
SPC builder practical manual

Francesco Rinaldi David Gilbert

Brunel University London

November 27, 2023

Abstract

The SPC code, utilised for implementing the Hybrid Approach-
based (‘Movement and communication in multiscale/multilevel models
of biological systems”, F. Rinaldi, D. Gilbert, M. Heiner and L. Ghan-
bar) models as mentioned in the main paper, facilitates entity inter-
action with Spike. However, it lacks support for certain traditional
coding operators crucial for preventing redundant code sections. This
issue is insignificant when modelling small spaces with few Complex
Entities, but becomes more apparent when representing biological
systems that typically require multiple Complex Objects interacting
within a larger shared space by exchanging stimuli through the envi-
ronment. The larger the space and the higher the number of Com-
plex Entities involved, the more repeated SPC code lines are generally
needed to verify each Complex Object’s position within the environ-
ment, and to enable movement and interactions. The SPC Builder
serves as a valuable extension of the Spike suites, implemented in
Python, to streamline the process of generating repeated blocks of
SPC code. Its core concept is simple: represent traditional SPC code
with Python strings and utilise built-in coding operators and state-
ments, such as loops, if statements, and arrays, to streamline the gen-
eration of SPC code. The SPC Builder, available at SPC BUILDER,
significantly enhances the Spike suites by expediting the generation of
repeated SPC code blocks, eliminating the need to write several and
repeated lines of SPC code manually.

The SPC builder system was constructed as part of the activities
of the research project “Movement and communication in multiscale/-
multilevel models of biological systems” funded by the Leverhulme
Trust under their Emeritus Fellowship Scheme (Project number EM-
202-0-086\9).

https://github.com/rin0o1/SPC-python-builder

Contents

1 Introduction 4

2 System Requirements 4

3 Software Structure 5

4 Using the SPCBuilder.py 6
4.1 Setting up the Petri net model 7
4.2 Configuring CANDL . 12
4.3 Writing SPC code . 14

4.3.1 onStepVariableDeclaration method 14
4.3.2 onStepStepwise method 17
4.3.3 export method . 20

4.4 Executing the builder . 21

5 Examples 23
5.1 Whale feeding behaviour . 23

5.1.1 Introduction to the Whale feeding scenario 23
5.1.2 SPC builder for the Whale feeding scenario 29
5.1.3 Setting up the Petri net model 30
5.1.4 Exporting and configuring CANDL 32
5.1.5 SPC for the Whale feeding model 33

5.2 Export . 37
5.3 Using the builder for the Whale model 38
5.4 Dictyostelium . 39

6 Acknowledgements 40

2

List of Figures

1 Setting Simple Color sets for complex objects in Snoopy . . . 8
2 Setting markings for internal complex object’s places 9
3 Grid colours Snoopy definition 10
4 Grid Compound Colors definition 10
5 Place marking compound colour 11
6 Model Constants declarations 11
7 Whale model CANDL . 25
8 Whale model ANDL . 26
9 Unfolded Petri net models with a 3x2 grid and two whales. . . 30
10 Whale model constants . 31
11 Simple colour set definition . 31
12 Compound color set definition 31
13 Dicty model for Hybrid Approach 40

3

1 Introduction

The SPC Builder is a tool designed to streamline the implementation of a
Hybrid Approach for Petri net models that require the movement and inter-
action of Complex Objects. It automates the process of writing SPC code,
making it easier to implement such models’ mechanisms. The Leverhulme
project technical report (“Movement and communication in multiscale/mul-
tilevel models of biological systems”, F. Rinaldi, D. Gilbert, M. Heiner and
L. Ghanbar) offers a theoretical perspective on the Hybrid Approach, while
this manual aims to provide three practical examples that demonstrate how
to effectively use the SPC Builder to automate the SPC code writing process
for Hybrid Approach-based models. Gaining hands-on experience with the
SPC Builder is crucial for successfully modelling complex systems using the
Hybrid Approach. The examples presented in this manual encompass various
structures, operands, and procedures essential for implementing the Hybrid
Approach in your models. These examples serve as templates, illustrating the
structure of the SPC Builder, its usage, the set-up for the Petri net models,
and the appropriate way to write the SPC code for automated script gen-
eration. The three scenarios that have been adapted from the Leverhulme
report are:

1. Whale Sample

2. Dicty

3. LioBiofilm

To fully comprehend this paper, familiarity with the Spike system and
its associated SPC code is necessary. The SPC code used within the SPC
Builder for each showcased scenario can be downloaded as a zip file from
https://github.com/rin0o1/SPC-python-builder.

2 System Requirements

SPC builder is written in Python, and can be used on all platforms which can
run Python. The code produced is used as commands to the Spike simulator;
this runs on Windows (version 10 or greater), Mac OS X (10.12+, Intel only,
64bit) and Linux (Intel only, 64bit).

Utilising the SPC Builder necessitates a foundational knowledge of Petri
net models (CANDL, ANDL), an understanding of SPC code and Spike,
familiarity with the Hybrid Approach and its functionality, as well as basic
Python coding skills. This paper will not dive into these topics; instead, it

4

https://github.com/rin0o1/SPC-python-builder

will concentrate on the implementation and usage of the SPC Builder. To
implement Hybrid Approach-based models, the installation of the following
tools is required:

1. Snoopy (v2.5)

2. Spike (v1.6.0rc4) downloaded and added to the environment variables
as spike

3. Python 3

4. The SPC-python-builder GitHub repository containing the code base
for the builder cloned in your local machine

3 Software Structure

All the SPC builder projects consist of a set of Python classes:

• main.py: This serves as the entry point to initiate the builder. You will
execute this file along with a set of parameters to run BuilderANDL.py
and BuilderSPC.py, which are the two core Python classes responsible
for automatically constructing the ANDL and SPC files.

• BuilderANDL.py: This file contains functions that transform a user-
inputted CANDL file into an ANDL version for simulation. Within
this class, the editCandl method reads the provided CANDL file and
replaces specific comments with values passed as parameters when in-
voking the SPC Builder script. This mechanism enables the param-
eterisation of the model’s colour set values. For example, in the sce-
narios presented in this manual, the “//dimensions” comment is re-
placed with the variables “DX” and “DY”, and “//instances” is re-
placed with the variable ”instances”. The values for these three vari-
ables are determined by the user when setting the “–x”, “–y”, and
“–o” parameters while executing the script. This allows for easy modi-
fication of the grid environment’s dimensions and the number of Com-
plex Objects or colour sets, which are fundamental components of the
Hybrid Approach. The “dimensions” and “instances” comments can
be changed by setting the CANDL COMMENT DIMENSIONS and
CANDL COMMENT NUMBER OF INSTANCE COMPLEX OBJECT
variables in the Constants.py file.

5

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy#downloads
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike
https://www.python.org/downloads/
https://github.com/rin0o1/SPC-python-builder

• BuilderSPC.py: This file is where the SPC script should be embedded
as Python code. The Python code will be automatically converted into
SPC code and exported to the spcOut.spc file for simulations. Builder-
SPC.py comprises three primary methods: onStepVariableDeclaration,
onStepStepwise, and export, which correspond to the three main sec-
tions of an SPC script.

1. onStepVariableDeclaration: This method should contain the SPC
code, encoded as Python strings, necessary for declaring all vari-
ables, constants, and observers required by the onStep object

2. onStepStepwise: This method should consist of the SPC code,
encoded as Python strings, that defines the block of rules to be
executed for each timestep of the simulation within the onStep
object.

