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Petri Netsfor Systems Biology

Monika Heiner, Robin Donaldson and David Gilbert

Abstract In this chapter we introduce qualitative, stochastic ag aekontinuous
Petri nets and related analysis techniques in a rathemi#floway, and use as run-
ning example a model of the influence of the Raf Kinase Inbititrotein (RKIP)
on the Extracellular signal Regulated Kinase (ERK) signglpathway. We show
how the qualitative and quantitative analyses complenmestt ether, and how Petri
nets can be used for step-wise modelling and analysis ohbiocal networks as
well as for structured design of systems of ordinary dififiiad equations.

1 Motivation

Biochemical reaction systems have by their very naturesttiginctive characteris-
tics. (1) They are inherently bipartite, i.e. they consfdinm types of game players,
the species and their interactions. (2) They are inherenthgurrent, i.e. several in-
teractions can usually happen independently and in par@)erhey are inherently
stochastic, i.e. the timing behaviour of the interactiongdverned by stochastic
laws. So it seems to be a natural choice to model and analgse with a formal
method, which shares exactly these distinctive charatiesi stochastic Petri nets.
Classical, i.e. time-free qualitative Petri nets combin@duitive and executable
modelling style with well-founded analysis techniquess for this reason that they
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are widely used in various application areas, where theg baen proven to be use-
ful for a qualitative verification of technical as well as toeal” systems, i.e. bio-
chemical networks like metabolic networks, signal tramsidin networks, or gene
regulatory networks.

However, any real system behaviour happens in time. Thusekiestep follow-
ing on from qualitative analyses typically consists of diitative analyses taking
into account timing information. In the case of biochemmatems, all atomic ac-
tions, i.e. biochemical reactions, take place stochdbtiaghich can be approxi-
mated continuously for larger quantities. Moreover, thesaf all reactions typ-
ically depend on the concentration of the involved substantlence systems of
reaction rate equations (RREs) or ordinary differentialapns (ODEs) appear
well suited for quantitative modelling of biochemical netis.

In this chapter we bridge the gap between these two worlklsthie (time-free)
qualitative and the (timed) quantitative one, and demaitestrsy means of one of the
standard examples used in the systems biology communityedle model of the
influence of the Raf-1 Kinase Inhibitor Protein (RKIP) on t#RK signalling path-
way [CSK"03] - how both sides can interact, providing different buhgpdementary
viewpoints on the same subject.

This chapter can be considered as a tutorial in step-wiseshiogl and analy-
sis of biochemical networks as well as in structured desig®@DEs. The quali-
tative model is introduced as a supplementary intermedige, at least from the
viewpoint of the biochemist accustomed to ODE modellingypahd serves mainly
for model validation since this cannot be performed on th&inoous level. Hav-
ing successfully validated the qualitative model, the dit@tive models are derived
from the qualitative one by assigning rate equations toeattions in the network.
Thus the quantitative models preserve the structure of tladitgtive one, and the
stochastic Petri net is nothing else than a structured gi¢iser of RREs, and the
continuous Petri net of ODEs.

In the following we deliberately give an informal introdiar avoiding formal
notations as far as possible. See [HGDO08] for formal dedingiof the technical
Petri net terms used in this chapter. All concepts are exgththrough the running
example, introduced below.

2 Biochemical Context

There are many networks of interacting components knowxit as part of the
machinery of living organisms. Biochemical networks canrégulatory, signal
transduction, or metabolic networks. Regulatory netwanies used to control the
ways in which genes are expressed as RNAs or proteins, wheigrzal transduc-
tion networks transmit biochemical signals between or wittells. The role of
metabolic networks is to synthesize essential biochenaicaipounds from basic
components, or to degrade compounds. In this chapter wes fogisignal trans-
duction, which is the mechanism which enables a cell to sehaages in its en-
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vironment and to make appropriate responses. The basissahtchanism is the
conversion of one kind of signal into another.

The ERK pathway (also called Ras/Raf, or Raf-1/MEK/ERK path) is a ubiq-
uitous pathway that conveys cell division and differemiatsignals from the cell
membrane to the nucleus. Ras is activated by an externallgsivia one of many
growth factor receptors; it then binds to and activates Rf-become Raf-1* (ac-
tivated Raf) which in turn activates MAPK/ERK Kinase (MEKhigh in turn acti-
vates Extracellular signal Regulated Kinase (ERK). Thicede (Raf-1» Raf-1*
— MEK — ERK) of protein interaction controls cell differentiatidhe effect being
dependent upon the activity of ERK. An important area of expental scientific
investigation is the role that the Raf-1 Kinase Inhibitootein (RKIP) plays in the
behaviour of this pathway. The hypothesis is that RKIP chibibactivation of Raf-
1 by binding to it, disrupting the interaction between Rafrnd MEK, thus playing
a part in regulating the activity of the ERK pathway. The sgesm we consider
here, taken from [CSKO03], comprises the eleven reactions summarized in Table 1.

Table 1 The reaction equations of the running exantple

no. precursors products

ry Raf-1* + RKIP  — Raf-1* RKIP

ra Raf-1*_ RKIP — Raf-1* + RKIP

rs Raf-1* _RKIP + ERK-PP — Raf-1* RKIP_ERK-PP

rg Raf-1* RKIP_ERK-PP — Raf-1*_RKIP + ERK-PP
I's Raf-1*_RKIP_ERK-PP — Raf-1* + ERK + RKIP-P
re MEK-PP + ERK — MEK-PP.ERK

rz MEK-PP.ERK — MEK-PP + ERK

rs MEK-PP.ERK — MEK-PP + ERK-PP
rg RKIP-P + RP — RKIP-P_-RP

l'10 RKIP-P_.RP — RKIP-P + RP

ri1 RKIP-P_.RP — RKIP + RP

a Raf-1* is often written as Raf-1Star (if required by the ®abked).

3 Qualitative Approach

In this section we introduce place/transition Petri netg] mterpret them in the
standard way to model and analyse the pathway of interest.
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3.1 Qualitative Modelling

Let us start with a bit of history. Petri nets, as we undeitdnrem today, have
been initiated by concepts proposed by Carl Adam Petri ifPhi®. thesis in 1962
[Pet62]. The first substantial results making up the stitiwgng body of Petri net
theory appeared around 1970. The initial textbooks devtutéektri nets were is-
sued in the beginning of the eighties. Since that time, Ret$ have been em-
ployed for technical and administrative systems in numgqplication domains.
The employment in systems biology has been first publish@NMi93], [Hof94],
[Red94]. In the meantime, the three biochemical networks$ygs well as combina-
tions of them have been investigated with different kind efrhets - qualitative as
well as quantitative ones.

The idea to represent biochemical networks by Petri netstiger intuitive and
has been mentioned by Carl Adam Petri himself in one of hisriratl research
reports on interpretation of net theory in the seventieac&transition Petri nets (or
nets for short) are weighted, directed, bipartite graphb thie following four basic
ingredients, compare Figure 1.

(1) There are two types of nodgdaces described a§= {s1,...,Sn} and in
the figures represented by circles, arahsitions described aR= {r4,...,r,} and
in the figures represented by rectangles. Places usuallglpadsive system com-
ponents like conditions, species or any kind of chemical poumds, e.g. proteins
or proteins complexes, playing the role of precursors odpets. Transitions usu-
ally stand for active system components like atomic actareny kind of chemical
reactions, e.g. association, disassociation, phospditaygl| or dephosphorylation.

(2) The directed arcs, represented as arrows, (only) comuetes of different
type. They go from precursors to reactions (ingoing arasy, faom reactions to
products (outgoing arcs). Enzymes establish side comditémd are connected in
both directions with the reaction they catalyse. We define fgpes of sets:

the preplaces of a transition, consisting of the reactiprésursors,

the postplaces of a transition, consisting of the reactipmducts,

the pretransitions of a place, consisting of all reactipnsducing this species,
the posttransitions of a place, consisting of all reactiocnasuming this species.

(3) Arcs are weighted by nonnegative integers (natural rers)bwhereby the arc
weight may be read as the multiplicity of the arc, reflecting\n stoichiometries.
The arc weight 1 is the default value and is usually not givelieitly.

(4) A place carries an arbitrary numbertokens represented as black dots or
a nonnegative integer. The number zero is the default valdeugually not given
explicitly. Tokens can be interpreted as the available amhofia given species in
number of molecules or moles, or any abstract, i.e. disc@teentration level.

