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Chapter 22

Computational Modelling of Kinase Signalling Cascades

David Gilbert, Monika Heiner, Rainer Breitling, and Richard Orton

Abstract

In this chapter, we describe general methods used to create dynamic computational models of kinase 
signalling cascades, and tools to support this activity. We focus on the ordinary differential equation 
models, and show how these fit into a general framework of qualitative and quantitative (stochastic and 
continuous) models. The modelling we describe is part of the activity of BioModel engineering which 
provides a systematic approach for designing, constructing, and analyzing computational models of 
biological systems.
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Computational modelling of intracellular biochemical networks 
has become a growth topic in recent years, due to advances both 
in the power and availability of software systems for the simula-
tion and analysis of such networks, as well as an increase in the 
quality and amount of experimentally determined parameter data 
available for modelling.

Modelling biochemical systems is the core part of the process of 
BioModel Engineering (1) which is at the interface of computing 
science, mathematics, engineering, and biology, and provides a 
systematic approach for designing, constructing, and analyzing 
computational models of biological systems. BioModel Engineering 
does not aim at engineering biological systems per se (in contrast to 
synthetic biology), but rather aims at describing their structure and 
behaviour, in particular at the level of intracellular molecular 
processes, using computational tools and techniques.

1.  Introduction
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The most useful kinds of models for signalling pathways are 
dynamic models that describe the time course behaviour of molec-
ular concentrations or even individual molecules. This contrasts 
with static models which merely describe the topology of the 
system, i.e. the molecular species involved and their relationships 
or wiring diagram. In addition to simulation, dynamic models 
permit a range of analytical techniques that give insight about 
system-level features that emerge from the elementary interactions 
of the components. Emergent properties such as bifurcations, 
robustness to interference, or oscillations are not obvious from the 
network topology and their discovery requires computational 
methodologies. Dynamic models provide a powerful framework 
for hypothesis generation and testing and the identification of 
inconsistencies between a model and experimental data. They are 
often used by life scientists as a means to explore their ideas about 
the organisation and control of a biological system.

The “correctness” of a model can be established in several 
ways. Biological model validation establishes whether a model 
contradicts our knowledge of a biological system and hence 
requires experimental data about the behaviour of the system. 
A special technique contributing to model validation is model 
checking, which establishes whether a set of formal properties hold 
for a model, and is often automated using computer programs. 
A biologically valid model can be incomplete and hence may not 
describe all the observations we can potentially make of a system, 
but should not incorrectly describe those behaviours of the system 
for which it allows predictions.

As the EGFR-activated ERK (EGFR/ERK) pathway is such 
an important signalling pathway, the deregulation of which has 
long been implicated in various forms of cancer, it has become a 
popular target for computational modelling strategies (2–4). 
Currently, there are a wide variety of models of the EGFR/ERK 
pathway available which have led to novel insights and interesting 
predictions as to how this system functions (5). A large number 
of the models of this pathway are based on the ordinary differential 
equation (ODE) approach (6). Examples of popular models of 
the EGFR/ERK pathway include the models described by 
Brightman et al. (7), Schoeberl et al. (8), and Brown et al. (9), all 
of which use an ODE-based approach. In general, models have 
been developed to illustrate particular aspects of pathway behaviour, 
and may not be consistent between each other. For instance, the 
Brightman and Brown models predict that the negative feedback 
loop from ERK to SOS is essential for a transient activation of 
ERK to be achieved, whereas the Schoeberl model predicts that the 
negative feedback loop is not required for the transient activation 
of ERK. Orton et al. (10) have developed a model which over-
comes these inconsistencies and suggest some corrections to the 
Schoeberl model on which their work is based.
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Aspects of behaviour of the MAPK pathway which have been 
investigated using computational models include:

Ultrasensitivity of the ERK cascade as a result of a two-step  –
distributive activation mechanisms (11–13).
Oscillatory behaviour of the ERK cascade due to embedded  –
negative feedback loops (14).
The effects of receptor location, trafficking, and degradation  –
on downstream ERK signalling (8, 15).
The dynamic differences between the transient and sustained  –
activation of ERK by different growth factors (7, 16).
The influence of Raf kinase inhibitor protein (RKIP) on the  –
ERK pathway (17).