3. export : This method should include the SPC code, encoded as
Python strings, that specifies the values of model markings, ob-
servers, and constants to be exported at the end of the simulation.

Within each of these three functions, there is a string variable called
spc. This variable will contain the SPC code encoded as a Python
string, which will be written into the spcOut.spc file.

• BuilderHandler.py: executes BuilderANDL, and BuilderSPC

• BuilderOptions.py: A Python object stores all the parameters that
users provide as inputs. Both BuilderSPC and BuilderANDL can ac-
cess this object using “self.o”.

• Constants.py: a Python object storing all the constants used within
BuilderANDL and BuilderSPC

4 Using the SPCBuilder.py

Utilising this tool involves a series of common steps necessary for the imple-
mentation of the Hybrid Approach, as outlined in this section: setting up the
Petri net model, configuring the CANDL file, and writing the SPC code. The
SPC Builder assists with the final step, while the first two steps are essential
for this new approach and must be completed regardless of whether the SPC
Builder is used. The default code provided for the builder has been opti-
mised for efficient implementation of the Hybrid Approach. However, this
script can also be employed for any SPC scripts that contain repeated lines of

6

code, which can be condensed into fewer lines using standard programming
language operators.

4.1 Setting up the Petri net model

The Hybrid Approach is distinguished by its ability to move Complex Objects
within a grid environment. Models seeking to implement this approach using
the SPC Builder require a Color Set for defining the grid dimensions and
another for the Complex Object. Hybrid-based models are simulated through
an SPC script that takes an ANDL file as input. The SPC Builder can
generate these two files (from a CANDL file) in a semi-automated fashion
to streamline the implementation process. To compute the file generation,
the builder needs a CANDL file and a properly configured Petri net model,
as demonstrated below. The correct model setup is essential for exporting
the appropriate CANDL (Section 4.2), which the SPC Builder will use as
input to generate the ANDL and SPC script semi-automatically. The colour
definition specifying the number of instances for the Complex Object must be
a Simple Color Set of type int (Figure 1). Upon unfolding, this value informs
Snoopy of the number of instances to create for the model representing the
Complex Object and its internal structure. All Colored places within the
model shaping the Complex Object must have their Markings Colorset set
with the respective Simple Color name (Figure 2).

The colour definition for the grid environment must be a Compound Color
of type product, with its value determined by the product of two (2D space)
or three (3D) Simple Colors that define the dimensions of the space (Figure
3). These Simple Colors, which define all available x,y or x,y,z coordinates in
the grid space, must be of int type and set as min-max, indicating the value
range for each axis. For instance, the Simple Colors used for the product of
the Compound Color (Figure 4) defining a 9x9 grid space would be specified
as reported in (Figure 5) within the ColorSet definition in Snoopy.

7

Figure 1: Snoopy Screenshot - ComplexObject is a Simple Color set of type
int used for indicating the number of instances of the complex object to
create on unfolding the model. Its value is dictated by the instances value
which is a model constant.

Employing constants to define the Simple Color Sets streamlines the pro-
cess of adjusting the number of instances and grid dimensions (Figure 6).
By avoiding hard-coded values, changes can be made without the need to
modify the entire model. For example, altering the constant instances will
affect the number of ComplexObject colours, while adjusting the constants
DX and DY will alter the size or shape of the grid environment. Moreover,
using constants makes them easily accessible from the CANDL file. As the
SPC Builder relies on the CANDL file, it can modify the number of Complex
Object instances and grid dimensions by simply changing these constants.

8

s

Figure 2: Snoopy Screenshot - The Colorset marking for each Petri net place
included within the Complex Object structure has to be set to ComplexObject
as well as the Simple Colour set shown in Figure 1.

9

Figure 3: Snoopy Screenshot - X and Y are the int Simple Colour sets
dictate the dimension of the Compound Color Grid2D (Figure 4). With the
current set up X axe ranges from 1 to DX which is a model constant set to
9, whereas Y axe ranges from 1 to DY which is a model Constant set to 9.

Figure 4: Snoopy Screenshot - Grid2D is a Compound Color of type product
which values are defined by the product of the X and Y Simple Colour sets
illustrated in Figure 3. Grid2D is the Colour name used for setting the
Colorset within the Markings section of the Coloured Petri net model place
that is used to encode the locations (Figure 5).

10

Figure 5: Snoopy Screenshot - Markings definition for the coloured place
that is used to encode the grid environment

Figure 6: Snoopy Screenshot - instances, DX, and DY are the model con-
stants used for defining the ComplexObject, X, and Y Color sets. On export-
ing the model as CANDL these constants will be available on the parameter
section of the CANDL file itself.

11

4.2 Configuring CANDL

This section demonstrates some manual adjustments needed for the CANDL
file obtained upon exporting the coloured model using Snoopy. The SPC
Builder operates on CANDL files, but to generate the final SPC script with
the SPC code for integrating the Hybrid Approach mechanism, it requires
access to the unfolded Petri net model (ANDL file). To achieve this, the SPC
Builder incorporates an internal routine that employs a system call to Spike
to convert the CANDL file into an ANDL file, which is then used as input for
the SPC script’s simulation and onStep operations. One of the parameters
refer to the parameters section for executing the SPC Builder is the path
location of the CANDL file. Since CANDL files resemble machine language
more than human language, it is feasible to construct external scripts that
can interpret and modify them, as well as edit the model programmatically.
The SPC Builder serves as an example of such an external script, allowing
for the management of CANDL and SPC files using a standard programming
language like Python. The constants declaration set in Snoopy (see Figure
6) is easily accessible from the constants section of a CANDL file. The SPC
Builder leverages this section of the CANDL file to replace the values of the
model’s constants (instances, DX, and DY) with the values supplied by the
user as parameters when running the script. This mechanism offers users
flexibility and abstraction when working with the model, as they can modify
the number of complex objects and grid dimensions by simply providing
different parameters when invoking the builder, without needing to alter the
model itself. By using this method, the unfolded model will represent the
number of complex object instances and grid dimensions specified by the user
when executing the SPC Builder script.

The constants section of a CANDL file (typically starting from line 2)
exported from a Petri net model with the same constants as depicted in
Figure 6 would appear as follows (note that there may be other constants
set):

1 constants:

2 valuesets[Main]

3 all:

4 int instances = 2;

5 int DX = 9;

6 int DY = 9;

The following adjustments are necessary to indicate to the builder which
constants should be replaced with the users’ parameters:

1 constants:

2 valuesets[Main]

3 all:

12

4 // dimensions

5 // instances

The location path of the modified CANDL file, including these adjustments,
must be provided as a parameter when executing the SPC Builder section
with parameters settings. The builder will then automatically replace the
comments in lines 5 and 6 with:

1 valuesets[Main]

2 all:

3 int DX = <horizontal_grid_dimension_set_by_the_user >;

4 int DY = <vertical_grid_dimension_set_by_the -user >;

5 int instances = <number_of_instances_set_by_the_user >;

13

4.3 Writing SPC code

The SPC Builder simplifies the creation of SPC scripts by employing standard
Python coding structures, such as loops, to eliminate the need for repeat-
ing similar lines of SPC code for the onStep object multiple times. Using
this tool, each line of the conventional SPC code is typically written within
an *.spc file must be converted into a Python string. This approach allows
repeated SPC lines to be condensed into a single line within a loop state-
ment, or repeated sections to be stored once in a single variable and reused
throughout the SPC script. The BuilderSPC.py file is the only file used for
writing the SPC code as Python strings.