In the most abstract way, a concentration can be thought béeg “high” or
“low” (present or absent); we get two levels. Generalizinig Boolean approach,
any continuous concentration range can be divided into gefimimber of equally
sized subranges (equivalence classes), so that the coatgamg within can be con-
sidered to be equivalent. The current number of tokens oa@mill then specify
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the current level of the species’ concentration, e.g. treeiate of tokens specifies
level 0. In the following, when speaking in terms of level sarics, we always give
the highest level number.

A place is called marked, if it has at least one token, otherwiean (unmarked).
The tokens on all places constitute timarking of the net, which represents the
current state of the system.

Having the net structure, the next step is to bring the nefédoly moving the
tokens through the net. We need to introduce the firing rutetfe token game,
which consists of two parts: the precondition and the firisglf.

e A transition isenabled if all its preplaces carry at least as many tokens as re-
quired by the weights of the corresponding ingoing arcs.

e An enabled transitiomayfire, i.e. a transition is never forced to fire. The firing
of a transition removes from all its preplaces as many toksrepecified by the
ingoing arc weights, and adds to all its postplaces as mamntoas specified by
the outgoing arc weights. The firing happens atomically asesdchot consume
any time.

Figuratively, the firing of a transition moves tokens frosptreplaces to its post-
places, while possibly changing the amount of tokens. Galyethe firing of a
transition changes the formerly current marking to a newhiable one, where some
transitions are not enabled anymore while others get edablee repeated firing of
transitions establishes the behaviour of the net. The wheléehaviour consists
of all possible partially ordered firing sequences (pawialer semantics), or all
possible totally ordered firing sequences (interleavimgas#ics), respectively, and
the state spacef the net of all reachable markings. In this introductionceafine
ourselves to the interleaving semantics.

AW 35,C A 3+8C Ao 3+(6C
] ] ]
B@ 2 r (®D B9 2 9 D B2 r @D

Fig. 1 The Petri net for the single reaction systém-2-B — 3-C+ D and three of its markings
(states), each connected by a firing of the transiticFhe transition is not enabled anymore in the
marking reached after these two single firing steps.

In this modelling spirit we create a place/transition Pegtiof our running exam-
ple, see Figure 2, given in [CSK3] in the style of a bipartite graph. Circles (places)
stand for the (local) states of a protein or protein complax are labelled with the
corresponding name; complexes are indicated by an underscobetween the
protein names. For example, Raf-1Star and RKIP are proteisRaf-1StaRKIP
is a protein complex formed from Raf-1Star and RKIP. A suffxor -PP denotes
a single or double phosphorylated protein, for example RRi&hd ERK-PP. If ap-
propriate, we will use the shortcuts s1, s2, ... instead®ful names. There are 11
species, and each is associated with a discrete concentriatithe most abstract
way, these concentrations can be thought of as being “higtlloas” (present or
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absent). Later we will refine this Boolean approach to sédésarete concentration
levels.

Raf-1Star RKIP

PUR ORD HOM NBM CSV SCF CON SC FTO TFO FPO PFO NC
Y Y Y Y N N Y Y N N N N ES
DTP CPI CTI SCTI SB k-B 1-B DCF DSt DTr LIV REV

Y Y Y N Y Y Y N O N Y Y

Fig. 2 The Petri net for the core model of the RKIP pathway, consggstif 11 places and 11 transi-
tions (by chance). The placgsl, ..., s1} stand for proteins or protein complexes. Complexes are
indicated by an underscore™between the protein names, phosphorylated forms by tHexs&f

or -PP. The transitionérl, ..., r11 model the reactions. The preplaces of a transition correbpo
to the reaction’s precursors, and its postplaces to thaioea products. The layout follows the
suggestions by the graphical notation used in [C88]. The initial marking is constructed sys-
tematically using standard Petri net analysis technigiethe bottom the two-line result vector
as produced by Charlie [Cha08] is given. Properties of @stgfor this biochemical network in this
vector are explained in the text.

Rectangles (transitions) stand for reactions, with relsbrseactions being mod-
elled by two opposite reactions. In this pathway, reactiom®prise protein com-
plexation and decomplexation events, often accompanigdhbgphorylation or de-
phosphorylation. For example, Raf-1Star and RKIP combireforwards reaction
to form Raf-1StaiRKIP which can disassociate in a backwards reaction inte Raf
1Star and RKIP, or combine with ERK-PP to form the complexiiSahr RKIP_ERK-
PP. Reactions are labelled with r1, r2, ... to ease refemgnii the case of reversible
reactions, the labels are given by rn, rn+1 denoting thas theé forward reaction



Petri Nets for Systems Biology

7

and rn+1 the backward reaction. E.g., the forward reactortife combination of
Raf-1Star and RKIP is r1, and the disassociation of Raf+1BkP is r2.
Examples of basic structures in Petri net notation, whichiccdelp designing

your own Petri net, are shown in Figure 3.

(a) B D
A F
r r2
C E

decomplexation: complexation:
r: A->B+C 12:D+E->F
(b)
H
GO— F—=O—F—0Ou
r3 r4
sequence:
r3: G-->H, r4: H -->I
© r5 L
alternative:
K r5: K-->L
16: K-->M
(] M
(@
NO— =00
= concurrency:
17:N-->0
PO—}+0a P70
r8
(h)
E1 E2
r r2 r3

substance flow

reversible reaction:
r9:R<-->8§

® v

r10

enzymatic reaction, A\
Michaelis-Menten kinetics: r10: U --> W

enzymatic reaction, mass-action kinetics:
X+Y<->X-Y->Z+Y

signal flow

Fig. 3 The Petri net components for some typical basic structfe@siecomplexation and com-
plexation;(b) - (d) the three basic structural principles: sequence, altematoncurrencyfe) -

(9) reversible reaction, enzymatic reaction in the Micha®lsaten approach, and enzymatic reac-
tion in the mass-action approadh), (i) the essential distinctive principles of metabolic netvgork
(substance flow) and signal transduction networks (sigoaf)fl
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3.2 Qualitative Analysis

A preliminary step will usually execute the net, which albws to experience the
model behaviour by following the token fldwHaving established initial confidence
in the model by playing the token game, the system needs torbefly analysed.
Formal analyses are exhaustive, opposite to the token gahieh) exemplifies the
net behaviour.

The Petri net enjoys all the pleasant general propertiegraries insider could
dream of: boundedness, liveness, reversibility, whichtlaree orthogonal basic be-
havioural net properties.

e boundednesior every place it holds that: Whatever happens, the maxiomal
ber of tokens on this place is bounded by a constant. Thidyztes overflow by
unlimited increase of tokens.

e livenessior every transition it holds that: Whatever happens, it alivays be
possible to reach a state where this transition gets endbledive net, all tran-
sitions are able to contribute to the net behaviour forevbich precludes dead
states, i.e. states where none of the transitions is enabled

e reversibility For every state it holds that: Whatever happens, the netalill
ways be able to reach this state again. So the net has theildgpaibself-
reinitialization.

In most cases these are requirable properties. The deabiout the first two
properties can be made for our example in a static way, i.gowt constructing
the state space, while the last property requires dynanaiysis techniques, i.e. the
construction of the state space. The essential steps of/fitensatic analysis pro-
cedure for our running example are given in more detail devicl. They represent
a typical pattern how to proceed. So they may be taken as jperéoiw to analyse
your own system.

(1) Structural properties The following three structural properties reflect the
modelling approach and can be taken as preliminary consigtehecks to preclude
production faults in drawing the net.

The net ispure (PUR), i.e. there are no place and transition connectedtin bo
directions. So, the net structure is fully represented kyitkcidence matrix, which
is used for the calculation of the P- and T-invariants, sep &).

The net isordinary (ORD), i.e. all arc weights equal to 1. This includes ho-
mogeneity (HOM), i.e. the outgoing arcs of each place hagesme multiplicity,
which is a necessary prerequisite for the Deadlock TrapdttpgDTP), see step
(4) below.

The net isstrongly connecte(SC), i.e. there is a directed path between all pairs
of nodes. This precludes boundary nodes, which exist intiqes:

e input transition - a transition without preplace (FTO),
e output transition - a transition without postplace (TF0),

1 the reader would like to give it a try, just download our Pegt tool [Sno08].
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e input place - a place without pretransition (FPO),
e output place - a place without posttransition (PFO).

