end of the simulation. The filter,{φ}, defines the initial state that the property
is checked from. From late in the simulation where RKIP is absent, we check
whether RKIP can become present, and vice versa. This property also holds with
a higher time than 5,000sused.

Simulative stochastic model checking has its advantage when the range of be-
haviours that the model checker operates over becomes computationally infeasible.
A simulative approach will allow model checking results in afeasible time through
approximating. However, our stochastic Petri net with 7 tokens is feasible in both
approaches and we would suggest that analytical approachesshould be used where
possible.

We continue with the computationally less expensive continuous approach con-
sidering the averaged behaviour.

4.3 Continuous Analysis

In a continuous Petri net the marking of a place is no longer aninteger, but a nonneg-
ative real number, which can be read as the concentration of the species modelled
by the place, and transitions fire continuously according tothe deterministic rate
functions. Assigning these rate functions to all transitions, see Table 4, allows to
read the net in Figure 2 as a continuous Petri net.

The semantics of a continuous Petri net is defined by a system of ordinary dif-
ferential equations (ODEs), whereby one equation describes the continuous change
over time on the token value of a given place by the continuousincrease of its pre-
transitions’ flow and the continuous decrease of its posttransitions’ flow, i.e. each
placep subject to changes gets its own equation. The complete system of non-linear
ODEs generated from the continuous Petri net of our running example is as follows.
Please note, the place names stand now for real number variables, and the rate func-
tion variables vi are specified in Table 4. To make the model checking analysis more
intuitive, we have mapped the concentrations of 2.5µMol to 1µMol such that all
concentrations are relative.
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ds1

dt
= v2+ v5− v1

ds2

dt
= v2+ v11− v1

ds3

dt
= v1+ v4− v2− v3

ds4

dt
= v3− v4− v5

ds5

dt
= v5+ v7− v6

ds6

dt
= v5+ v10− v9

ds7

dt
= v7+ v8− v6

ds8

dt
= v6− v7− v8

ds9

dt
= v4+ v8− v3

ds10

dt
= v10+ v11− v9

ds11

dt
= v9− v10− v11

(1) Steady state analysis Simulating the continuous Petri net, i.e. solving numeri-
cally the underlying system of ODEs, we get data as shown in Figure 9. Given the
usual inexactitudes of the rate constants, biochemists will often interpret the results
of ODE-based simulations as indicators of the behaviour of the components of the
network, rather than being concerned with the exact value ofthe concentration of a
particular species at a particular point in time.

We perform a quantitative analysis of the simulation results to determine whether
the 13 “good” initial states (markings) suggested by the qualitative Petri net analysis,
see Table 3, are indeed in some way equivalent (they all result in the same steady
state), and that no other possible initial states can be usedto give the same results.
These are “sensible” initial states from the point of view ofbiochemistry, in that
in all these 13 cases, and in none of the other 2035 states, each protein species is
in a high initial concentration in only one of the following states: uncomplexed,
complexed, unphosphorylated or phosphorylated. These conditions relate exactly to
the 1-P-invariant interpretation given in our initial marking construction procedure
in Section 3.2.

For the purposes of our computations we map any nonzero concentrations to 1.
We then compute the steady state of the set of species for eachpossible initial state,
using e.g. the MatLab ODE solver ode45, which is based on an explicit Runge-
Kutta formula, the Dormand-Prince pair [DP80], with 100 time steps. We find that
all of the 13 “good” initial states result in the same final state, within the bounds of
computational error of the ODE solver, while none of the other 2035 “bad” initial
states results in a steady state which is near that of the set of “good” states, compare
Figure 8.

We reproduce two simulations of the model: State 1 (Figure 9,left) correspond-
ing to the initial marking suggested by our approach described above in Section 3.2
with ERK-PP low and ERK high, and State 5 (Figure 9, right) corresponding to
the initial marking suggested by Cho et al [CSK+03] where the initial concentra-
tion of ERK-PP is high and ERK is low. State 1 has been confirmedby an ex-
pert signal transduction researcher as the most sensible starting state [Kol05]. The
equivalence of the steady states, compared with the difference in some intermediate
states is clearly illustrated in these figures. For example,the concentration of Raf-
1StarRKIP behaves overall in a similar manner in both State 1 and State 5, peaking
before 10 seconds although the peak is greater when ERK is notphosphorylated at
the start of the experiment. In Figure 10 we reproduce the computed behaviour of
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Fig. 8 Distribution of the Euclidean distances between the steadystate vector of the “good” initial
states and each of the steady state vectors for the “bad” initial states. The distances range between
0.7736 to 6.0889.