The BuilderSPC class consists of three functions: onStepVariableDecla-
ration, onStepStepwise, and export. Each of these methods corresponds to
a common sub-property of the Simulation Configuration object in an SPC
script. Specifically, onStepVariableDeclaration relates to the declaration sec-
tion of the onStep property and should only include code for declaring vari-
ables, constants, and observers. onStepStepwise refers to the stepwise or
do section of the onStep property and should contain only the conditions
encoded as SPC code that Spike needs to check at each timestep of the simu-
lation. export pertains to the export property used for defining which places,
constants, and observers to export at the end of the simulation. The Builder-
SPC object has a single variable declared within its constructor method,
self.o. This variable contains an instance of the BuilderOptions class, which
consists of a set of variables used for storing all the parameters reference
to the parameter section prompted when running the builder. From the
BuilderSPC object, you can access these options with self.o.

All three methods mentioned above include a variable called spc. This
string variable is used to store SPC lines encoded as a Python string added
within each method. These functions receive two parameters: lns and pnt.

lns contains the empty template of an SPC script as a string (defined in
the Constants.py file), and its content will be saved in the auto-generated
.spc script at the end of the SPCBuilder process. pnt is a line pointer that
indicates to each method the specific line within the full SPC script as a string
(lns) where the content of a particular method, stored in the spc variable,
should be inserted.

4.3.1 onStepVariableDeclaration method

This method in the SPCBuilder represents the declaration section of the
onStep property of an SPC script. The SPC code, written as a set of Python
strings within this method, will be exported at the end of the generation

14

process into the default *.spc file (named spcOut.spc).
When using the SPCBuilder in the context of the Hybrid Approach, this

method should contain the lines of SPC code encoded as Python strings
to declare all the variables, constants, and observers required for moving
complex objects on the grid and interacting with the model, such as the
initial x,y coordinates of each complex object.

By default, the code within this method is as follows:

1 # Initialising the spc variable used to store

2 # the SPC code as a Python string.

3 spc = ""

4 # self.o contains the options users set as

5 # parameters on running the script

6 # nco is the number of complex obejcts set

7 # by the user

8 nco = self.o.nco

9 # 2D list containing the x,y location for each complex

10 # object.

11 # It uses the initial locations for each complex object

12 # if set by the user , generate them randomly otherwise.

13 # l0s for 2 complex objects which x,y initial locations

14 # are 3,2 and 4,1 does have the following content:

15 # [[3,2], [4 ,1]].

16 l0s = self.parseL0s () if self.o.l0 > 0 \

17 else self.generateL0s ()

18 m = self

19 # add comments in the SPC script.

20 # m .n and m.t refer to self.n and self.n used for common

21 # characters.

22 # self.t(n) returns a string with n tabs characters.

23 # eg. self.t(2) returns "\t\t".

24 # This simplifies indentation when generating the spc file.

25 # self .n return a string with a new line character.

26 # eg. self.n() return "\n".

27 spc += f’// {m.t(2)} ++++++++ Code generated from the Builder ++++++++ {m.n()}’

28 spc += f’// =================== ON STEP VARIABLE DECLARATION ================== {m.n()}’

29 # For each complex object.

30 for i in range(nco):

31 # Create an id for the complex object.

32 id = str(i+1)

33 # Getting the x,y initial location for the i_th

34 # complex object.

35 lx0 = l0s[i][0]

36 ly0 = l0s[i][1]

37 # Store the x,y initial location lx0 ,ly0 for the i_th

38 # complex object as a string. This will help in the next

39 # lines to use these values for writing the SPC code

40 # as a string.

15

41 x = f’X_{id}’

42 y = f’Y_{id}’

43 # Writing the SPC code for declaring the initial

44 # locations for the i_th complex object

45 # using Python string.

46 spc += f’{m.t(1)}{x} = {lx0} ; {m.n()}’

47 spc += f’{m.t(1)}{y} = {ly0} ; {m.n()}’

48 # Writing the SPC code for declaring the observers

49 # as Python strings

50 spc += f’{m.t(1)}{x}_obv:observe :{x};{m.n()}’

51 spc += f’{m.t(1)}{y}_obv:observe :{y};{m.n()}’

52 # write a comment

53 spc += f’//== {m.n()}’

54 # lns contains the full SPC script as a string.

55 # pnt is a pointer indicating at which point of lns the

56 # content within the spc string has to be inserted.

57 # Inserting the spc content in lns at line pnt

58 lns.insert(pnt , spc)

This code snippet, when executed with the builder considering a 4x3 grid
environment and 2 complex objects, will generate the following SPC code.
This code is used for declaring the x, y variables and observers that define
the initial locations of the two complex objects:

1 X_1 = 2 ;

2 Y_1 = 2 ;

3 X_1_obv:observe:X_1;

4 Y_1_obv:observe:Y_1;

5 X_2 = 1 ;

6 Y_2 = 2 ;

7 X_2_obv:observe:X_2;

8 Y_2_obv:observe:Y_2;

9 // ==

10

11

12 def onStepStepwise(self , lns , pnt):

The for loop statement defined in line 32 of the onStepVariableDeclaration
function serves two purposes: incrementing the counter that defines the id of
each complex object, and writing the lines for declaring the location of each
complex object (lines 4-7 of the SPC code) only once, rather than having
to repeat these four lines for each complex object. Writing the code with
the SPCBuilder allows for flexibility when changing the number of complex
objects, grid dimensions, or other user-defined parameters without modifying
the code.

Increasing or reducing the value of the number of complex objects (vari-
able nco set in line 8) does not affect the code in the above method, due to
the for loop statement in line 32, which writes the necessary variable dec-

16

larations according to the nco value set by the user. In contrast, manually
writing the declaration directly into the SPC script would require the user
to modify this SPC section each time a change in the number of complex
objects is needed.

Furthermore, by setting the respective parameter when running the builder,
users can specify the initial location of each complex object. If this param-
eter is not provided, the SPCBuilder will automatically generate the initial
location for each complex object according to the provided grid dimensions.

4.3.2 onStepStepwise method

One of the key benefits of using Spike is its stepwise capability, which allows
the model’s state to be adapted for each timestep of the simulation based
on pre-specified conditions set in the SPC’s onStep property’s do section.
The Hybrid approach leverages this capability to enable complex objects to
interact with the grid environment. However, manually writing the SPC
code for the do section can be time-consuming, especially when dealing with
a large number of conditions to check. The onStepStepwise method of the
SPC builder simplifies this process by allowing you to write the SPC code
for the do section as a Python string, as demonstrated in Section 4.3.1. This
method provides access to all traditional programming language operators,
making it easier to streamline the coding process.

Stepwise is crucial for this new approach because it allows the state of each
complex object to be altered based on its location on the grid. Therefore, the
purpose of the SPC code for the do section of an SPC script is to compare
the x,y location of each complex object with all available positions on the
grid and execute the SPC code inside the only conditions that will be true.
The default code for the onStepStepwise method accomplishes this task by
using a set of conditions to check each complex object’s location and act
accordingly.

1 print(f’{self.log}writing onStep stepwise ’)

2 # self.o contains the options users set as

3 # parameters on running the script

4 # nco is the number of complex objects set

5 # by the user

6 nco = self.o.nco

7 # get the horizontal dimension of the grid

8 # from the option object

9 x = self.o.x

10 # get the vertical dimensions of the grid

11 # from the option object

12 y = self.o.y

13 # Initialising the spc variable used to store

17

14 # the SPC code as a Python string. This variable

15 # will be appended to lns which is the full SPC

16 # script that will be exported to generate the

17 # .spc script.