Boundary nodes model interconnections of an open systeimt&iénvironment.
However, the given net is self-contained, i.e. a closecesystherefore, in order to
make the net live, we have to construct an initial marking,step (3) below.

Finally, there are transitions sharing a preplace; e.gtriduesitions r2 and r3
share the preplace Raf-1SfaKIP. Consequently, these transitions compete for the
tokens on the shared preplace. Such a situation is cstitedtural conflict If each
transition is involved in one conflict at most, the net beltmthe structural class
extended simpléES), which is the case for our running example. Hence, wevkno
that the net has the ability to be live independent of time, if. it is live, then it
remains live under any timing. Remarkably, neglecting thekiward directions of
all reversible reactions removes all structural confliatshie net structure, which
makes this reduced net tosgnchronisation grap{SG), the structural net class,
which is characterized by being free of structural confl{&€F).

(2) Static decision of marking-independent behavioural properties A beneficial
technigue in model validation is to check all invariantstfegir biological plausibil-
ity. We shortly recall the essential technical terms.

At the beginning, we need to represent the net structure bgtebxawhich opens
the door to analysis techniques based on linear algebraintiteence matriyof a
Petri net is an integer matri@€ with a row for each place and a column for each
transition. A matrix entryC(s,r) gives the token change on plasdy the firing
of transitionr. Thus, a preplace af, which is not a postplace af has a negative
entry, while a postplace af which is not a preplace af has a positive entry, each
corresponding to the arc multiplicities. The entry for agalawhich is preplace as
well as postplace of a transition, gives the difference ef thultiplicities of the
transition’s outgoing arc minus the transition’s ingoing.dn this case we lose
information; the non-ordinary net structure can not be nstmcted uniquely out of
the incidence matrix.

The columns ofC are place vectors, i.e. vectors with as many entries as #rer
places, describing the token change on a marking by the fifitige transition defin-
ing the column index. The rows @ are transition vectors, i.e. vectors with as many
entries as there are transitions, describing the influehed transitions on the to-
kens in the place, defining the row index. For stoichiomegaction networks, e.g.
metabolic networks, the incidence matrix coincides with gtoichiometric matrix.

A nonzero and nonnegative integer place vegtisrcalledP-invariant if x- C =
0; in words, for each transition it holds that: multiplyinget P-invariant with the
transition’s column vector yields zero.

Thus, the total effect of each transition on the P-invariszero, which explains
its interpretation as a token conservation component. AvBriantx stands for a set
of places over which the weighted sum of tokens is constahiratependent of any
firing, i.e. for any markingsn, mp, which are reachable by the firing of transitions,
it holds thatx- my = x- mp. In the context of metabolic networks, P-invariants reflect
substrate conservations, while in signal transductiomoids P-invariants often
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correspond to the several states of a given species (pratgirotein complex). A
place belonging to a P-invariant is obviously bounded.

Likewise, a nonzero and nonnegative integer transitiortoreg is called T-
invariant, if C-y = 0; in words, for each place it holds that: multiplying theqa&
row with the T-invariant yields zero. Thus, the total effetthe T-invariant on a
marking is zero. A T-invariant has two interpretations ia ffiven biochemical con-
text.

e The entries of a T-invariant represent a multiset of tréms# which by their
partially ordered firing reproduce a given marking, i.e.ibay occurring one
after the other. This partial order sequence of the T-iavdis transitions may
contribute to a deeper understanding of the net behaviotwinkariant is called
feasible if such a behaviour is actually possible in the given maglsituation.

e The entries of a T-invariant may also be read as the relativegfrates of tran-
sitions, all of them occurring permanently and concurserithis activity level
corresponds to the steady state behaviour.

The two transitions modelling the two directions of a reildesreaction make
always a minimal T-invariant; thus they are caltegial T-invariants

The computation of all P-invariants (T-invariants) reggisolving the homoge-
nous linear equation systex C = 0 (C-y = 0) over the nonnegative integers. If
there are solutions, then there are infinitely many. To atarie the solution space,
we need a generating system. For this purpose we introdeagetkt terms, which
hold equally for P- and T-invariants.

The set of nodes corresponding to an invariant’s nonzengesnis called its
support An invariantx is calledminimal, if its support does not contain the support
of any other invariant, and the greatest common divisor lofi@hzero entries ok
is 1. The set of all minimal invariants of a given net is uniguml is a generating
system for all invariants. To compute all invariants out leé tminimal ones, we
use the following operations: multiplication with a nona#ge integer, addition of
invariants, and division by a common divisor.

A minimal P-invariant (T-invariant) defines a connectedreetbconsisting of its
support, its pre- and posttransitions (pre- and postpjaees all arcs in between.
These minimal self-contained subnets may be read as a desitiop into token
preserving or state repeating modules, which should havenatosed biological
meaning. However, minimal invariants generally overlayal im the worst-case there
are exponentially many of them.

A net is covered by P-invariants, shortly CPI, (covered hpvariants, shortly
CTI), if every place (transition) belongs to a P-invariaidirfvariant). CPI causes
structural boundedness (SB), i.e. boundedness for anglimiarking. CTl is a nec-
essary condition for bounded nets to be live.

The net under consideration has five minimal P-invarianieigog the net (CPI),
consequently the net is structurally bounded (SB). All thienRriantsx; contain
only entries of 0 and 1, which allows a short-hand specificaliy just giving the
names of the places involved.

x1 = (Raf-1Star, Raf-1StarRKIP, Raf-1StaiRKIP_ERK-PP),
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X, = (MEK-PP, MEK-PP.ERK),

x5 = (RP, RKIP-P.RP),

xs = (ERK, ERK-PP, MEK-PPERK, Raf-1StarRKIP_.ERK-PP),

xs = (RKIP, Raf-1StarRKIP, Raf-1StaiRKIP_ERK-PP, RKIP-PRP, RKIP-P).

Each P-invariank; stands for a reasonable conservation rule, the species pre-
served being given in bold by the first name in the invariante o the chosen
naming convention, this particular name also appears thalbther place names of
the same P-invariant.

The net under consideration is also covered by T-Invarigild). Besides the
expected four trivial T-invariants for the four reversib&actions, there is only one
non-trivial minimal T-invariany = (r1, r3, r5, r6, r8, r9, r11), comprising the whole
net, but without the backward reactions. The subnet defigatib T-invariant de-
scribes the essential partial order behavior of the modslstem.

The automatic identification of non-trivial minimal T-imtants is in general use-
ful as a method to highlight important parts of a network, badce aid its compre-
hension by biochemists, especially when the entire netigddo complex to easily
comprehend.

Notably, our running example collapses into a synchroiusairaph, if we re-
move the backward directions of the reversible reactiom& $trongly connected
ordinary synchronisation graph, each minimal cycle cqoesls to a minimal P-
invariant, and the set of all transitions constitutes aviiiant. This confirms from
a different perspective the invariants results, which weeshast discussed.

All the properties above relate only to the structure, heytare valid indepen-
dently of the initial marking. In order to proceed we first d¢e generate an initial
marking.

(3) Initial marking construction For a systematic construction of the initial mark-
ing, we consider the following criteria.

e Each P-invariant needs at least one token.

e All (non-trivial) T-invariants should be feasible, meagijithe transitions, making
up the T-invariant’s multiset can actually fire in an appiat& order.

e Additionally, it is common sense to look for a minimal margitas few tokens
as possible), which guarantees the required behaviour.

e Within a P-invariant, choose the species with the nesttiveor themonomeric
state.

Taking all these criteria together, the initial marking @ni is: Raf-1Star, RKIP,
ERK, MEK-PP, RP get each one token, while all remaining gare clean. With
this initial marking, the net is covered by 1-P-invariaresgctly one token in each
P-invariant), therefore the net is 1-bounded (indicatedl-8sin the analysis result
vector, compare Figure 2). That is in perfect accordandetivié understanding that
in signal transduction networks a P-invariant comprisktheldifferent states of one
species. Obviously, each species can be only in one staty &hze.

This initial marking differs from the initial concentratie used in [CSK03] as
part of their method to estimate rate parameters requirgtiér ODE model of the
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RKIP pathway. We will later see that their initial markinggguivalent to the initial
marking which we have constructed, and that in fact both mgekare members of
a larger equivalence class of markings.