ERK-PP for all 13 good initial states, showing that despite differences in the con-
centrations at early time-points, the steady state concentration is the same in all 13
states.
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Fig. 9 Dynamic behaviour for m1 and m5.

(2) Continuous model checking of the transient behaviour The continuous
model replaces the discrete values of species with continuous values, and hence
is not able to describe the behaviour of species at the level of individual molecules,
but only the overall deterministic behaviour via concentrations. The concentration
of a particular species will have the same value at each pointof time for repeated ex-
periments. The state space of such models is continuous and linear. So, a linear-time
logic is a natural choice to analyse such kind of behaviour.

We employ the PLTL-based MC2 model checker again as per the stochastic anal-
ysis. MC2 operates on a deterministic model in the same manner as on a stochastic
model - analysing simulation output. However, in the deterministic model there is
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Fig. 10 Dynamic behaviour of ERK-PP for all 13 “good” states.

only one behaviour (the average behaviour) so the resultingprobability is 1 or 0. To
provide simulation output to MC2, we use the BioNessie simulator with a simula-
tion time of 10,000s.

The PLTL properties from the stochastic analysis are rewritten to concentration
values, comparing to real numbers callednoiseandsignificant. The place names are
now interpreted as real number variables.

• property C1: There are reachable states where ERK is phosphorylated and RKIP
is not phosphorylated.

P≥1 [ F (ERK-PP+ Raf-1StarRKIP ERK-PP> noise∧
RKIP+Raf-1StarRKIP ERK-PP+ Raf-1StarRKIP≥ significant)]

• property C2: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.

P≥1 [ (RKIP-P+ RKIP-P RP≤ noise) U
(ERK-PP+ Raf-1StarRKIP ERK-PP> noise) ]

Due to the continuous change of token values and the large kinetic rate of ERK-
PP’s posttransition relative to its pretransitions, ERK-PP’s concentration quickly
becomes consumed in the complex Raf-1StarRKIP ERK-PP. Therefore, this
complex has been added to the property.

• property C3: A cyclic behaviour w.r.t. the presence/absence of RKIP is possible
forever.

P≤0 [ F (RKIP > noise){ time≥ 5000∧ RKIP≤ noise} ]
P≤0 [ F (RKIP≤ noise){ time≥ 5000∧ RKIP > noise} ]

As this is the average behaviour of the system, the cyclic behaviour of RKIP is
averaged and is no longer present. Hence the property above say that it is not true
(P≤0) that RKIP can cycle between noise and not noise.

These properties hold for the intuitive values of 0.1µMol and 0.9µMol for noise
andsignificant, respectively.
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4.4 Summary

In summary, quantitative Petri nets can provide interesting analysis in two comple-
mentary worlds, stochastic and continuous. The key points below have been dis-
cussed in the text:

1. The qualitative Petri net can easily be converted to quantitative Petri nets by the
addition of rate equations.

2. All of the 13 states identified by the reachability graph ofthe qualitative Petri net
result in the same set of steady state values for the 11 species in the pathway.

3. None of the remaining 2035 possible initial states of the qualitative Petri net
results in a final steady state close to that generated by the 13 markings in the
reachability graph.

4. The transient behaviour - the crucial point of interest insignal transduction net-
works - of the quantitative models is sensible for the 13 states identified by our
method.

5. There are significant differences between the three quantitative model checking
approaches. Analytical model checking provides exact analysis but quickly be-
comes infeasible for larger number of levels. Simulative model checking provides
analysis past that which analytical can through approximation, however there can
be restrictions on the properties which can be checked. Continuous model check-
ing analyses the average behaviour of the system only.

6. Model checking the stochastic and continuous Petri nets complement each other;
it is possible that there are behaviours in the stochastic Petri net which are lost
in the continuous net. One should model check the stochasticPetri net before
considering the overall behaviour of the system in the continuous Petri anet.