18 spc = ""

19 m = self

20 # for each complex object entity

21 # this loop runs backwards for a better readability

22 # on generating the final .spc script

23 for i in range(nco -1, -1, -1):

24 # Create an id for the complex object. This id

25 # for each specific complex object has to be the same

26 # of the one used on the onStepVariableDeclaration (line 63)

27 id = i+1

28 # for each available y coordinate within the grid

29 for _y in range(1, y+1):

30 # for each available x within the grid

31 for _x in range(1, x+1):

32 # create all the conditions required to compare the

33 # x,y location of the complex object ’id’ with all

34 # the available x,y positions of the grid.

35 isIf = "if" if _x <=1 and _y <=1 else "else if"

36 # if the x position of the complex object ’id’

37 # stored in the SPC variable X_’id’ (declared in the

38 # onStepVariableDeclaration function) is equal to ’_x’

39 # AND the y position of the complex object ’id’

40 # store in the SPC variable Y_’id’ (declared in the

41 # onStepVariableDeclaration function) is equal to ’_y’

42 spc += f’{m.t(1)}{ isIf}(X_{id} == {_x} && Y_{id} == {_y}) {"{"}{m.n()}’

43 # if the above condition is true (which means that

44 # at a timestep t of the simulation the complex object

45 # ’id’ is in position ’_x’, ’_y ’) execute the following code

46 # (just some comments right now , but you should add the respective

47 # actions)

48 spc += f’{m.t(2)}// add here your code when complex object {id} {m.n()}’

49 spc += f’{m.t(2)}// is in location {_x};{_y}{m.n()}’

50 # close the bracket of the if or else if condition

51 spc += f’{m.t(1)}{"}"}{m.n()}’

52 # lns contains the full SPC script as a string.

53 # pnt is a pointer indicating at which point of lns the

54 # content within the spc string has to be inserted.

55 # Inserting the spc content in lns at line pnt

56 lns.insert(pnt , spc)

This code snippet, which assumes a 2x3 grid with 2 complex objects, gen-
erates the following SPC code that compares each complex object’s x and
y position with all available locations on the grid. The variables X n and
Y n, declared in the onStepVariableDeclaration section (see Section 4.3.1),

18

specify the position of the complex object with ID n. The SPC code in line
43, encoded as a Python string, is converted to a series of if conditions in
the final .spc script.

1

2 // LOOP_STATEMENT

3 if(X_2 == 1 && Y_2 == 1) {

4 // add here your code when complex object 2

5 // is in location 1;1

6 }

7 else if(X_2 == 2 && Y_2 == 1) {

8 // add here your code when complex object 2

9 // is in location 2;1

10 }

11 else if(X_2 == 1 && Y_2 == 2) {

12 // add here your code when complex object 2

13 // is in location 1;2

14 }

15 else if(X_2 == 2 && Y_2 == 2) {

16 // add here your code when complex object 2

17 // is in location 2;2

18 }

19 else if(X_2 == 1 && Y_2 == 3) {

20 // add here your code when complex object 2

21 // is in location 1;3

22 }

23 else if(X_2 == 2 && Y_2 == 3) {

24 // add here your code when complex object 2

25 // is in location 2;3

26 }

27 if(X_1 == 1 && Y_1 == 1) {

28 // add here your code when complex object 1

29 // is in location 1;1

30 }

31 else if(X_1 == 2 && Y_1 == 1) {

32 // add here your code when complex object 1

33 // is in location 2;1

34 }

35 else if(X_1 == 1 && Y_1 == 2) {

36 // add here your code when complex object 1

37 // is in location 1;2

38 }

39 else if(X_1 == 2 && Y_1 == 2) {

40 // add here your code when complex object 1

41 // is in location 2;2

42 }

43 else if(X_1 == 1 && Y_1 == 3) {

44 // add here your code when complex object 1

45 // is in location 1;3

19

46 }

47 else if(X_1 == 2 && Y_1 == 3) {

48 // add here your code when complex object 1

49 // is in location 2;3

50 }

51 }

For each timestep, t of the simulation, the conditions generated by the on-
StepStepwise method will be checked. Based on the current X n and Y n
position of each complex object n at timestep t, only one of these conditions
will be true and executed. The subsequent sections showcase examples of
code that can be executed inside these conditions. The advantage of using
this tool is that the user does not need to modify the Python code when
changing the grid dimension, as it is set as an input parameter when running
the script.

4.3.3 export method

This method within the BuilderSPC class is responsible for defining the con-
tents of the export property of an SPC script, specifying which variables, con-
stants, place markings, and observers should be exported as .csv files at the
end of the simulation. Like the other methods discussed earlier, this method
also encodes SPC code as Python strings to streamline the coding process.
The default code within this method exports the X id obv and Y id obv ob-
servers that were defined in the onStepVariableDeclaration method.

1 print(f’{self.log}writing spc export ’)

2 m = self

3 # m.o contains the options users set as

4 # parameters on running the script

5 # nco is the number of complex objects set

6 # by the user

7 nco = self.o.nco

8 # Initialising the spc variable used to store

9 # the SPC code as a Python string. This variable

10 # will be appended to lns which is the full SPC

11 # script that will be exported to generate the

12 # .spc script.

13 spc = ""

14 # exporting all the places

15 spc += f’{m.t(1)} places: [];{m.n()}’

16 # exporting the observers

17 exb = f’{m.t(1)} observers: [’

18 # for each complex object

19 # export its associated observer decleared

20 # in on step variabel declaration

21 for i in range(nco):

20

22 id = i+1

23 exb += f’X_{id}_obv , Y_{id}_obv’

24 # add , to separate observers

25 exb += "" if i == nco -1 else ","

26 spc += f’{exb }];{m.n()}’

27 # lns contains the full SPC script as a string.

28 # pnt is a pointer indicating at which point of lns the

29 # content within the spc string has to be inserted.

30 # Inserting the spc content in lns at line pnt

31 lns.insert(pnt , spc)

The SPC code inserted as Python strings in lines 16, 18, 24, 26, and 27
generates the following results (line 3, and 4):

1 // PLACE_EXPORT

2 places: [];

3 observers: [X_1_obv , Y_1_obv ,X_2_obv , Y_2_obv];

4

5 csv: {

6 \sep: ",";// Separator

7 file: "result"

8 \<< ".csv";// File name

9 }

10 }

4.4 Executing the builder

The SPC builder is a Python script that needs to be executed from the
command line once all the requirements outlined in Section 2 have been
met, and the steps described in Sections 4.1 and 4.2 have been completed.
To get started, navigate to the SPC-python-builder folder from your terminal
using the command cd :

1 $ cd SPC -python -builder

The builder requires the following mandatory parameters, if not provided the
default values will be considered:

1. x: defines the x dimension for the grid environment. As default, it is
set to 3.

2. y: defines the y dimension for the grid environment. As default, it is
set to 3.