With the chosen marking we can check the non-trivial minifxavariant, see
step (2), for realizability, which then involves the realiity of the trivial T-
invariants. We obtain an infinite partial order run, the begig of which is given as
labelled condition/event net in Figure 4. We get this run bfolding the behaviour
of the subnet induced by the T-invariant, whereby any caenuy is preserved.
Here, transitions represent events, labelled by the nartegéaction taking place,
while places stand for binary conditions, labelled by theneaf the species, set
or reset by the event, respectively. This run can be chaiaetkin a short-hand
notation by the following set of partially ordered words aditthe alphabet of all
transition labels R:

{ (r1, (r6; r8)); [(r3; r5);((r9; r11; r1), (r6; r8))I%,

where “;” stands for “sequentiality” and “,” for “concurrey’. This partial order
behaviour gives further insight into the dynamic behavioluthe network which
may not be apparent from the standard net representati@orirunning example,
the partial order representation illustrates the centlel of Raf-1Star and the fact
that certain reactions take place sequentially, othergales place independently
and that some reactions are constrained by the need foreékerne of two or more
precursors produced from prior reactions; e.g. the reacfisequires the participa-
tion of both proteins Raf-1* and RKIP, which are produced &gations r5 and r11
respectively.

Having established and justified our initial marking we @ed to the next steps
of the analysis.

(4) Static decision of marking-dependent behavioural properties The following
advanced structural Petri net properties can be decidedrbpinatorial algorithms.
First, we need to introduce two new notions.

A nonempty set of placd3 C Sis calledstructural deadlockf every transition,
which fires tokens onto a place in this structural deadlotkks® has a preplace in
this set, i.e. the set of pretransitionsfis contained in the set of posttransitions
of D. Pretransitions of a structural deadlock cannot fire, if plece set is clean.
Therefore, a structural deadlock cannot get tokens agsisnen as it is clean, and
then all its posttransitions are dead.

A nonempty set of placeéd C Sis calledtrap, if every transition, which subtracts
tokens from a place of the trap set, also has a postplacesrsétj i.e. the set of
posttransitions of) is contained in the set of pretransitions@fPosttransitions of
a trap always return tokens to the place set. Therefore, ati@g contains tokens,
it cannot become clean again.

Structural deadlock and trap are closely related, but estitrg notions. When
they come on their own, we get usually deficient behaviouweéler, both notions
have the power to complement each other perfectly. A Petihag theDeadlock-
Trap Property (DTP)if every structural deadlock contains a marked trap. Th&DT
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Fig. 4 The beginning of the infinite partial order run of the nowiti minimal T-invarianty =
(r1, r3, 15, 16, 18, r9, rll) of the place/transition Petrt g&zen in Figure 2. We get this run by
unfolding the behaviour of the subnet induced by the T-iiavdr whereby any concurrency is
preserved. Here, transitions represent events, labejlaidoname of the reaction taking place,
while places stand for binary conditions, labelled by theneaf the species, set or reset by the

event, respectively. On the right, a shorthand notatiorivisrg showing also the cuts between two
“rounds”.
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can still be decided by structural reasoning only. The irtgpaze becomes clear by
the following theorem: An ordinary extended simple net hgiwhe DTP is live.

Our running example is extended simple and the DTP holdsefibie the net
is live (LIV). So, we are in the fortunate position to be aldediecide liveness by
structural reasoning only - the state space does not neetldortstructed for this.

(5) Dynamic decision of behavioural properties In order to decide reversibil-
ity (REV) we need to construct the state space. This coulddme éccording the
partial order semantics or the interleaving semantics €gpkhings simple we con-
sider here the reachability graph only. The nodes of a rdaliyagraph represent
all possible states (markings) of the net. The arcs in betvege labelled by sin-
gle transitions, the firing of which causes the related statnge. Altogether, the
reachability graph gives us a finite automaton represemati all possible single
step firing sequences. Consequently, concurrent behagidescribed by enumer-
ating all interleaving firing sequences; so it reflects thiedvéour of the net in the
interleaving semantics.

Because we already know that the net under consideratioouisded, we also
know that the reachability graph has to be finite. Here, trechability graph
has 13 states (out of 2048 Z22theoretically possible ones, due to the given 1-
boundedness), see Figure 5 and Table 3. Generally, reéithgbaphs tend to be
huge. Table 2 shows the size of the reachability graph witferéint number of
concentration levels.

Table2 The number of states in the state space as the number of iewbsmodel increases.

# Levels # Statgs# Levels # Statgs# Levels # States
1 13 15 368,22 40 79,414,335

5 1,974 20 1,696,618 50 2.834 e+08

7 8,644 25 5,723,991 100 1.591 e+13

9 28,171 30 15,721,464 250 3.582 e+12

10 47,047 35 37,314,537 500 2.231 e+14

It is clear from the table that as the number of levels in@etse number of
states in the reachability graph grows extremely fast. &hm state explosiomas
been coined for this phenomenon. Independently of the #iea,eachability graph
we get is strongly connected. Therefore, the Petri net isreible, i.e. the initial
system state is always reachable again, and the systeméiaaghbility of self-
reinitialization. Further, the liveness of the net hasadiebeen decided structurally,
so we know that each transition (reaction) appears at leest as arc label in this
reachability graph.

Moreover, from the viewpoint of the qualitative model, dlese 13 states are
equivalent, i.e. any of those 13 states could be taken aalisiate resulting in ex-
actly the same total (discrete) system behaviour (likefdse¢he larger state sets).
That is in perfect accordance with the observations gainetg quantitative anal-
yses, see next section.
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Fig. 5 The reachability graph of the place/transition Petri ngegiin Figure 2. Nodes represent
states (markings), while the arcs are labelled with thesiteom responsible for a given change
of states. For a list of the complete state descriptions abé&eB. The initial state is highlighted
in gray. In the reachability graph, the two concurrent titgms sequences (r6; r8) and (r9; r11;
rl), compare the partial order run in Figure 4, going from m&b, are represented by all possi-
ble totally ordered (interleaving) sequences. Thus, thehability graph reflects the interleaving
semantics.

This concludes the analysis géneralbehavioural net properties, i.e. of proper-
ties we can speak about in syntactic terms only, without @myasitic knowledge.
The next step consists in a closer loolspecialbehavioural net properties, reflect-
ing the expected special functionality of the network.

(6) Model checking of special behavioural properties To validate the model, it is
often of interest to prove - besides the general proper@eklitional special prop-
erties which reflect the intended functionality of the netkvdMe have to specify
these special properties in an unambiguous language. Tahipgics, a mathemat-
ical mechanism, has been proven to be best suited for thjgopar It provides a
flexible formalism which considers the validity of propdwits in relation to the
execution of the model.

One of the widely used temporal logics is tBemputational Tree Logi¢(CTL).
It is called after the data structure used - the computattivea, which we get by
unwinding the reachability graph. Thus, CTL representaadihing time logic with
interleaving semantics. The analysis technique, decidingther a temporal-logic
property holds in a model, is calledodel checkingand the tools implementing the
algorithms are callechodel checkersModel checking generally requires bounded-
ness. If the net is 1-bounded, there exists a particulastychoice of model check-
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Table 3 States of the reachability graph given in Figure 5, whicH & used as the initial 13
‘good’ state configurations in the quantitative analyses.

#  species ml m2 m3 m4d m5 mé6 m7 m8 m9 mlOmllmi2 mi3
sl Raf-1* i1 o0 0 1 1 0o O 1 1 1 1 1 1
s2 RKIP 1 0 0 1 1 0 O O O O O 0
s3 Raf-1*RKIP o 1 1 0 O 1 0 0O O 0O o0 o0 o
s4 Raf-1*RKIPERK-PP O O O O O O 1 O O O O O O
s5 ERK 11 0 o 0o o 01 0 O O o0 1
s6 RKIP-P o 0o 0o 0 0 0O 0O1 1 1 0 O0 O
s7 MEK-PP 11 o0 o0 1 1 1 1 O 1 1 o0 1
s8 MEK-PRERK o o0 1 1 0 O O O 1 0 O 1 o0
s9 ERK-PP o o o 0 1 1 0 O O 1 1 0 O
s10 RP 11 1 1 1 1 1 1 1 1 O O O
s11 RKIP-RRP o o o 0 0o 0 0O 0O OO 1 1 1

ers, [SSE03], which get their efficiency by exploiting saiciated data structures
and algorithms. In the case of our rather simple example/atiety of model check-
ers is not important, and the properties could even be cldetlenually. However,
as mentioned above, the state space of more complex netigoskibject to the
famous state explosion problem, and therefore calls fmraatic evaluation.