5 Tools

The running example in its three interpretations has been done using Snoopy - a tool
to design and animate or simulate hierarchical graphs, among them the qualitative,
stochastic and continuous Petri nets as used in this chapter. Snoopy provides export
to various analysis tools as well as SBML import and export [HRS08], [Sno08].

The qualitative analyses have been made with the Petri net analysis tool Char-
lie [Cha08] and the Model Checking Kit [SSE03], supported byIDD-CTL, a CTL
model checker utilising interval decision diagrams for concise state space represen-
tations [Tov08], [HST09].

The quantitative analyses have been done using Snoopy’s build-in simulation
algorithms for stochastic and continuous Petri nets, and byBionessie [Bio08], an
SBML-based simulation and analysis tool for biochemical networks. Additionally,
MATLAB [SR97] was used to produce the steady state analysis of all initial states
in the continuous model. We employed PRISM [PNK06] and IDD-CSL [SH09] for
analytical stochastic model checking, and MC2 [MC208] for simulative stochastic



Petri Nets for Systems Biology 29

and continuous model checking. We use the Gillespie simulator in Snoopy as input
to stochastic MC2 and the BioNessie simulator as input to continuous MC2.

More Petri nets tools and related material can be found on thePetri Nets World’s
web page: http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

6 Further Reading

General introductions into Petri net theory can be found e.g. in [Mur89], [Rei82],
[Sta90]; for stochastic Petri nets see specifically [BK02],[MBC+95], and for con-
tinuous and hybrid Petri nets [DA05].

Biochemically interpreted stochastic Petri nets have beenintroduced in [GHL07].
An extension of this net class is used in [HLGM09] for the model-based design
of wetlab experiments employing simulative stochastic model checking. Biochem-
ically interpreted continuous Petri nets – as used in this chapter – have been intro-
duced in [GH06], which are deployed in [BGHO08] for a structured approach for
the engineering of biochemical network models.

Recent surveys on applying Petri nets for biochemical networks are [Cha07] and
[MLM06], offering a rich choice of further reading pointers, among them numerous
case studies applying Petri nets to biochemical networks. Besides the net classes
introduced in this chapter, coloured Petri nets, duration and interval time Petri nets
as well as hybrid Petri nets in various extensions have been employed.

P- and T-invariants have been established concepts in Petrinet theory since the
very beginning [Lau73]. There are corresponding notions insystems biology, called
chemical moieties or conservation relations, and elementary modes or extreme path-
ways, which are elaborated in the setting of biochemical networks in [Pal06]. For
biochemical systems without reversible reactions, the notions T-invariants, elemen-
tary modes and extreme pathways coincide.

A good starting point for qualitative model checking is [CGP01], and for numeri-
cal solution of Markov chains [Ste94]. An overview on stochastic issues for systems
biology is given in [Wil06].

The systematic qualitative analysis of a metabolic networkis demonstrated in
[KH08], following basically the same outline as used in section 3.2. Further exam-
ples illustrating how to combine qualitative and quantitative analysis techniques are
elaborated in [HGD08], [GHR+08]. The first paper provides also the formal defini-
tions of the technical Petri net terms used in this chapter aswell as further references
to related papers.

7 Summary

In this chapter we have introduced qualitative, stochasticand continuous Petri nets
as well as related analysis techniques in a deliberately informal manner. Our mo-



30 Monika Heiner, Robin Donaldson and David Gilbert

tivation has been to make the concepts accessible for both modellers as well as
biologists who are not familiar with this methodology. For the sake of biological
coherence we have used a signalling pathway, namely the influence of Raf Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) sig-
nalling pathway [CSK+03], as a running example. However, the techniques we have
described can be equally applied to other types of biochemical networks in systems
biology or synthetic biology, as e.g. metabolic or gene transcription networks, or
even combinations of them.