In general, biochemical networks can always be modelled using 
qualitative information, describing the molecular species and their 
interconnections; if information about the reaction kinetics is 
known, quantitative models can also be employed. Modelling 
approaches based on ordinary differential equations (ODEs) have 
been described in detail before (e.g. (45)). Here we focus on 
approaches inspired by computing science concepts, which have 
recently gained popularity in systems biology (18, 19).

In the qualitative representation, a biochemical network is 
described by its topology; usually as a bipartite graph with two 
types of nodes representing either biochemical entities or reactions, 
and arcs being optionally annotated by stoichiometric information. 
This depiction corresponds to a qualitative Petri net where 
biochemical entities are places (Fig. 1; places are depicted as cir-
cles) and reactions are transitions (depicted as squares). These 
descriptions are “time-free”, i.e. they do not describe the real-time 
dynamics of the system. The qualitative description can be further 
enhanced by the abstract representation of discrete quantities of 
species, achieved in Petri nets by the use of tokens at places; see for 
example Fig. 1. These can represent the number of molecules, or 
the level of concentration, of a species, and a particular arrange-
ment of tokens over a network describes a system state, called a 
marking. Figure 1 illustrates this for a simple enzymatic reaction; 

1.1. Modelling 
Techniques for 
Biochemical Networks

Fig. 1. Qualitative Petri net for a simple enzymatic reaction.
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note that the default stoichiometric weights have been omitted. 
The current state (marking) of the system, indicated by the black 
tokens in each place (circle), is as follows: there are no free 
molecules of enzyme E, three molecules of substrate A, one 
molecule of the enzyme–substrate complex E|A, and two 
molecules of the product B. Equally, we could say that there are 
three units of concentration of A, one unit of E|A, and two of B. 
Clearly, due to the lack of free enzyme, the enzyme–substrate 
complex will have to be broken up by decomplexation to release 
one molecule of E and B (forward reaction) or one molecule of E 
and A (reverse reaction) in order for any further complexation of 
A with E to take place. From a computing science perspective, the 
behaviour of such a net forms a discrete state space, which can be 
analysed in the bounded case, for example, by a branching time 
temporal logic, one instance of which is computational tree logic 
(CTL) (20).

Timed information can be added to the qualitative description 
in two ways – stochastic and continuous. The stochastic description 
preserves the discrete description of the values of biochemical 
entities, but in addition associates an exponentially distributed rate 
with each reaction. Thus stochastic approaches represent the 
individual behaviour of molecules and hence variability in the over-
all (averaged) behaviour of a system. Special behavioural properties 
can be expressed using, e.g. continuous stochastic logic (CSL), see 
(21), a probabilistic counterpart of CTL.

In the continuous approach, discrete values of species are replaced 
with continuous values, and hence only overall (averaged) behaviour 
can be described by concentrations. A particular deterministic rate 
information is associated with each reaction, and thus the concen-
tration of a particular species in such a model will have the same value 
at each point of time for repeated simulations. This approach permits 
the continuous model to be represented as a set of ODEs. The state 
space of such models can be analysed by, for example, linear temporal 
logic with constraints (LTLc) in the manner of (22).