The application of this analysis approach requires an ataleding of temporal
logics. CTL - as any temporal logic - is an extension of a étasgpropositional)
logic. The atomic propositions consist of statements orctireent token situation
in a given place. In the case of 1-bounded models, placeseaedd as Boolean
variables, which allows propositions such as RKIP-P irgsteam(RKIP-P) = 1,
wherem(s) yields the number of tokens an Likewise, places are read as integer
variables for bounded models.

Atomic propositions can be combined to composed proposticsing the stan-
dard logical operators: (negation)A (conjunction),v (disjunction), and— (im-
plication), e.g. RKIP-R/ RKIP-P_RP.

The truth value of a proposition may change by the executidheonet; e.g. the
proposition RKIP does hold in state m1, but not in state m2hSemporal relations
between propositions are expressed by the additionalliaél@temporal operators.
In CTL there are basically four of them (g Finally, Globally, Until), which come
in two versions E for ExistenceA for All), making together eight operators. Let
@1,2) be an arbitrary temporal-logic formulae. Then, the follogvformulae hold in
statem,

EX ¢: if there is a state reachable by one step whgholds.

EF ¢ if there is a path wherg holds finally, i.e., at some point.
EG ¢ : if there is a path where holds globally, i.e., forever.

E (¢ U @) : if there is a path whergy holds untilg, holds.
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The other four operators, which we get by replacingBExétence operator by the
All operator, are defined likewise by extending the requinetttbere is a path” to
“for all paths” . A formula holds in a net, if it holds in its initial state.

We instantiate some of the generic property patterns peavid [CRCVDS04]
and get the following samples of meaningful statements fwrronning example,
whose truth can be determined via model checking. Pleaseméer, places are
interpreted as Boolean variables in the following formulaerder to simplify no-
tation.

e property Q1: There is a reachable state where ERK is phosphorylated aiffél RK
is not phosphorylated.
EF [ (ERK-PPV Raf-1StarRKIP_ERK-PP) A
(RKIP Vv Raf-1StarRKIP Vv Raf-1StarRKIP_ERK-PR
The given state specification applies to state m5, and thiis &t of course reach-
able from m1; the shortest firing sequence is r6; r8, compigna & 5.
e property Q2: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.
AG [ (ERK A —(RKIP-PV RKIP-P.RP) ) —
E [ ~(RKIP-PV RKIP-P.RP) U ERK-PP] |
In words: forever it holds (AG), if we are in a state where ERKmarked, but
neither RKIP-P nor RKIP-FRP, i.e. RKIP is not phosphorylated, then there is a
path (E), along which in all states RKIP is not phosphoryatetil (U) we reach
a state were ERK-PP is marked.
e property Q3: A cyclic behaviour w.r.t. the presence/absence of RKIP ssiixde
forever.
AG [ ( RKIP— EF (=RKIP) ) A (-RKIP— EF (RKIP) ) ]
In words: forever it holds (AG), if we are in a state where RKdPnarked, then
there is a path to a state (EF), where RKIP is not marked argyaad vice versa.
Taking into consideration that the backward reactions araparatively slow,
compare Table 4, which allows us to neglect them, we are al#ggect a much
stronger property: the cyclic behaviour w.r.t. the preséaiosence of RKIP is not
only possible forever, it is even guaranteed.
AG [ ( RKIP— AF (—RKIP) ) A (-RKIP— AF (RKIP) ) |
In words, forever it holds (AG), if we are in a state, where RK$ marked, then
on all paths we reach finally a state (AF), where RKIP is notkedranymore,
and vice versa. This stronger property does not hold in tHien&t (with the
backward reactions), because the reversible reactioablisst infinite cycles,
i.e. paths, which prevent the system from reaching a statecasred.

Temporal logic is an extremely powerful and flexible langeiém describe spe-
cial properties, however needs some experience to gettaceced to it. Applying
this analysis technique requires seasoned understantiihg eetwork under in-
vestigation combined with the skill to correctly express #xpected behaviour in
temporal logics. We will see in the next section how to empley/same technique
in a quantitative setting.
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3.3 Summary

To summarize the preceding validation steps, the model hasepl the following
validation criteria.

e validation criterion O All expected structural properties hold, and all expected
general behavioural properties hold.

e validation criterion 1 The netis CPI, and there are no minimal P-invariant with-
out biological interpretation.

e validation criterion 2 The netis CTl, and there are no minimal T-invariant with-
out biological interpretation. Most importantly, therenis known biological be-
haviour without a corresponding, not necessarily minimahvariant.

e validation criterion 3 All expected special behavioural properties expressed as
temporal-logic formulae hold.

One of the benefits of using the qualitative approach is y&ems can be mod-
elled and analysed without any quantitative parametergebler the qualitative
analyses help in identifying suitable initial markings goadential quantitative anal-
ysis techniques, compare next section.

Now we are ready for a more sophisticated quantitative amatyf our model.
Please note, up to now we employed a time-free model. Howdwegualitative
analysis techniques consider all behaviour possible uadgtiming. Adding tim-
ing constraints to our Petri net usually restricts the be&havSo it should not come
as a surprise if under the given timing assumptions certairabiour disappears.
However we know that what has not been possible in the qtieéitanodel can-
not become possible in the quantitative one; e.g. a bounaetthcannot become
unbounded.

4 Quantitative Approaches

In this section we transform our validated qualitative mpgizen as a place/transi-
tion Petri net, into quantitative ones, specified as stdahascontinuous Petri nets,
and employ related analysis techniques.

4.1 Quantitative Modelling

To transform a qualitative Petri net into quantitative gnes need to assign to
all transitions (reactions) their rate functions, whicmeerally depend on the cur-
rent state of the reactions’ substrates, or - in Petri netderthe current marking
of the transitions’ preplaces. Technically, rate funcsi@man be any mathematical
functions. However, often they follow some kinetic patgerwith the mass-action
kinetics and the Michaelis-Menten kinetics being the mastdus ones. Table 4
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gives for each reaction: the reaction equation, the ratetimm and the involved
rate constants. The rate functions (employing the stoithi@e constants) are used
in the stochastic model as the propensity (hazard) funstidatermining the cur-
rent stochastic firing rates, and in the continuous modehasdeterministic rate
functions (employing the deterministic rate constantsjetmining the current de-
terministic firing rates. The conversion of stochastic aetdministic rate constants
into each other is well understood, see e.g. [Wil06]; esplyat holds that they are
equivalent for first-order reactions. For second-ordectieas we get the stochastic
rate constant by multiplying with a scaling factor (levetrsmtics).

Table 4 The reaction equation, rate function, and rate constamtgdoh reaction (transition),
compare Figure 2. For better readability we use the abliremmsl ... s11 for the involved species.
All reactions employ mass action kinetics. Please notettimbackward reactions constants are
by two orders of magnitude smaller than for the forward rieast

# reaction equation rate function v rate constant

stochastic deterministic
rl sl+s2 —+ s3 c1-sl-s2 cp=ci-fs ¢, =0.53
r2 s3 — sl1+s2 Co- S3 c,=C ¢, =0.0072
r3 s3+s9 - s4 C3- S3-s9 =03 fs c3=0.625
r4 s4 — s3+s9 Cy- S4 C,=C4 cs = 0.00245
5 s4 — s1+s5+s6 [ C5=Cs cs = 0.0315
r6 s5+s7 — s8 Ce- S5-S7 C5=0Cs- fs ce =0.8
r7 s8 — s5+s7 c7- S8 ¢, =cy c7 =0.0075
r8 s8 — s7+s9 Cg- S8 Cg = Cg cg = 0.071
r9 s6 +s10— sli1 Cy- S6- 510 Cy=Co- fs cg=0.92
r10 sl1 — s6+s10 Cio- S11 Clo = C10 C10=0.00122
ril sl1 — s2+sl10 Cp1- S11 C?Ll =C11 cy1 = 0.87

@ The stochastic and deterministic rate constants are dguotvéor first-order reactionsfs is a
scaling factor to map the givenassin the continuous concentration onto a finite number of kvel
(i.e tokens), with N being the highest level number, f&= masgN.

Finding the rate constants may turn out to be a difficult angetconsuming
process. It usually involves both searches for scientifftepgand also discussions
with the biologists knowledgeable in the pathway understigation. We obtain the
deterministic rate constants from [CSE3].