3. o: defines the number of instances for a Petri Net colour (complex
object). As default, it is set to 2

21

4. c: the location path of the Petri Net CANDL file with the changes
illustrated in Section 4.2

x, y, o are the parameters that the builder will use to overwrite the constants
within the CANDL file as described in Section 4.2. You can run the script
by typing:

1 $ python3 builder.py --x=x_grid_environment \

2 --y=y_grid_environment \

3 --o=no_complex_obejcts \

4 --c=candl_path

For example:

1 $ python3 builder.py --x=5 --y=6 --o=3 --c=./ model.candl

22

5 Examples

The SPC builder was developed to simplify the process of creating SPC
scripts for implementing the Hybrid approach in Petri net models that in-
volve dynamic entities. To demonstrate the need for this approach and the
use of the SPC builder to support its implementation, we have selected three
models: Whale feeding behaviour, Slime mould Dictyostelium clumping be-
haviour, and Quorum sensing and biofilm production. The sections below
showcase how the SPC builder has been utilized to implement these three
dynamic systems, which require the interaction of complex objects (Whale,
Dictyostelium, and Biofilm) with a grid environment of varying shapes and
sizes. For a more detailed explanation of the biological background and the-
oretical aspects of these models, please refer to our report (insert reference).
All the files showcased in the next sections are available at link with the
repository with all the files

5.1 Whale feeding behaviour

5.1.1 Introduction to the Whale feeding scenario

This section aims to explain how to prepare the SPC script using the SPC
builder for a simple model that leverages the Hybrid mechanism to allow the
movement of complex entities within a grid environment and their interac-
tion with atomic objects. The objective is to simulate the behaviour of a
whale, with a focus on its movement and feeding behaviour, and observe its
response to different environmental conditions. To achieve this, a dynamic
Petri net model needs to be designed, which incorporates the whale’s in-
ternal biological structure and an abstract representation of phytoplankton
as a source of food. The implementation of this scenario using the Hybrid
approach requires the incorporation of a Petri net to manage the model’s
physical structure and the grid-based movement of the atomic objects, the
plankton. Additionally, a stepwise mechanism will be employed to enable
the movement and feeding behaviour of the complex object, the whale. The
SPC builder streamlines the process of writing the SPC script that encodes
the stepwise mechanism needed to simulate the whale’s movements and feed-
ing behaviour. The effectiveness of the builder is noticeable when the model
requires SPC code for handling several whales located on a large grid. In
this scenario, the Petri net model is used for:

• encoding the space into a coloured place defining an X*Y Grid envi-
ronment (in this example a 3x1 grid)

23

• moving the atomic objects across the grid

• modelling the internal structure of the whale that will be moved atom-
ically by the stepwise mechanism

The Stepwise mechanism is used to encode the following actions:

• storing the whales’ positions (using 2 variables X and Y for each whale)

• moving the whales across the grid environment defined within the Petri
net model

• feeding the whale by “eating” the food located in the Grid environment

24

Figure 7: This case study focuses on a simple model consisting of two parts:
the Whale and its internal structure, and the environment and Plankton
movement. The Whale, modelled as a Petri net colour set “Whale” contains
two places (“whale mouth” and “stomach”) and one transition (“esopha-
gus”). For demonstration purposes, the Whale is modelled from a high-level
perspective to showcase the Hybrid approach’s ability to handle Complex
Objects. The environment is represented by a grid, where each grid position
is represented as an X, Y tuple. The shape and dimensions of the envi-
ronment are defined through a product formula in the Petri net colour set
“Grid2D” on the place “Food Source”. In this example, the environment
is a simple 3x1 grid, as shown in the uncoloured version in Figure 8 of the
ANDL version of the model. The place markings on “Food Source” represent
the number of Plankton (atomic objects) in each position. At Time 0, each
position on the grid (3 1, 3 2, 3 3) contains three Plankton. The feeding
behaviour of the Whale begins in the “whale mouth” place, and food trav-
els from the Whale’s mouth to its stomach via the “esophagus” transition.
The SPC script encodes the connection between the Whale’s mouth and the
environment and the transfer of food from the environment to the Whale’s
mouth. The atomic movement of the entire Whale structure, consisting of
two places and one transition, is encoded in the Stepwise system, as shown
in the SPC script below.

25

Figure 8: The model depicted in Figure 7 can be represented in ANDL for-
mat, providing a concise and clear visualization of its components. The envi-
ronment is modelled as three places, ”Food Source 1 1”, ”Food Source 2 1”,
and ”Food Source 3 1”, encoding the 3x1 grid structure. Meanwhile, the in-
ternal anatomy of a whale, including its two compartments (stomach 1 and
whale mouth 1) and the transition (esophagus 1), is represented by a Petri
net colour code-named “Whale”. In the ANDL format, each instance of a
”Whale” has a unique integer ID ranging from 1 to n, where n is the total
number of whale instances (in this case, only 1 instance is considered). All
places and transitions belonging to the same whale instance have the same
ID in the ANDL file. This ensures that the variables used to store the X and
Y coordinates in the SPC code, which are used to identify the location of the
whale, have consistent ID values within their names.

26

The SPC script presented below implements the stepwise mechanism that
enables the movement and feeding behaviour of the whale, which is part of
the use case model. The position of objects in a grid-based environment
is determined by an X and Y tuple, and to track the whale’s position, two
variables, whale 1 X obv and whale 1 Y obv (declared in lines 36 and 37), are
used to store the current coordinates of the whale instance. These coordinates
are used to identify the position of the whale within the grid space. In the
Hybrid approach, to move a complex object atomically, the positions of all
the places and transitions included in its internal structure must change
simultaneously. For instance, to move the whale, the positions of the two
places (whale mouth and stomach) and the transition (esophagus) must be
changed in unison to a new location. To enable a complex object to interact
with its grid environment, the stepwise code compares the object’s position,
stored as X and Y coordinates, with all the possible X, and Y locations
available in the grid. Only one of these possible conditions will be true, and
it identifies the block of SPC code to be executed when the complex object
is located at a specific grid position. In this case study, the interaction
between the complex object (whale) and the grid environment mimics the
interaction between a whale and a food source. The SPC code transfers
the food source from a grid location to the whale mouth place of the whale
instance/s located at the same position, effectively representing the feeding
behaviour. The interaction is implemented in lines 47-49 to transfer the food
source located in position 1;1 of the grid environment to the whale in position
1;1, and in the same way for other available positions in lines 58-60 and 65-67.
The stepwise mechanism also enables the whale to move atomically across
the 3x1 grid environment. The starting position of the whale is 1,1, but by
modifying this value with available grid positions, the whale’s movement can
be triggered. For example, in line 72, the value of whale 1 X obv is increased
by one unit, resulting in the whale moving from its starting position to the
right.

1 import: {

2 from: "whaleExampleModel.andl";

3 }

4 configuration: {

5 model: {

6 places: { }

7 }

8 simulation:

9 {

10

11 name: "SIR";

12

27

13 type:continuous : {

14 solver: BDF: {

15 semantic: "adapt";

16 iniStep: 0.1;

17 linSolver: "CVDense";

18 relTol: 1e-5;

19 absTol: 1.0e-10;

20 autoStepSize: false;

21 reductResultingODE: true;

22 checkNegativeVal: false;

23 outputNoiseVal: false;

24

25 }

26 single: true;

27 }

28

29 interval: 0:50:50;

30

31 /*

32 * Stepwise simulation

33 */

34 onStep: {

35 /* Variable declaration */

36 Whale_1_X : 1;

37 Whale_1_Y : 1;

38 whale_1_X_obvs:observe:Whale_1_X; // observer of X

39 whale_1_Y_obvs:observe:Whale_1_Y; // observer of Y

40

41 do: {

42

43 /* If the whale is in position 1;1 */

44 if(whale_1_X_obvs == 1 && whale_1_Y_obvs == 1) {

45 /* If the whale is in position 1;1 eats the food in

46 * Food_Source_1_1 */

47 place.whale_mounth_1 = place.whale_mounth_1 +

48 place.Food_Source_1_1;