Priami et al. showed how the stochastic p-calculus could be 
used to model biomolecular processes (23) and Regev et al. showed 
in more detail how the p-calculus can be used to model and 
simulate the MAPK pathway (24) using a continuous approach; 
subsequently, Phillips and Cardelli (25) used the stochastic p-calcu-
lus to model the MAPK pathway by simulating the behaviour of 
individual molecules using the Gillespie algorithm (26). A related 
approach, the stochastic process algebra PEPA (27), was used by 
Calder et al. to model the influence of RKIP on the ERK signalling 
pathway (28), and permits different alternative formulations of a 
model to be formally compared. PEPA models can be simulated 
using the Gillespie algorithm or ODE solvers: Calder et al. have 
shown how to automatically derive ODEs from process algebra 
models (29).
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The stochastic and continuous models are mutually related 
by approximation, and the qualitative model can be regarded as 
an abstraction of both quantitative descriptions. For more details 
of a formal framework that explains these relationships within the 
context of Petri nets, see (30). The advantages of using Petri nets 
as a kind of umbrella formalism include (31):

An intuitive and executable modelling style –
A true concurrency (partial order) semantics, which may be  –
weakened to inter-leaving semantics to simplify analyses
Mathematically founded analysis techniques based on formal  –
semantics
Coverage of structural and behavioural properties as well as  –
their relations
Integration of qualitative and quantitative analysis techniques –
Reliable tool support –

Several tools are available which permit the construction of 
quantitative biochemical pathway models using kinetic descrip-
tions and their simulation and analysis; these often read and 
write in SBML (32) format which is one de-facto standard for 
the description of quantitative models of biochemical pathways. 
Such tools include BioNessie (33), and Copasi (34). There are 
also databases of biochemical models, often with descriptions 
in SBML format, for example Biomodels (http://www.bio-
models.org) (35), and more specialized databases such as the 
MAPK database at Brunel (mapk.brunel.ac.uk), which was 
developed as part of the SIMAP project (http://www.eurtd.
org/simap).

MATLAB (36) is a high-level language and interactive 
environment that contains a large number of ODE solvers which 
can be used to numerically solve and analyse ODEs. The 
SimBiology toolbox extends MATLAB with tools for model-
ling, simulating, and analyzing biochemical pathways, and has 
graphical interface as well as a facility to read and write SBML. 
The systems biology workbench (SBW) (37), is a software 
framework that includes Jarnac, a fast simulator of reaction 
networks, permitting time course simulation (ODE or stochas-
tic), steady-state analysis, basic structural properties of networks, 
dynamic properties like the Jacobian, elasticities, sensitivities, 
and eigenvalues, and JDesigner, a friendly GUI front end to an 
SBW compatible simulator. Bifurcation analysis can be performed 

2.  Tools

http://www.biomodels.org
http://www.biomodels.org
http://www.eurtd.org/simap
http://www.eurtd.org/simap
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conveniently using Xppaut (38). CellDesigner (39) has a graph-
ical interface using SBGN (Systems Biology Graphical Notation), 
is SBML compliant, and SBW-enabled so that it can integrate 
with other SBW-enabled simulation/analysis software packages. 
CellDesigner also supports simulation and parameter search, 
using the SBML ODE solver.

Petri net models can be designed using several software tools. 
Snoopy (40) supports qualitative as well as quantitative Petri nets, 
among them both continuous and stochastic Petri nets, and has 
an SBML interface. There are several analytical tools for Petri nets 
which can be accessed by the export feature of Snoopy, including 
Charlie (41), as well as a variety of model checkers, e.g. the 
IDD-MC (42) and DSSZ-MC (43) tools.

For more discussion of types of software to support model-
ling (see Note 1).

In the following, we describe a method for building a model of an 
MAPK pathway, given some knowledge about the topology of 
the pathway, and basic assumptions about the kinetics involved. 
This is part of a larger process of BioModel Engineering – see (1) 
and Note 2.

ODE descriptions are so far the most widely used approach when 
modelling signalling pathways formally, and we now focus on this 
methodology. First we briefly recall the use of ODEs to model 
basic biochemical reactions; for more details refer to a standard 
text on biochemistry, e.g. (44).

Given a reaction A→B which occurs at a rate k, we can com-
pute the time course of the concentrations of A and B by the fol-
lowing equation, where [A] stands for the concentration of A etc:

  

Enzymatic reactions are the basis of MAPK cascades. These reac-
tions are represented in biochemical notation by

  

where E is the enzyme which catalyses the conversion of substrate 
A into product B.