In the following we illustrate the strength of quantitati@pproaches by a few
analysis examples only. We start with the stochastic agbré@exclude eccentric
system behaviour caused by stochastic noise before coimgjdbe averaged be-
haviour in the deterministic continuous approach.
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4.2 Stochastic Analysis

As with a qualitative Petri net, a stochastic Petri net nairg a discrete number of
tokens on its places. But contrary to the time-free casexparentially distributed
firing rate (waiting time) is associated with each transitipspecified by a parame-
terA. Generally) is state-dependent and defined by a propensity (hazard)danc
The firing itself does not consume time and again follows thedard firing rule
of qualitative Petri nets. Thus, all waiting times can ttegi@ally still occur, but
the likelihood depends on the probability distributionnSequently, the system be-
haviour is described by the same discrete state space,lahd dlfferent execution
runs of the underlying qualitative Petri net can still takace.

More formally, the semantics of a stochastic Petri net (witponentially dis-
tributed waiting times for all transitions) is describeddgontinuous time Markov
chain (CTMC). The CTMC of a stochastic Petri net without flatdransitions is
isomorphic to the reachability graph of the underlying gaéVe Petri net, while
the arcs between the states are now labelled by the tramsities. This allows the
use of the same powerful analysis techniques for stochBstiG nets as already
applied for qualitative Petri nets.

Table 4 provides the details which permit reading the netdnife 2 as a stochas-
tic Petri net, specifying at the same time reaction rate éops(RRES).

(1) Equivalence check by transient analysis Due to the isomorphy of reachabil-
ity graph and CTMC, all qualitative analysis results ob¢gitin the former section
are still valid. The influence of time does not restrict thegible system behaviour.
Specifically it holds that the CTMC in our case study is reNges which ensures
ergodicity; i.e. we could start the system in any of the rehth states, always re-
sulting in the same CTMC with the same steady state proladistribution.

Additionally, probabilistic analyses of the transient astdady state behaviour
are now available. Generally, this can be done in an anahgiwell as in a sim-
ulative manner. The boundedness of the underlying quaétabodel allows the
application of standard Markov analysis techniques whightssed on the state
transition matrix. However, stochastic simulation algforis (SSA), e.g. Gillespie’s
exact simulation algorithm [Gil77], are computationalgst expensive and work
also for huge or even infinite state spaces.

Applying SSA produces data describing the dynamic evatutibthe biologi-
cal system over time. Figure 6 shows the behaviour of a sudigbe species in
the model (phosphorylated proteins or complexes of theraj tine, for various
numbers of levels (tokens). The noise decreases as the nalegels increases,
thus the behaviour of the stochastic Petri net approaclaofrthe deterministic
net. Moreover it is obvious that the system reaches a steattyia all shown cases,
determining the value at which the response saturates.

We proceed with transient analysis to prove the sufficienivadence between
the stochastic model in the level semantics and the corneipg continuous model,
justifying the interpretation of the properties gained hg stochastic model also in
terms of the continuous one. Probabilistic model checkash as PRISM [PNKO6]
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Fig. 6 Diagrams displaying the output of deterministic (ODE) atmtBastic (SSA) simulation
for a subset of the species in the system. This shows thavéraged stochastic behaviour (over
100 runs) tends towards the deterministic behaviour asuh®er of levels increases. The species
shown are the phosphorylated species.

and IDD-CSL [SHO09] permit the analysis of the transient lvédar of the stochastic
model, e.g., the concentration of MEK-PP at titrie given by:

N

Cmek-pp(t) = M- Z(i'P(LMEKfPP(t):i)) -

expected value of yiek—pp(t)

whereN is the highest level number ailis the maximum concentration,5:Mol.
The random variablemek_pp(t) stands for the level of MEK-PP at time t. Figure 7
shows the output of MEK-PP and Raf-1SRKIP in the time interval0..100 ac-
cording to the continuous and the stochastic models respbctThese results con-
firm that 7 levels is sufficient to approximate the continumadel, and that there
is little discernible difference in output between the nembf levels used in the
figure.

(2) Analytical stochastic model checking In the former section we employed CTL
to express behavioural properties. Since we now have aadticimodel, we can ap-
ply the branching-time Continuous Stochastic Logic (CStich replaces the path
quantifiers E, A) in CTL by the probability operatdP..p, wherebyi p specifies
the probability of the given formula. First we introduce iI5ICthe abbreviations
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Fig. 7 Comparison of the concentration traces for 5, 7, and 9 lénele stochastic model against
the continuous behaviour.

F @ for trueU ¢ andG ¢ for 'F!@. The CTL formulaEF ¢ now becomes the CSL
formulaP-o[F @], and AG ¢ becomes~1[G @]. CSL also defines a steady state
operatoiS..p which specifies the probability of the given formula in thadaun.

The probabilistic model checkers PRISM and IDD-CSL use C&did, see
Chapter 6 in this bookBoth tools take an analytical approach, where the proba-
bilities in the probability operator are exact and the resiCTMC analysis. IDD-
CSL reads a Petri net standard format. In order to use theN®?Ri8del checker,
we have to encode our running example in its modelling laggu@his translation
requires knowledge of the boundedness degree of all spesiglsed, which we
acquire by the structural analysis technique of P-invasiaWe consider here the
level semantics, where we divide the concentration rang2®uMol) into N + 1
discrete levels. Thus witkl, the maximum concentration,3uMol, we define lev-
els as such: @0«M/N,1«M/NJ, (1xM/N,2+M/N],...((N—1)«M/N,N*«M/N]J.
The discrete tokens in the stochastic Petri net now relateedevels. We use the
result from transient analysis that 7 levels are sufficiemtgscribe the behaviour of
the system and continue with a 7-level model.

We can now check our stochastic Petri net with CSL propeetigsvalent to the
qualitative CTL properties described in the previous segtivhereby places are
now interpreted as integer variables.

e property Sla: There are reachable states where ERK is phosphorylated and
RKIP is not phosphorylated.
P-o [ F (ERK-PP+ Raf-1StarRKIP_ERK-PP> 1 A
RKIP + Raf-1StarRKIP_ERK-PP+ Raf-1StarRKIP = 7)]
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e property S2a: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.
P_>[G ((ERK= 7 ARKIP-P= 0 A RKIP-P.RP= 0) —
P-o [ (RKIP-P= 0 A RKIP-P.RP= 0) U (ERK-PP> 1)])]
We take this opportunity to use tie., operator which returns (rather than com-
pares) the probability of the property. As this property a holds true, the
returned probability is 1.
e property S3a: A cyclic behaviour w.r.t. the presence/absence of RKIP ssiixde
forever.
S.0 [ (RKIP=0)]
S.o [ (RKIP>1)]
This property is expressed using the steady state opendtioh states that in the
long run there are nonzero probabilities of RKIP being pnese absent; hence
it can cycle.

Analytical model checking constructs and analyses theesatate space which
can become infeasible due to the state explosion probleos e now move to a
simulative approach.

(3) Smulative stochastic model checking A simulative approach handles large
state spaces through approximating results by analysitygaosubset of the state
space — a finite set of finite paths through the CTMC produced Bimulation
algorithm.

The type of logic now suitable for describing propertiesrajes from branching-
time (e.g., CSL operating over the CTMC) to linear-time. Aelar-time logic oper-
ates in-turn over paths through the CTMC, equivalent to afiey on simulation
outputs. We use a probabilistic linear-time temporal Io@ltTL) which extends
standard LTL [Pnu81] to a stochastic setting. PLTL is LTLesxded with &..p op-
erator and a filter construcfg}, defining the initial state from which the property
is checked. As PLTL is a linear-time logic, there can be no eshded probability
operators.

We use the PLTL Monte Carlo model checker, MC2, with Gille&gpalgorithm
as featured in Snoopy. The input to the model checker was itf@lation outputs
from Gillespie’s algorithm, with a simulation time of 1@00s. We follow the result
that 7 tokens are sufficient and use 7 molecules in the sifnalaie now check the
following PLTL properties.

e property Sls. There are reachable states where ERK is phosphorylated and
RKIP is not phosphorylated.
P-o [ F (ERK-PP+ Raf-1StarRKIP_ERK-PP> 1 A
RKIP + Raf-1StarRKIP_ERK-PP+ Raf-1StarRKIP = 7)]
e property S2s: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.
P-1 [ (RKIP-P+ RKIP-P.RP= 0) U (ERK-PP> 1)]
As PLTL cannot have embedded probability operators, weesticted here to
a much weaker property. This property says from the initialesof the system,
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ERK can phosphorylate without RKIP being phosphorylatadatt, from the
initial state this is always true.
e property S3s: A cyclic behaviour w.r.t. the presence/absence of RKIP ssiixde

forever.