49 place.Food_Source_1_1 = 0;

50 /* Changing the X value from 1 to 2 enables the

51 * movement of the whale on the X axes as well as

52 * moving the whale into the nexT

53 * location on the right */

54 }

55 /* If the whale is in position 2;1 eats the food in

56 * Food_Source_2_1 */

57 else if (whale_1_X_obvs == 2 && whale_1_Y_obvs == 1) {

58 place.whale_mounth_1 = place.whale_mounth_1 +

59 place.Food_Source_2_1;

60 place.Food_Source_2_1 =0;

61 }

28

62 /* If the whale is in position 3;1 eats the food in

63 * Food_Source_3_1 */

64 else if (whale_1_X_obvs == 3 && whale_1_Y_obvs == 1) {

65 place.whale_mounth_1 = place.whale_mounth_1 +

66 place.Food_Source_3_1;

67 place.Food_Source_3_1 = 0;

68 }

69 // move Whale 1 atomically on the right until

70 // there is some space

71 if (whale_1_X_obv < 3) {

72 whale_1_X_obv = whale_1_X_obv + 1;

73 }

74

75 }

76 }

77 /* Exporting places and observers values */

78 export: {

79 places: ["Food_Source_._.","stomach_.","whale_mounth_."];

80 observers: ["whale_1_X_obvs","whale_1_Y_obvs"];

81 csv: {

82 sep: ",";// Separator

83 file: "result"

The code block between lines 44 to 70 needs to be replicated for each
colour of the “Whale” colour set. If the model has many whales, this manual
repetition process can be time-consuming. To streamline this process, the
following sub-section explains how the SPC builder is used.

5.1.2 SPC builder for the Whale feeding scenario

The above SPC script demonstrates how stepwise logic is utilised to imple-
ment the Hybrid approach for the interaction of complex objects (whales) and
atomic entities (grid locations and phytoplankton) to simulate the movement
and feeding behaviours of a single whale in a 3x1 grid environment. However,
as the number of whale instances or the dimensions of the grid increases, the
manual writing of stepwise instructions becomes a time-consuming and chal-
lenging task. This section describes how the SPC builder has been configured
with the Petri net model to automatically generate repeated sections of SPC
code for two whales in a 3x2 grid environment (as shown in Figure 9) using
traditional Python computer language operators. As discussed in Section 4,
the implementation of the Hybrid approach using the SPC builder involves
setting up the Petri net model, configuring CANDL, and writing the SPC
code. The following three subsections provide details on how these steps have
been completed for the whale feeding model.

29

Figure 9: Unfolded Petri net models with a 3x2 grid and two whales.

5.1.3 Setting up the Petri net model

In Section 4.1, we explained how to set up a Petri net model for integrating
the Hybrid approach using the SPC builder. In the case of the Whale Feeding
model (Section 7), the colour sets for defining the grid environment and the
complex object (whale) are configured as per the convention mentioned in
Section 4.1. There are three Simple Color Sets required for this model: X,
Y, and Whale (as shown in Figure 11). X and Y are of integer type and
used to specify the grid dimensions. These two Simple Color Sets are used for
defining the Compound Color Set Grid2D (as shown in Figure 12), derived
from the product of X and Y. Grid2D is used to shape the environment. The
values of these three Simple Color Sets (X, Y, and Whale) are declared by
the model Constants DX, DY, and instances (as shown in Figure 10). For
example, in the case of the model presented above (2 whales and a 3x2 grid
environment), the constant configuration is as follows. By changing the value
of these constants, the environment’s dimensions or shape can be changed, or
the number of whales can be increased or decreased. The SPC builder writes
these constants using its internal procedure, setting each of them with the
respective parameter the user sets when running the builder. It is important
to ensure that the Simple Color Sets use the exact same constants to define
their values so that they match the constant names set by the builder with
the values the user has set as parameters. Once the model is built and the
colour sets are defined, the model can be exported as CANDL.

30

Figure 10: Constants are used for defining the dimension of the grid and the
number of whales. These constants will be overwritten from the SPC builder
by changing the CANDL file given as input on running the builder itself.

Figure 11: Simple colour set definition

Figure 12: Compound colour set definition

31

5.1.4 Exporting and configuring CANDL

For the SPC builder to generate the ANDL and SPC script in a semi-
automated way, the CANDL file of the model needs to be provided as input.
The process of exporting the model into a CANDL file differs depending on
the environment used for designing the Petri net model. For instance, in
Snoopy, the model can be exported by selecting File, Export, and ”Export
to CANDL using dssd util”. Before running the builder with the exported
CANDL file, some minor modifications are required as explained in Section
4.2. By default, the exported CANDL file for the model with one whale and
a 3x1 grid environment will look like this:

1 valuesets[Main]

2 all:

3 int instances = 2;

4 int DX = 3;

5 int DY = 2;

6

7 colorsets:

8 Dot = {dot};

9 X = {1..DX};

10 Y = {1..DY};

11 Whale = {1.. instances };

12 Grid2D = PROD(X,Y);

The required changes are to indicate the lines in the CANDL that the builder
will use to write the model’s constants with the user’s parameters. These
constants will be used to define the values for the three simple colour sets
presented in the section above (Section 5.1.3). To make these changes, the
lines within the Constants section of the exported CANDL that define the
constants for the Simple Color Sets (DX, DY, instances) have to be replaced
with specific comments, as shown below:

1 valuesets[Main]

2

3 all:

4 // dimensions

5 // instances

6

7 colorsets:

8 Dot = {dot};

9 X = {1..DX};

10 Y = {1..DY};

11 Whale = {1.. instances };

12 Grid2D = PROD(X,Y);

These comments are customizable in Constants.py. The CANDL is now
ready to be used as input for the SPC builder.

32

5.1.5 SPC for the Whale feeding model

In order to model the movement of the whale and its interaction with the grid-
based environment, the stepwise system will be encoded in the SPC builder.
This system allows for the atomic movement of the whales and their internal
structure, as well as the consumption of food sources located in the same grid
position. As the grid becomes larger and the number of whales increases,
manually writing the necessary SPC sections becomes more time-consuming.
To streamline the process, the SPC builder can be used to automatically
generate these sections. To begin, the position of each whale must be declared
in the SPC code as two values: one for the horizontal coordinate and one for
the vertical coordinate. The onStepVariableDeclaration method in the SPC
builder is responsible for containing the SPC code written as a Python string
used to declare all the variables, constants, and observers. For example, to
encode the position of two whales in a 3x2 grid environment, the following
lines could be added to the onStepVariableDeclaration method:

1 # Initialising the spc variable used to store

2 # the SPC code as a Python string.

3 spc = ""

4 # self.o contains the options users set as

5 # parameters on running the script

6 # nco is the number of complex objects set

7 # by the user

8 nco = self.o.nco

9 # 2D list containing the x,y location for each whale

10 # It uses the initial locations for each whale object

11 # if set by the user , generate them randomly otherwise.

12 l0s = self.parseL0s () if self.o.l0 > 0 else self.generateL0s ()

13 m = self

14 # add comments in the SPC script.

15 # m .n and m.t refer to self.n and self.n used for common

16 # characters.

17 # self.t(n) returns a string with n tabs characters.

18 # eg. self.t(2) returns "\t\t".

19 # This simplifies indentation when generating the spc file.

20 # self .n return a string with a new line character.

21 # eg. self.n() return "\n".