The arrow in this representation implicitly stands for a whole 
set of elementary chemical reactions. In the most general case, 
these can be described using mass-action kinetics, e.g. as follows:

  

3. Modelling the 
MAPK Pathway
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Using ODEs
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Note that here we use E|A to denote the enzyme–substrate 
intermediate complex, with a reversible reaction to describe the 
association of the enzyme and the substrate with rate k1 for the asso-
ciation and k−1 for dissociation, and k2 as the production rate of B 
from the complex. There are more complex representations in 
which the association of the enzyme and the product are reversible, 
and even the conversion of the substrate to the product whilst com-
plexed with the enzyme are reversible. For more details, see (45).

We can decompose the basic enzymatic reaction into three 
constituent reactions:

  

We can then derive the following four differential equations for 
each of the species, i.e. the substrate A, the product B, the enzyme 
E, and the substrate–enzyme complex A|E:

  

This can also be achieved using a Petri net approach (see Fig. 1) 
where each of the three reactions is represented as a component 
of the Petri net, and then the components are composed by merg-
ing their places. The ODEs can then be read directly from the 
merged network, see (45, 46) (see Note 3).

Another common description of enzyme kinetics is the 
Michaelis–Menten equation, which can be derived from the mass-
action description based on a number of simple assumptions:

  

Here, V is the reaction velocity, Vmax is the maximum reaction 
velocity, and KM, the Michaelis constant, i.e., the concentration of 
the substrate at which the reaction rate is half its maximum value. 
With the total (free and substrate-bound) enzyme concentration 
[ET] and the equation
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We can write the differential equations describing the con-
sumption of the substrate and the production of the product as 
follows:

  

This form has the advantage that [ET] might be dynamic, for 
example for an activated form of a kinase from the prevous stage 
in a cascade, while kcat and KM are constants. However, the assump-
tions underlying the Michaelis–Menten equation have been 
derived for in vitro conditions and strictly apply at the initial stage 
of an enzyme assay, but are often inappropriate for the in vivo 
situation of a kinase signalling cascade. In particular, the assump-
tions that the concentration of the product is close to zero, no 
product reverts to the substrate, and the concentration of the 
enzyme is much less than that of the substrate, are violated in the 
in vivo context (47) (see Note 3).

The mass-action equation for an enzymatic reaction is related 
to the Michaelis–Menten description by the following:

For a more detailed discussion of the use of mass-action vs. 
Michaelis–Menten kinetics in modelling signalling pathways see 
(45).

In the course of signal transduction, extracellular signalling mol-
ecules bind to specific trans-membrane proteins (receptors) such 
as G-protein-coupled receptors (GPCRs) and receptor tyrosine 
kinases (RTKs), changing their conformation. This conformation 
change leads to a change in enzymatic activity of the receptor, 
which in turn affects the concentration of downstream com-
pounds which are the substrates and products of the reaction 
catalysed by the receptor. In most cell types, MAPK cascades are 
activated through RTK and/or GPCR activation, which appear 
to function as central integration modules in signal processing. 
MAPK modules are evolutionarily conserved in cells from yeast to 
mammals. They typically consist of three kinases, which are acti-
vated sequentially by phosphorylating each other in response to 
stimuli, forming a three-tiered cascade, (48). The kinase in the 
first tier of the cascade is typically activated at the plasma mem-
brane, whereas the third kinase is typically translocated from the 
cytoplasm to the nucleus upon activation, where it can regulate 
gene transcription through affecting chromatin structure and 
modifying the activity of transcription factors. The downstream 
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compounds may themselves be enzymes that in a cascade of enzy-
matic reactions ultimately lead to a change in gene expression or 
some other major adjustment of cellular physiology.

From the modelling point of view, the main characteristic 
 feature of the core of signal transduction pathways is that the prod-
uct of one reaction becomes the enzyme for the next, and in gen-
eral it is the dynamic behaviour, which is of interest in a signalling 
pathway, as opposed to the steady-state in a metabolic network.