P-o[F (RKIP > 1){time> 5000\ RKIP = 0} ]

P-o [F (RKIP = 0){time > 5000A RKIP > 1} ]
PLTL cannotdirectly perform steady state analysis. Stetatg behaviour can be
approximated through long SSA simulations with the propehecked towards
the end of the simulation. The filtefrg}, defines the initial state that the property
is checked from. From late in the simulation where RKIP isesibswe check
whether RKIP can become present, and vice versa. This fyogdeo holds with
a higher time than ®00s used.

Simulative stochastic model checking has its advantagenwie range of be-
haviours that the model checker operates over becomes catigmally infeasible.
A simulative approach will allow model checking results ifeasible time through
approximating. However, our stochastic Petri net with 7etokis feasible in both
approaches and we would suggest that analytical approabbetd be used where
possible.

We continue with the computationally less expensive catirs approach con-
sidering the averaged behaviour.

4.3 Continuous Analysis

In a continuous Petri net the marking of a place is no longént@ger, but a nonneg-
ative real number, which can be read as the concentratidmec$pgecies modelled
by the place, and transitions fire continuously accordintheodeterministic rate
functions. Assigning these rate functions to all transsiosee Table 4, allows to
read the net in Figure 2 as a continuous Petri net.

The semantics of a continuous Petri net is defined by a systemdmary dif-
ferential equations (ODES), whereby one equation descthmecontinuous change
over time on the token value of a given place by the continuoergase of its pre-
transitions’ flow and the continuous decrease of its pastitimns’ flow, i.e. each
placep subject to changes gets its own equation. The completasystaon-linear
ODEs generated from the continuous Petri net of our runniagle is as follows.
Please note, the place names stand now for real number kesiand the rate func-
tion variables yare specified in Table 4. To make the model checking analysis m
intuitive, we have mapped the concentrations &M ol to 1uMol such that all
concentrations are relative.
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(1) Steady state analysis Simulating the continuous Petri net, i.e. solving numeri-
cally the underlying system of ODEs, we get data as showngnrgi9. Given the
usual inexactitudes of the rate constants, biochemist®ftén interpret the results
of ODE-based simulations as indicators of the behaviouh@fdomponents of the
network, rather than being concerned with the exact valuked€oncentration of a
particular species at a particular pointin time.

We perform a quantitative analysis of the simulation ressialidetermine whether
the 13 “good” initial states (markings) suggested by thditpiave Petri net analysis,
see Table 3, are indeed in some way equivalent (they alltrestiie same steady
state), and that no other possible initial states can be tesgite the same results.
These are “sensible” initial states from the point of viewbadchemistry, in that
in all these 13 cases, and in none of the other 2035 statds,peatein species is
in a high initial concentration in only one of the followingates: uncomplexed,
complexed, unphosphorylated or phosphorylated. Thesditooms relate exactly to
the 1-P-invariant interpretation given in our initial marg construction procedure
in Section 3.2.

For the purposes of our computations we map any nonzero ntratiens to 1.
We then compute the steady state of the set of species fopeasible initial state,
using e.g. the MatLab ODE solver ode45, which is based on aficéxRunge-
Kutta formula, the Dormand-Prince pair [DP80], with 100 ¢iisteps. We find that
all of the 13 “good” initial states result in the same finakstavithin the bounds of
computational error of the ODE solver, while none of the o2@35 “bad” initial
states results in a steady state which is near that of thd ‘ggi@d” states, compare
Figure 8.

We reproduce two simulations of the model: State 1 (Figuteff,correspond-
ing to the initial marking suggested by our approach desdrébove in Section 3.2
with ERK-PP low and ERK high, and State 5 (Figure 9, right)responding to
the initial marking suggested by Cho et al [C8&3] where the initial concentra-
tion of ERK-PP is high and ERK is low. State 1 has been confirimge@dn ex-
pert signal transduction researcher as the most sensértngtstate [KolO5]. The
equivalence of the steady states, compared with the differsn some intermediate
states is clearly illustrated in these figures. For exantpkgconcentration of Raf-
1StarRKIP behaves overall in a similar manner in both State 1 aateS, peaking
before 10 seconds although the peak is greater when ERK @husphorylated at
the start of the experiment. In Figure 10 we reproduce thepeed behaviour of
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6 7

Fig. 8 Distribution of the Euclidean distances between the stetaty vector of the “good” initial
states and each of the steady state vectors for the “badtlisiates. The distances range between
0.7736 to 6.0889.

ERK-PP for all 13 good initial states, showing that despiteerences in the con-
centrations at early time-points, the steady state coration is the same in all 13
states.
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Fig. 9 Dynamic behaviour for m1 and m5.

(2) Continuous model checking of the transient behaviour The continuous
model replaces the discrete values of species with conimwalues, and hence
is not able to describe the behaviour of species at the Idwetividual molecules,
but only the overall deterministic behaviour via concetidres. The concentration
of a particular species will have the same value at each pbtime for repeated ex-
periments. The state space of such models is continuougeaad. ISo, a linear-time
logic is a natural choice to analyse such kind of behaviour.

We employ the PLTL-based MC2 model checker again as perdloaastic anal-
ysis. MC2 operates on a deterministic model in the same masnen a stochastic
model - analysing simulation output. However, in the detaistic model there is
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Fig. 10 Dynamic behaviour of ERK-PP for all 13 “good” states.
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only one behaviour (the average behaviour) so the resyitioigability is 1 or 0. To
provide simulation output to MC2, we use the BioNessie satarlwith a simula-
tion time of 1Q000s.

The PLTL properties from the stochastic analysis are résvrito concentration
values, comparing to real numbers calferiseandsignificant The place names are
now interpreted as real number variables.

e property C1: There are reachable states where ERK is phosphorylatedi€ifd R
is not phosphorylated.
P-1 [ F (ERK-PP-+ Raf-1StarRKIP_ERK-PP> noiseA
RKIP + Raf-1StarRKIP_.ERK-PP+ Raf-1StarRKIP > significant)]
e property C2: The phosphorylation of ERK (to ERK-PP) is independent of the
phosphorylated state of RKIP.
P-1 [ (RKIP-P+ RKIP-P.RP < noise) U
(ERK-PP+ Raf-1StarRKIP_.ERK-PP> noise) |
Due to the continuous change of token values and the largtikirate of ERK-
PP’s posttransition relative to its pretransitions, ERRRsRconcentration quickly
becomes consumed in the complex Raf-1R&IP_ERK-PP. Therefore, this
complex has been added to the property.
e property C3: A cyclic behaviour w.r.t. the presence/absence of RKIP ssiixde
forever.
P<o [ F (RKIP > noise){ time > 5000A RKIP < noise} |
P<o [ F (RKIP < noise){ time > 5000A RKIP > noise} |
As this is the average behaviour of the system, the cycli@atelr of RKIP is
averaged and is no longer present. Hence the property abptieat it is not true
(P<o) that RKIP can cycle between noise and not noise.

These properties hold for the intuitive values df@Mol and Q9uMol for noise
andsignificant respectively.
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4.4 Summary

In summary, quantitative Petri nets can provide intergstinalysis in two comple-
mentary worlds, stochastic and continuous. The key poiatsvbhave been dis-
cussed in the text:

1. The qualitative Petri net can easily be converted to dtaive Petri nets by the
addition of rate equations.

2. All of the 13 states identified by the reachability graplthef qualitative Petri net
result in the same set of steady state values for the 11 spediee pathway.

3. None of the remaining 2035 possible initial states of tbalitative Petri net
results in a final steady state close to that generated by3teatkings in the
reachability graph.

4. The transient behaviour - the crucial point of interestignal transduction net-
works - of the quantitative models is sensible for the 13estadentified by our
method.

5. There are significant differences between the three gatwve model checking
approaches. Analytical model checking provides exactyarsbut quickly be-
comes infeasible for larger number of levels. Simulativelei@hecking provides
analysis past that which analytical can through approxinahowever there can
be restrictions on the properties which can be checkedi@anis model check-
ing analyses the average behaviour of the system only.

6. Model checking the stochastic and continuous Petri retgptement each other;
it is possible that there are behaviours in the stochastit Ret which are lost
in the continuous net. One should model check the stochBstit net before
considering the overall behaviour of the system in the coiatiis Petri anet.