22 spc += f’// {m.t(2)} ++++++++ Code generated from the Builder ++++++++ {m.n()}’

23 spc += f’// =================== ON STEP VARIABLE DECLARATION ================== {m.n()}’

24 # For each instance of the whale

25 for i in range(nco):

26 # Create an id for the whale

27 id = str(i+1)

28 # Getting the x,y initial location for the i_th

29 # whale store in l0s variable.

30 lx0 = l0s[i][0]

33

31 ly0 = l0s[i][1]

32 # Writing the SPC code for declaring the initial

33 # locations for the i_th whale

34 # using Python string.

35 # The x value for the whale i_th

36 # will be Whale_ <i_th >_X

37 # The y value for the whale i_th

38 # will be Whale_ <i_th >_Y

39 x = f’Whale_{id}_X’

40 y = f’Whale_{id}_Y’

41 spc += f’{m.t(1)}{x} : {lx0} ; {m.n()}’

42 spc += f’{m.t(1)}{y} : {ly0} ; {m.n()}’

43 # Writing the SPC code for declaring the observers

44 # as Python strings

45 spc += f’{m.t(1)}{x}_obv:observe :{x};{m.n()}’

46 spc += f’{m.t(1)}{y}_obv:observe :{y};{m.n()}’

47 # Write a comment

48 spc += f’//== {m.n()}’

49 lns.insert(pnt , spc)

50 // ++++++++ Code generated from the Builder ++++++++

The SPC builder converts this Python string to SPC code using the logic
described in Section 4.3.

1 Whale_1_X : 1 ;

2 Whale_1_Y : 1 ;

3 Whale_1_X_obv:observe:Whale_1_X;

4 Whale_1_Y_obv:observe:Whale_1_Y;

5 Whale_2_X : 1 ;

6 Whale_2_Y : 1 ;

7 Whale_2_X_obv:observe:Whale_2_X;

8 Whale_2_Y_obv:observe:Whale_2_Y;

9 //==

These two variables represent the positions of each whale over the simulation
time (at timestep 0 Whale 1 is located at position 1,1 and Whale 2 at position
2,1).
The central logic of all Hybrid approaches lies within the SPC code section
named onStep stepwise. For the Whale Feeding model, stepwise is crucial
to enable the whales to move on the grid and consume phytoplankton. The
movement of the whales is implemented by modifying the variables that
indicate their positions on the grid. The movement depends on the rules
defined for changing the location, and in this model, the only permitted
movement is one unit to the right at each timestep. Therefore, for each
iteration of the simulation, the SPC code increases the Whale X ID variable
of each whale by one unit. For the feeding behaviour, the stepwise system
transfers the phytoplankton located in the same grid position as the whale

34

to the whale’s mouth place. This feeding behaviour is encoded separately for
each whale instance.

1 print(f’{self.log}writing onStep stepwise ’)

2 nco = self.o.nco

3 x = self.o.x

4 y = self.o.y

5 spc = ""

6 m = self

7 # for each complex object entity

8 for i in range(nco -1, -1, -1):

9 # Get the id of the whale

10 id = i+1

11 # if there is space on the right -hand side

12 # move the whale_x on the right by increasing

13 # the value of Whale_id_X_obv of one unit

14 spc += f’{m.t(1)}if (Whale_{id}_X_obv < {x}) {"{"}{m.n()}’

15 spc += f’{m.t(2)} Whale_{id}_X_obv = Whale_{id}_X_obv + 1; {m.n()}’

16 spc += f’{m.t(1)}{"}"}{m.n()}’

17

18 # for each available vertical value within

19 # the grid environment

20 for _y in range(1, y+1):

21 # for each available horizontal value within

22 # the grid environment

23 # write the behaviour for each whale

24 for _x in range(1, x+1):

25 # this is used just as a flag to write "if"

26 # or "else" in the final SPC

27 isForIf = "if" if _x <=1 and _y <=1 else "else if"

28 # if Whale_id_X;Whale_id_Y is equal to _x;_y which

29 # means when Whale_ <id> is located in the

30 # grid position _x;_y

31 spc += f’{m.t(1)}{ isForIf }(Whale_{id}_X == {_x} && Whale_{id}_Y == {_y}) {"{"}{m.n()}’

32 # then get the marking value of the food

33 # source in the grid place _x;_y

34 # (place.Food_Source_x_y) as well

35 # as the same grid position where

36 # the whale <id> is currently located

37 # and move it to the place of the whale

38 # <id> mouth.

39 # This exchange of markings (tokens)

40 # encodes the feeding behaviour

41 spc += f’{m.t(2)} place.whale_mounth_{id} = place.whale_mounth_{id} + place.Food_Source_{_x}_{_y};{m.n()}’

42 # once all the markings have been moved

43 # from the place.Food_Source_x_y

44 # to the whale <id> month the marking

45 # of the place source

46 # can be empty as well as set to 0

35

47 spc += f’{m.t(2)} place.Food_Source_{_x}_{_y} = 0;{m.n()}’

48 spc += f’{m.t(1)}{"}"}{m.n()}’

49 lns.insert(pnt , spc)

Considering two whales, this Python code will generate the following SPC
code:

1 Whale_2_X_obv = Whale_2_X_obv + 1;

2 }

3 if(Whale_2_X == 1 && Whale_2_Y == 1) {

4 place.whale_mounth_2 = place.whale_mounth_2 + place.Food_Source_1_1;

5 place.Food_Source_1_1 = 0;

6 }

7 else if(Whale_2_X == 2 && Whale_2_Y == 1) {

8 place.whale_mounth_2 = place.whale_mounth_2 + place.Food_Source_2_1;

9 place.Food_Source_2_1 = 0;

10 }

11 else if(Whale_2_X == 3 && Whale_2_Y == 1) {

12 place.whale_mounth_2 = place.whale_mounth_2 + place.Food_Source_3_1;

13 place.Food_Source_3_1 = 0;

14 }

15 else if(Whale_2_X == 1 && Whale_2_Y == 2) {

16 place.whale_mounth_2 = place.whale_mounth_2 + place.Food_Source_1_2;

17 place.Food_Source_1_2 = 0;

18 }

19 else if(Whale_2_X == 2 && Whale_2_Y == 2) {

20 place.whale_mounth_2 = place.whale_mounth_2 + place.Food_Source_2_2;

21 place.Food_Source_2_2 = 0;

22 }

23 else if(Whale_2_X == 3 && Whale_2_Y == 2) {

24 place.whale_mounth_2 = place.whale_mounth_2 + place.Food_Source_3_2;

25 place.Food_Source_3_2 = 0;

26 }

27 if (Whale_1_X_obv < 3) {

28 Whale_1_X_obv = Whale_1_X_obv + 1;

29 }

30 if(Whale_1_X == 1 && Whale_1_Y == 1) {

31 place.whale_mounth_1 = place.whale_mounth_1 + place.Food_Source_1_1;

32 place.Food_Source_1_1 = 0;

33 }

34 else if(Whale_1_X == 2 && Whale_1_Y == 1) {

35 place.whale_mounth_1 = place.whale_mounth_1 + place.Food_Source_2_1;

36 place.Food_Source_2_1 = 0;

37 }

38 else if(Whale_1_X == 3 && Whale_1_Y == 1) {

39 place.whale_mounth_1 = place.whale_mounth_1 + place.Food_Source_3_1;

40 place.Food_Source_3_1 = 0;

41 }

42 else if(Whale_1_X == 1 && Whale_1_Y == 2) {

43 place.whale_mounth_1 = place.whale_mounth_1 + place.Food_Source_1_2;

36

44 place.Food_Source_1_2 = 0;

45 }

46 else if(Whale_1_X == 2 && Whale_1_Y == 2) {

47 place.whale_mounth_1 = place.whale_mounth_1 + place.Food_Source_2_2;

48 place.Food_Source_2_2 = 0;

49 }

50 else if(Whale_1_X == 3 && Whale_1_Y == 2) {

51 place.whale_mounth_1 = place.whale_mounth_1 + place.Food_Source_3_2;

52 place.Food_Source_3_2 = 0;

53 }

Lines 1-3 and 28-30 of the SPC code move Whale 1 and Whale 2 atomically
to the next available right grid position. Other “if” conditions are used to
determine the behaviour of each whale when it is located in a specific grid
position. Since the grid environment has a size of 3x2, there is a condition
for each available position on the grid that must be checked for each whale’s
location at each simulation timestep. These positions include [1,1], [2,1],
[3,1], [1,2], [2,2], and [3,2].