A further feature of such cascades is that a mechanism has 
evolved to ensure that the non-phosphorylated form is regener-
ated from the phosphorylated form, enabling the signal to be 
deactivated where necessary. This is achieved by employing a 
phosphatase, an enzyme promoting the de-phosphorylation of 
the corresponding phosphorylated protein. Hence one step in a 
classical signal transduction cascade comprises a pair of forward 
and reverse enzymatic reactions in a so-called phosphorylation–
de-phosphorylation loop. We can represent this in the following 
biochemical equation, where MK stands for a MAP kinase, S for 
the incoming signal (itself a kinase), and P is the phosphatase:

  

We can then encode this step as six differential equations using 
mass-action kinetics based on our approach above, i.e. either 
deriving the ODEs from a continuous Petri net (46), or by hand 
from our knowledge of standard kinetics.
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Alternatively, the step can be modelled more succinctly using 
Michaelis–Menten kinetics where KM1 and KM2 are the Michaelis 
constants for the forward and reverse reactions respectively. This 
results effectively in only one differential equation; traditionally 
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 concentration can be considered constant as it does not need to 
be activated by the pathway (indeed, it may even be unknown); 
its existence is assumed in the term k¢cat:

In practice, many models employ mass-action kinetics for the 
phosphorylation step, and Michaelis–Menten kinetics for the de-
phosphorylation step.

The central component of an MAPK cascade is a set of these 
phosphorylation–de-phosphorylation steps chained together by 
the phosphorylated product of one acting as the kinase enzyme 
for the next. In mammals these cascades have at least three such 
steps, where the proteins involved are Mitogen-activated 
Kinase-Kinase-Kinase denoted variously MKKK or MAP3K, 
Mitogen-activated Kinase-Kinase (MAP2K or MKK), and 
Mitogen-activated Kinase (MAPK) (see Fig. 2). Examples of 
MKKK, MKK, and MAPK are the proteins Raf, MEK, and 
ERK, respectively.

The mass-action description of the three-stage cascade is as 
follows, based on our initial description of one stage:

  

and the Michaelis–Menten form is:
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The ODE systems for the mass-action and Michaelis–Menten 
forms can be easily derived from the biochemical equations above; 
the connections between the elements of the cascades are achieved 
by employing the phosphorylated product of one level of the cas-
cade as the enzyme for the next stage.

In some models, a stage in the cascade has the double phospho-
rylated form of the kinase as its product, i.e. as the enzyme for the 
next stage. This is usually represented in computational models 
by the horizontal chaining of two phosphorylation–de-phospho-
rylation units, as illustrated by the following equations for the 
MKK stage (see Fig. 2), where for the sake of simplicity we assume 
that both units share the same kinase and phosphatase, as well as 
the same reaction rates:

  

Feedback loops occur in signalling networks and are implemented 
in several different ways in cellular systems, using a variety of inhi-
bition and activation mechanisms. Negative feedback can be 
modelled by sequestration of the input signal by the product 
(phosphorylated protein) of a subsequent stage, under the 
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Fig. 2. Three-stage MAPK cascade with negative feedback.
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assumption that the complex formed will not catalyse the phos-
phorylation (49, 50). This will normally be a reversible reaction, 
with the rates ki1 and ki2 for the complexation and  decomplexation 
respectively determining the strength of the inhibition. Thus, for 
example we can add the following equation to the mass-action 
description of the three-stage cascade above, and illustrated in 
Fig. 2.

  

Similarly, positive feedback can also be achieved by the sequestra-
tion of the input signal by the product of a subsequent stage, 
under the additional condition that the resulting complex cataly-
ses phosphorylation more actively than does the input signal alone 
with rates kp1, kp2, and kp3 . In this case, we can further add the 
following equation to the cascade in addition to the sequestration 
equation:

  

Many other molecular mechanisms achieving feedback can be 
envisaged. Each of these requires small modifications of the 
basic formalism and can be used to model the diversity of feed-
back mechanisms observed in MAPK kinases, such as deactiva-
tion of the active upstream component by the active downstream 
one, or desensitization by an additional change of state of the 
protein (such as phosphorylation at a second site); see e.g. 
(51).