5 Tools

The running example in its three interpretations has beae dsing Snoopy - a tool
to design and animate or simulate hierarchical graphs, grtteem the qualitative,
stochastic and continuous Petri nets as used in this ch&pteopy provides export
to various analysis tools as well as SBML import and expoR898], [Sno08].

The qualitative analyses have been made with the Petri rad¢ysas tool Char-
lie [Cha08] and the Model Checking Kit [SSE03], supportedDp-CTL, a CTL
model checker utilising interval decision diagrams for @iea state space represen-
tations [Tov08], [HSTO09].

The quantitative analyses have been done using Snoopy&-ibusimulation
algorithms for stochastic and continuous Petri nets, anBibyessie [Bio08], an
SBML-based simulation and analysis tool for biochemicawoeks. Additionally,
MATLAB [SR97] was used to produce the steady state analyfsd iitial states
in the continuous model. We employed PRISM [PNKO06] and IDBEJSHO09] for
analytical stochastic model checking, and MC2 [MC208] fomndative stochastic



Petri Nets for Systems Biology 29

and continuous model checking. We use the Gillespie simuiatSnoopy as input
to stochastic MC2 and the BioNessie simulator as input tdicoaus MC2.

More Petri nets tools and related material can be found oR#te Nets World's
web page: http://www.informatik.uni-hamburg.de/T Gltiféets/.

6 Further Reading

General introductions into Petri net theory can be foundia.gMur89], [Rei82],
[Sta90]; for stochastic Petri nets see specifically [BKQRIBC T95], and for con-
tinuous and hybrid Petri nets [DAOS].

Biochemically interpreted stochastic Petri nets have lgeosduced in [GHLO7].
An extension of this net class is used in [HLGMOQ9] for the midaesed design
of wetlab experiments employing simulative stochastic ed@tiecking. Biochem-
ically interpreted continuous Petri nets — as used in thiptdr — have been intro-
duced in [GHO6], which are deployed in [BGHOO08] for a struetlapproach for
the engineering of biochemical network models.

Recent surveys on applying Petri nets for biochemical netsvare [Cha07] and
[MLMO6], offering a rich choice of further reading pointeeanong them numerous
case studies applying Petri nets to biochemical networksidgs the net classes
introduced in this chapter, coloured Petri nets, duratimhiaterval time Petri nets
as well as hybrid Petri nets in various extensions have begroyed.

P- and T-invariants have been established concepts inrittheory since the
very beginning [Lau73]. There are corresponding notiorsystems biology, called
chemical moieties or conservation relations, and elenngnades or extreme path-
ways, which are elaborated in the setting of biochemicalogks in [Pal06]. For
biochemical systems without reversible reactions, thenstT-invariants, elemen-
tary modes and extreme pathways coincide.

A good starting point for qualitative model checking is [Q@P, and for numeri-
cal solution of Markov chains [Ste94]. An overview on stogli@issues for systems
biology is given in [Wil06].

The systematic qualitative analysis of a metabolic netwsréemonstrated in
[KHO08], following basically the same outline as used in &&tB8.2. Further exam-
ples illustrating how to combine qualitative and quaniti@analysis techniques are
elaborated in [HGDO08], [GHRO08]. The first paper provides also the formal defini-
tions of the technical Petri net terms used in this chaptesedisas further references
to related papers.

7 Summary

In this chapter we have introduced qualitative, stochastit continuous Petri nets
as well as related analysis techniques in a deliberatetyrnmdl manner. Our mo-
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tivation has been to make the concepts accessible for bottellecs as well as
biologists who are not familiar with this methodology. Foetsake of biological
coherence we have used a signalling pathway, namely thendtuof Raf Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regteld Kinase (ERK) sig-
nalling pathway [CSK 03], as a running example. However, the techniques we have
described can be equally applied to other types of bioch@matworks in systems
biology or synthetic biology, as e.g. metabolic or genedcaiption networks, or
even combinations of them.

The nature of biochemical reaction systems — bipartitediims of species and
interactions), concurrent and stochastic — means thaitriRgs are a natural choice
for a formal modelling technique to describe their struetamd behaviour. The qual-
itative aspects of these systems, e.g. the biochemicéibsntnd their relationships
up to stoichiometry can be modelled with qualitative Pedtsnwhereas quantitative
behaviour can be described by stochastic Petri nets atdhednal (e.g. molecular)
level and continuous Petri nets on the larger scale. Pesiare a well-established
technique for modelling computational systems, and we ltbatethis chapter has
convinced the reader of their suitability for biochemiezction systems. There are
a large range of robust Petri net modelling tools availedobel, we have chosen one,
namely Snoopy [Sno08] which is freely obtainable and islat#e for the major
computational platforms. As well as the ability to descrseic information about
biochemical reaction systems, Petri nets are able to stmthair behaviour using
for example the token game for qualitative nets, stochastialation algorithms for
stochastic nets, or ordinary differential equation sa\er continuous nets.

In addition to description and simulation, there are verw@dul techniques
available to analyse the behaviour of such systems. QtiaditRetri nets can be
analysed based on their structural or behavioural praggettsing classical tech-
niques. Model checking can be used to prove special pregenthich reflect the
intended functionality of the network. This can be done fbthaiee types of nets —
gualitative, stochastic and continuous — using the appatgptemporal logics, and
we have chosen to take model checking of properties of ouringrexample as the
unifying thread throughout this paper.

Altogether we advocate a three-step technology for the fiogand analysis of
biochemical networks in a systematic manner: (1) qual#aie. (time-free) quali-
tative modelling and analysis, esp. for the beneficial ¢f€confidence-increasing
model validation, (2) stochastic modelling and analysiexolude eccentric be-
haviour, and (3) continuous modelling and analysis, esih tlve hope of the reliable
prediction of behaviour in the averaged case. For all stepfawour the deployment
of both qualitative as well as quantitative Petri nets, istgathe same net structures
for a given case. The quantitative models are derived frangthalitative one only
by the addition of the quantitative parameters. Hence timesiels are likely to share
some behavioural properties.

The running example in its three versions and all relatedyaisaprotocols are
available at: www-dssz.informatik.tu-cottbus.de/exésferk.
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8 Exercises

You should be able to solve the first three tasks without tapipsrt, while the
remaining tasks suggest the employment of adequate tools.

1.

The basic Petri Nets properties boundness, livenesseaacsibility are orthog-
onal, i.e. independent from each other. Prove this statelbygroviding a net for
each possible combination (obviously, there are eight@fth Argue for every
net why the properties hold as you claim.

If you found this too easy, repeat this exercise with the il restriction that
the nets should be (a) ordinary, (b) strongly connected.

. A well-defined matrix operation is the transposition, efhéxchanges rows and

columns. If we apply the matrix transposition to the incidematrix of a Petri
net, what happens with the Petri net and its invariants?

. While CTL model checking fits particularly for the decisiof special properties,

it can also be used to decide general properties. Expreésliheing properties
in CTL.

e Check the liveness of reactions r1 and r9. What had to be dodedide the
liveness of the net?

e Check the reversibility of the net.

e Check the token conservation of the P-invariants.

e The CTL property 2, see Section 3.2, does not hold in its geowersion,
where EU is replaced by AU, even not for the reduced netwoghkenéing the
backward directions of reversible reactions. Why?

. Extend the running example of this chapter by the follgvigactions [CGHO5]:

ri2,r13: MEK + Raf-1*<» MEK_RAF-1*
ri4.: MEK_RAF-1* — MEK-PP + Raf-1*
ris: MEK-PP — MEK.

Adapt the given Petri net model and apply step-wise all aislgchniques pre-
sented in this chapter, following exactly the same outlivee the following rate
constantsk;» = 0.05,k;3 = 0.03,ki4 = 0.06, k5 = 0.02.

Discuss also the version, where the backward reactionsm@halrsible reactions
are neglected; interesting behaviour, isn’t it?

. Use the techniques you have learned in this chapter to

e derive qualitative and quantitative Petri net models fer2kstage signal trans-
duction cascade given in Figure 11,

e construct a suitable initial marking,

e animate and simulate their behaviours,

e analyse their properties and behaviours.

Use the following rate constants for the quantitative msdel
kl = krl = kkl = kkl’l =100,
ko = kro = kky = kkr, = 4,
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k3 = kl’3 = kk3 = kkl’3 =1.
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Fig. 11 The 2-stage signal transduction RRy +P> - RRy)|P — RR+P,
cascade. kkry
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