5.2 Export

The following Python code contains the export method that the SPC Builder
requires to list all the places, constants, observers, and variables that the user
wants to export as a CSV file at the end of the simulation. This method is
responsible for exporting the simulation data to an external file that can be
analysed using external tools. The method has to be set with the correct
parameters for the user’s specific model, such as the filename and the set of
variables and constants that the user wants to include in the exported data.

1 print(f’{self.log}writing spc export ’)

2 m = self

3 # m.o contains the options users set as

4 # parameters on running the script

5 # nco is the number of whales set

6 # by the user

7 nco = self.o.nco

8 # Initialising the spc variable used to store

9 # the SPC code as a Python string. This variable

10 # will be appended to lns which is the full SPC

11 # script that will be exported to generate the

12 # .spc script.

13 spc = ""

14 # exporting all the places

15 spc += f’{m.t(1)} places: [];{m.n()}’

16 # exporting the observers

17 exb = f’{m.t(1)} observers: [’

18 # for each whale

37

19 # export its associated observer decleared

20 # in on step variable declaration

21 for i in range(nco):

22 id = i+1

23 exb += f’Whale_X_{id}_obv , Whale_Y_{id}_obv’

24 # add , to separate observers

25 exb += "" if i == nco -1 else ","

26 spc += f’{exb }];{m.n()}’

27 # lns contains the full SPC script as a string.

28 # pnt is a pointer indicating at which point of lns the

29 # content within the spc string has to be inserted.

30 # Inserting the spc content in lns at line pnt

31 lns.insert(pnt , spc)

These Python lines will be then converted by the builder into the following
SPC code and allow the export of the observers used for tracking the position
of each whale.

1 // PLACE_EXPORT

2 places: [];

3 observers: ["Whale_1_X_obv", "Whale_1_Y_obv","Whale_2_X_obv", "Whale_2_Y_obv"];

4

5 csv: {

6 sep: ",";// Separator

7 file: "result"

8 << ".csv";// File name

9 }

10 }

11 }

The final csv file sets with this export definition will contain all the mark-
ings’values of each place of the Petri net model and the history of locations
of the whales at each timestep of the simulation.

5.3 Using the builder for the Whale model

The command to run the SPC builder to generate the ANDL and SPC scripts
required for running the Hybrid Approach on the Whale model consisting in
two whales on a 3x2 grid environment is the following:

1 $ python3 main.py --x=3 --y=2 --o=2 --f=whaleExampleModel.candl

The CANDL file (whaleExampleModel.candl), as well as all the files and
scripts required for reproducing this model, can be found in the Python-
Builder-Whale-Example folder at link with the file.

38

5.4 Dictyostelium

Dictyostelium (Dicty) is considered to be a social amoeba because these
unicellular microorganisms communicate with one another if suitably close.
Under normal circumstances, when there is no environmental pressure, Dicty
moves around randomly in a diffusion-like behaviour [EMRKG17, VHG19].
But under what? pressure or starvation they gather together and create
a multicellular aggregated society to survive. In the Dictyostelium (Dicty)
model, the cells are attracted towards the concentrations of the signalling
molecules which are being diffused on the grid. This means that the attrac-
tion is not in one place and does not show a stable gradient. As a result, the
bacteria gather around the “Wall” while the Dictyostelium cells might gather
anywhere on the grid as long as there is a high concentration of cAMP. The
model can be observed in Figure 13. This abstract model demonstrates the
movement of Dictyostelium towards cAMP, while cAMP is diffused on the
grid. It is important to note that Dictyostelium do not absorb the molecules
and just senses them in order to move towards it. Once located on the grid,
the cells start producing cAMP and naturally will move towards where the
concentration of this molecule is the highest. The Degradation transition is
only connected to the cAMP in order to prevent too much concentration of
the molecule on the grid. Otherwise, there will be too much cAMP every-
where and the movement would not happen. The implementation of this
biological system required the use of Hybrid Approach capabilities to en-
able Dicty objects (with all their internal structure) to move (sense) towards
the cAMP. As illustrated previously the Hybrid approach is partially im-
plemented using the Petri net model, and partially using the Stepwise SPC
mechanism. This is a suitable system requiring the Hybrid approach where
the model, as well as the internal structure of the Dicty (complex object)
and the cAMP (atomic object) diffusion mechanism, are implemented using
the traditional coloured Petri net model, and the atomic movement of the
Dictys toward those localities in the grid with highest cAMP leveraging the
Stepwise SPC system. This scenario has been prototyped in Figure 13.

39

Figure 13: Abstract model for the Dicty system. This model is a prototype il-
lustrating how the Dicty system can be designed using the Hybrid Approach.
It can be split in three sub-sections: Dicty with internal structure (left side),
SPC stepwise layer (green transitions in the middle), and cAMP diffusing on
the grid (red section on the right-hand side). The Hybrid approach is needed
because the Dicty object with all its internal places and transitions needs
to sense and so interact with cAMPs which are atomic objects moving in
the grid for moving towards these localities with the highest cAMP gradient.
The interaction between a complex object and an atomic entity cannot be
modelled using the traditional Petri due to the lack of specific operators. The
Hybrid Approach solve this problem by integrating the SPC Stepwise tool
(green transitions) as the operator required to support this interaction. This
is just a case study showcasing the advantages of this new approach which
can be used in all these models requiring complex objects to communicate
and interact with atomic entities sharing the same space.

6 Acknowledgements

This research was funded by the Leverhulme Trust under their Emeritus
Fellowship scheme awarded to David Gilbert, Project number EM-202-0-
086\9, (August 2021 to September 2023). The development work was done
by Francesco Rinaldi (undergraduate student research assistant), who also
wrote this practical manual. Thanks are due to Professor Monika Heiner
of Brandenberg Technical University who provided the simulator platforms
Spike and Snoopy, part of the Petrinuts software platform, and also to Dr.
Leila Ghanbar of Brunel University London whose earlier doctoral work laid
the foundations for this work.

40

	Introduction
	System Requirements
	Software Structure
	Using the SPCBuilder.py
	Setting up the Petri net model
	Configuring CANDL
	Writing SPC code
	onStepVariableDeclaration method
	onStepStepwise method
	export method

	Executing the builder

	Examples
	Whale feeding behaviour
	Introduction to the Whale feeding scenario
	SPC builder for the Whale feeding scenario
	Setting up the Petri net model
	Exporting and configuring CANDL
	SPC for the Whale feeding model

	Export
	Using the builder for the Whale model
	Dictyostelium

	Acknowledgements