The nature of biochemical reaction systems – bipartite (in terms of species and
interactions), concurrent and stochastic – means that Petri nets are a natural choice
for a formal modelling technique to describe their structure and behaviour. The qual-
itative aspects of these systems, e.g. the biochemical entities, and their relationships
up to stoichiometry can be modelled with qualitative Petri nets, whereas quantitative
behaviour can be described by stochastic Petri nets at the individual (e.g. molecular)
level and continuous Petri nets on the larger scale. Petri nets are a well-established
technique for modelling computational systems, and we hopethat this chapter has
convinced the reader of their suitability for biochemical reaction systems. There are
a large range of robust Petri net modelling tools available,and we have chosen one,
namely Snoopy [Sno08] which is freely obtainable and is available for the major
computational platforms. As well as the ability to describestatic information about
biochemical reaction systems, Petri nets are able to simulate their behaviour using
for example the token game for qualitative nets, stochasticsimulation algorithms for
stochastic nets, or ordinary differential equation solvers for continuous nets.

In addition to description and simulation, there are very powerful techniques
available to analyse the behaviour of such systems. Qualitative Petri nets can be
analysed based on their structural or behavioural properties using classical tech-
niques. Model checking can be used to prove special properties which reflect the
intended functionality of the network. This can be done for all three types of nets –
qualitative, stochastic and continuous – using the appropriate temporal logics, and
we have chosen to take model checking of properties of our running example as the
unifying thread throughout this paper.

Altogether we advocate a three-step technology for the modelling and analysis of
biochemical networks in a systematic manner: (1) qualitative, i.e. (time-free) quali-
tative modelling and analysis, esp. for the beneficial effect of confidence-increasing
model validation, (2) stochastic modelling and analysis toexclude eccentric be-
haviour, and (3) continuous modelling and analysis, esp. with the hope of the reliable
prediction of behaviour in the averaged case. For all steps we favour the deployment
of both qualitative as well as quantitative Petri nets, sharing the same net structures
for a given case. The quantitative models are derived from the qualitative one only
by the addition of the quantitative parameters. Hence thesemodels are likely to share
some behavioural properties.

The running example in its three versions and all related analysis protocols are
available at: www-dssz.informatik.tu-cottbus.de/examples/erk.
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8 Exercises

You should be able to solve the first three tasks without tool support, while the
remaining tasks suggest the employment of adequate tools.

1. The basic Petri Nets properties boundness, liveness, andreversibility are orthog-
onal, i.e. independent from each other. Prove this statement by providing a net for
each possible combination (obviously, there are eight of them). Argue for every
net why the properties hold as you claim.
If you found this too easy, repeat this exercise with the additional restriction that
the nets should be (a) ordinary, (b) strongly connected.

2. A well-defined matrix operation is the transposition, which exchanges rows and
columns. If we apply the matrix transposition to the incidence matrix of a Petri
net, what happens with the Petri net and its invariants?

3. While CTL model checking fits particularly for the decision of special properties,
it can also be used to decide general properties. Express thefollowing properties
in CTL.

• Check the liveness of reactions r1 and r9. What had to be done to decide the
liveness of the net?

• Check the reversibility of the net.
• Check the token conservation of the P-invariants.
• The CTL property 2, see Section 3.2, does not hold in its stronger version,

where EU is replaced by AU, even not for the reduced network neglecting the
backward directions of reversible reactions. Why?

4. Extend the running example of this chapter by the following reactions [CGH05]:
r12, r13: MEK + Raf-1*↔ MEK RAF-1*
r14: MEK RAF-1* → MEK-PP + Raf-1*
r15: MEK-PP → MEK .

Adapt the given Petri net model and apply step-wise all analysis techniques pre-
sented in this chapter, following exactly the same outline.Use the following rate
constants:k12= 0.05,k13 = 0.03,k14 = 0.06, k15 = 0.02.
Discuss also the version, where the backward reactions of all reversible reactions
are neglected; interesting behaviour, isn’t it?

5. Use the techniques you have learned in this chapter to

• derive qualitative and quantitative Petri net models for the 2-stage signal trans-
duction cascade given in Figure 11,

• construct a suitable initial marking,
• animate and simulate their behaviours,
• analyse their properties and behaviours.

Use the following rate constants for the quantitative models:
k1 = kr1 = kk1 = kkr1 = 100,
k2 = kr2 = kk2 = kkr2 = 4,
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k3 = kr3 = kk3 = kkr3 = 1.
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Fig. 11 The 2-stage signal transduction
cascade.
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