There are many other components that need to be described in a 
model that attempts to capture more than the main signaling cas-
cade in a MAPK pathway. For example, there are receptors and 
the signaling molecules that bind to them, as well as dimerisation 
of the receptors. These can simply be modeled using mass-action 
kinetics, in the manner of (8) and (52), where (EGFR|EGF)2 
stands for a dimer.

  

  

Similarly, the complexation and decomplexation of other species 
such as Shc, Grb2, Sos, GAP, Ras-GTP, and various scaffolding 
proteins can be modelled using mass-action kinetics. Incorporating 
additional details, such as protein trafficking and subcellular 
localization requires specialized methods not discussed in this 
review (3).
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A model of a signalling pathway is of no use unless it both describes 
accurately the current data available and correctly  predicts the behav-
iour when the system is perturbed. Thus, the model should be fitted 
to the available data. This can be sometimes achieved by modifying 
kinetic parameters by hand and possibly aided by automated scanning 
through parameter ranges. However, this can be a time consuming 
process, and scanning multiple parameters can be both computation-
ally expensive as well as producing a very large amount of data for 
interpretation by the modeler. There is now more use of automated 
techniques for parameter fitting, employing various optimization 
strategies, which attempt to find some best values of parameters which 
cause the model to acceptably fit to the data, for example (53). Of 
particular interest are those techniques which fit models to overall 
descriptions of the time-series behaviour of species, rather than to 
exact values which may vary between laboratories and experiments 
(54, 55).These techniques not only provide a useful “sanity check” of 
model behaviour, but can also produce quantitative results.

 1. There are several different kinds of software which can be 
used to construct models of biochemical systems. One type 
has a graphical interface which permits users to construct 
models starting with the network wiring diagram (topology), 
and then to add the equations and kinetic parameters to the 
model under construction; such software can directly gener-
ate a set of ODEs which can be solved using an ODE solver. 
Alternatively, the graphic-based software can be based on the 
Petri net formalism, so that users create a Petri net represen-
tation of the model, initially qualitative (i.e. the wiring dia-
gram, stoichiometry, and initial marking), and then to add 
kinetic information in terms of the rates, so that an ODE-
based or stochastic model can be generated and simulated. 
Another class of approach permits users to describe the model 
using biochemical equations (e.g. mass-action, Michaelis–
Menten), and the ODEs are generated automatically from 
these, for subsequent simulation. Finally, some modellers pre-
fer to directly describe models in terms of ODEs, and then to 
solve these using an ODE solver.

 2. A major activity in BioModel Engineering is that of identify-
ing a (quantitative) model by means of (1) finding the struc-
ture, (2) obtaining an initial state, and (3) parameter fitting. 
An important part of this will be detailed studies of the litera-
ture and public databases, as well as intense interactions 
between computational modellers and experimentalists. 

3.6.  Tuning the Model

4.  Notes
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Attempts at automating the first step are underway and con-
sequently, the field of text mining of biomedical information 
is a very active one (56). Automated systems for extracting 
useful information from journals and patents will become 
more widely used as online full-text versions of experimental 
papers become more widely available.

 3. While Michaelis–Menten kinetics are suitable for modelling 
biochemical systems which predominantly exhibit steady-
state kinetics, such as metabolic pathways, there are problems 
in applying such an approach uncritically to systems which are 
characterised by dynamic behaviour, such as signalling path-
ways (47). Thus many modellers use mass-action kinetics to 
describe such systems. Michaelis–Menten kinetics should not 
simply be used because of the smaller number of parameters 
in the model; instead it can be useful to implement a suitably 
relaxed version of the assumptions of Michaelis–Menten 
kinetics in the parameters of the mass-action equations, thus 
avoiding unrealistic model behaviour.
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