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Introduction

Genome	Level	Representation

Conclusions

The Challenge.
The design and optimization of microbial strains with improved metabolite production as targets 
while preserving optimal biomass is a challenge in synthetic biology.

Fitness	Evaluation

Gene-Protein-Reaction	associations.

Biological reactions are catalyzed by enzymes thus the state of a reaction in a network is controlled by 
the expression of associated genes. The expression, translation and transcription of genes implies the 
feasibility of the reactions they encode for. A protein can be made up of subunits. In cases that involve 
multiple genes and proteins, their relationship can be described using Boolean Logic. The relationship 
between genes, proteins and their catalyzed reactions can occur in several instances. 

Strain	Generation
We currently use Escherichia coli because 
it is the most detailed and complete 
metabolic reconstruction of any organism to 
date. By integrating a library of naturally 
evolved strain variants from several 
published genome-scale metabolic models 
into one resource, we can compare 
components i.e. reactions, metabolites and 
genes, across different strains. The database 
resource holds the the union of the gene, 
protein and reaction sets of all the strains of a 
specie. The library would grow over time as 
more knowledge is learnt about the 
organism. Given an Ecoli gene list, we can 
generate the corresponding genome scale 
model using metabolic components from 
every strain in the database resource. This 
GEM forms the chassis strain that will 
undergo target driven optimization. 

The Model Generating Protocols uses the logic table to decide which reactions are chosen during the 
GEM generation. The logic table is generated from the gene-reaction rules of each metabolic reaction in 
the Database. Each record is accompanied by “1” which shows the gene present for the reaction to 
catalyze. Consecutive ones (1) indicate an “AND” relationship. When reactions are represented more 
than once in the table it indicates the presence of an “OR” relationship. With these two methods a wide 
array of relationships can be expressed logically in this way. Using the table above, and given a set of 
genes, the system can determine if a reaction has met its logical gene criteria and either accept or deny 
candidate reactions from being included in a model. 
Gene reaction rule example:
ATPS4rpp: (atpA and atpB and atpC and atpD and atpE and atpF and atpG and atpH and atpI) or 

(atpA and atpB and atpC and atpD and atpE and atpF and atpG and atpH)

Flux	Balance	Analyses

Fitness Score
Coupling the target production yield with the biomass production ensures that 
the cell must produce the target molecule and the biomass components required 
for growth to achieve its Fitness Value. The Fitness score is calculated using a 
combination of an objective value and reaction fluxes that make up the Biomass 
Product Coupled Yield (BPCY) (Patil et al., 2005). 

Where P is the flux of the product produced, G is the 
flux of the biomass function (growth rate), and S is the 
flux of the desired substrate consumed. 

The generated GEM is called the chassis strain. The default state of the chassis is saved. All reactions 
and their lower and upper boundaries are stored and used to return the chassis back to its original state. 
Below are the steps the protocol takes to implement the genetic algorithm as a method to solve the 
problem at hand. 
1. Setup steps:

1. The initial chassis gene list is encoded as an array. The array is propagated into the 
population as individuals. Individuals have randomly generated binary off and on states. The 
list of randomly generated individuals make up the initial state of the population. Each 
individual represents a chromosome that could be the desired mutant strain solution of the 
problem at hand. 

2. The transcriptional information is used to determine which genes are active or not, which in 
turn controls which reactions are active as well. Reactions that aren't in the list are 
deactivated by setting their lower and upper bounds to zero. This prevents those reactions 
from carrying any flux during Flux balance analyses. The fitness is calculated using the 
Biomass Product Coupled Yield (BPCY) equation (Patil et al., 2005). 

2. Variants in the population are created by crossover and mutation reproduction operations. These 
operations are responsible for genetic sharing and variation.  

3. Once each member of the population undergoes the reproduction operations, they are analyzed 
utilizing Flux Balance Analyses. Their fitness values are stored and a fitness evaluation is 
conducted to determine if the desired mutant strain has been found. After the evaluation the 
population is reduced to its initial population size by selecting the individuals with the best fitness 
value.  

4. Steps 2 and 3 are repeated until the number of generations allocated are exhausted.
The final output would be an array of binary integers indicating what genes to turn off in a set of genes in 
order to manipulate the cellular topology and achieve particular phenotypic behavior. It is important to 
note that the optimization can be conducted in different environmental condition and on different carbon 
sources. The organism can be designed to maximize the production of any of its naturally produced 
compounds.

The need for prediction with reasonable certainty before organic implementation becomes apparent when 
we weigh the risks of uncertainty. A methodology that uses the wealth of biological data available to create 
predictive models and optimizes them with the objective of obtaining desirable phenotypes could be 
implemented in tools and would make a significant contribution to the efficiency and reliability of the 
Synthetic Biology ecosystem. Future work (alleles and foreign gene transfer, other bacterial species.)
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DESIGN:	Genome	Scale	Metabolic	Models	(GEM)
A genome-scale metabolic network is primarily reconstructed  
from the information that is present in its genome and the 
literature. This reconstruction involves steps such as (More 
detailed):
1. Metabolic reactions identification as well as their 

stoichiometry, direction and compartments i.e. cytosol, 
periplasm and external.

2. Identification of metabolite charges and chemical 
formulas.

3. Determination of biomass composition.
4. Definition of model constraints. 
5. Identifying relationships between genes, the enzymes 

they transcribe and the reactions those enzymes 
catalyze.

This information forms the groundwork for the generation of 
computable stoichiometric model of metabolism. Utilizing 
constraint-based modelling approaches, GEM can be used 
as basis of a design to engineer the metabolic systems of an 
organism. 

Solution: Design by Optimization. 
We have developed a library of biological components from naturally evolved strain 
variants of Escherichia coli that act as a framework for generating reliable genome-scale 
models which act as designs at the metabolic level. Using Flux Balance Analyses, we take 
advantage of the stoichiometry of those models and analyze the metabolic capabilities of a 
microbial strain. Due to their complexities in both regulatory information and topology, a robust 
computational design approach is needed to predict the effects genetic modifications have on 
those models. Optimizing these genome scale designs for a desired phenotypic behavior 
requires transcriptional information integrated via gene-reaction-rules. This allows the use 
of an evolutionary programming based approach to optimization and quickly identify gene 
knock-in/out strategies.

FBA is a technique used in biotechnology 
and systems biology to analyze the 
complete metabolic genotype of a 
microbial strain. It converts each 
metabolite of a metabolic network into 
mathematical coefficients using linear 
programming. It then examines the 
relationships between metabolites in a 
network to find solutions that satisfy some 
optimal behavior of the metabolic network 
at steady state. The constraints are often 
the maximization of biomass yield of an 
organism and bounds on flux values of 
reactions. This allows an attainable set of 
generalized predictions for the growth of 
the organism, metabolite concentration 
levels and product output inside the cell. 

FBA

Target	driven	optimization
Evolutionary programming

The best fitness of each generation 
holds its unique set of chromosome 
values. The differences between them 
is as important as the overall best 
fitness of the run. Genetic contrast help 
indicate unique and important genes 
required for different phenotypic 
behaviors. Analyzing those distinctions 
could be the key to further our 
understanding of the metabolic 
capabilities of a microbial organism. 
This design methodology can be 
applied to other bacteria as well e.g. 
shigella, yeast. 
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