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Abstract. This paper investigates the influence of the Raf Kinase Inhibitor Pro-
tein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signaling 
pathway through mathematical modeling and simulation. Using nonlinear ordi-
nary differential equations to represent biochemical reactions in the pathway, 
we suggest a technique for parameter estimation, utilizing time series data of 
proteins involved in the signaling pathway. The mathematical model allows the 
simulation the sensitivity of the ERK pathway to variations of initial RKIP and 
ERK-PP (phosphorylated ERK) concentrations along with time. Throughout 
the simulation study, we can qualitatively validate the proposed mathematical 
model compared with experimental results. 

1   Introduction 

 The Ras/Raf-1/MEK/ERK module is a ubiquitously expressed signaling pathway that 
conveys mitogenic and differentiation signals from the cell membrane to the nucleus. 
This kinase cascade appears to be spatially organized in a signaling complex nucle-
ated by Ras proteins. The small G protein Ras is activated by many growth factor 
receptors and binds to the Raf-1 kinase with high affinity when activated. This in-
duces the recruitment of Raf-1 from the cytosol to the cell membrane. Activated  Raf-
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1 then phosphorylates and activate MAPK/ERK Kinase (MEK), a kinase that in turn 
phosphorylates and activates Extracellular signal Regulated Kinase (ERK), the proto-
typic Mitogen-Activated Protein Kinase (MAPK). Activated ERKs can translocate to 
the nucleus and regulate gene expression by the phosphorylation of  transcription 
factors [1]. This kinase cascade controls the proliferation and differentiation of differ-
ent cell types. The specific biological effects are crucially dependent on the amplitude 
and kinetics of ERK activity [7]. The adjustment of these parameters involves the 
regulation of protein interactions within this pathway. Here the  Raf-1 kinase inhibitor 
protein (RKIP) plays a central role. RKIP binds to Raf-1 and MEK thereby disrupting 
the interaction between Raf-1 and MEK. As a consequence RKIP inhibits the phos-
phorylation and activation of MEK by Raf-1. RKIP overexpression interferes with the 
activation of MEK and ERK, induction of AP-1-dependent reporter genes and trans-
formation elicited by an oncogenically activated Raf-1 kinase. Downregulation of 
endogenous RKIP by expression of antisense RNA or antibody microinjection in-
duces the activation of MEK-, ERK-, AP-1-dependent transcription. Thus, RKIP 
represents a new class of protein-kinase-inhibitor protein that regulates the activity of 
the Raf-1/MEK/ERK module [2]. 
In this paper we are using an integrated approach of mathematical modeling in com-
bination with experimental data to investigate the impact of RKIP on the dynamics of 
the ERK pathway. For this purpose, we establish a mathematical model of the signal-
ing pathway consisting of a set of nonlinear ordinary differential equations (ODEs) to 
represent enzyme kinetic reactions. To complete and to simulate this mathematical 
model, we need to identify (or estimate) all the parameter occurring in these equations. 
Parameter estimation for nonlinear differential equations is non-trival and provides a 
major challenge in modeling signaling pathways.  
One could argue that parameter estimation is currently the limiting step in biomathe-
matical modeling [3], [4], [6]. In order to tackle this problem, we propose a simple 
method for parameter estimation utilizing time course measured data. This method 
first discretizes the nonlinear ODEs into algebraic difference equations that are linear 
with respect to the parameters and then solve the transformed linear algebraic differ-
ence equations to obtain the parameter values at each frozen time point. We can then 
obtain the required parameter values using regression techniques. Based on the esti-
mated parameter values, we perform a sensitivity analysis of the ERK pathway in 
order to discuss the influence of RKIP through simulation. The simulation study re-
veals the sensitivity of all the protein concentration involved in the pathway with 
respect to the variation of initial RKIP and phosphorylated ERK (ERK-PP) concen-
trations in a quantitative manner. 
The paper is organized as follows. Section 2 briefly introduces the new parameter 
estimation method for mathematical modeling. Section 3 describes the ERK signaling 
pathway and its suppression by RKIP. Section 4 shows the parameter estimation of 
the ERK signaling pathway suppressed by RKIP and the simulation results. Finally, 
conclusions and further studies are found in Section 5. The detailed mathematical 
model of the ERK signaling pathway suppressed by RKIP, time course data, and 
estimated parameter values are summarized in Appendix. 



2   Parameter estimation based on time course data 

In this section we discuss the topic of parameter estimation and exemplify it via the 
ERK signaling pathway suppressed by RKIP as illustrated in Fig. 1. To estimate pa-
rameter values of nonlinear ODEs, we first discretize the given continuous differen-
tial equations along with a sample time, which usually corresponds to the time of 
measurement. Then the continuous differential equations can be approximated by 
difference equations. Consider the following continuous nonlinear ODEs in (1). 
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We can approximate the differential operator by a difference operator for small sam-
pling time interval as follows. 
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Note that this is only a first order approximation and we can alternatively employ any 
other kind of approximation to reduce the approximation error. 
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In most of cases when we derive eq. (1) based on enzyme kinetics, (3) becomes a set 
of linear algebraic difference equations with respect to parameters 
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for each frozen time point nt . Hence we can obtain the following set of estimated 
parameter values by solving such linear algebraic simultaneous difference equations. 
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The resultant estimated parameter values 
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)(
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 might include time depend-

ent experimental noise components which can be further eliminated by regression 
techniques. After all, if the system itself is time-independent then these time series of 
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 will converge to certain steady-state values. Otherwise it can be 

approximated by interpolation of polynomial functions. This approach has two advan-
tages: 1) it is applicable to not only time-invariant systems (estimation of constant 
parameter values) but also time-varying systems (estimation of a parameter function 
of time), 2) the estimation error can be reduced by decreasing the sampling time in-
terval. On the other hand it is disadvantageous in that it requires multiple measure-
ments for time course data of each protein involved in the signaling pathway and is 
therefore unlikely to be popular with the experimentalists. However, this does not 
impair the proposed method since we can transform commonly used WB (western 
blotting) data into the required concentration data under reasonable assumptions. 

3 ERK signaling pathway regulated by RKIP  

This section illustrates the foregoing parameter estimation method using a mathemati-
cal model of the ERK signaling pathway regulated by RKIP. Consider first a graphi-
cal representation of the signaling pathway shown in Fig. 1 where 1m  denotes the 

concentration of the activated Raf-1 (also denoted as Raf-1*), 2m  denotes the con-

centration of  RKIP, 3m  denotes the concentration of Raf-1*/RKIP complex, and so 
on. In fact, Fig. 1 illustrates only part of the ERK pathway, i.e. it considers the subset 
of the ERK pathway regulated by RKIP. In the remainder of this paper we confine 
our discussion on parameter estimation to this pathway. Figure 1 describes the fol-
lowing consecutive mechanisms: 1) RKIP inhibits Raf-1* to phosphorylate MEK by 
binding to Raf-1* and forming a complex Raf-1*/RKIP, 2) Free Raf-1* phosphory-
lates MEK and converts inactive MEK into active MEK-PP. MEK-PP binds to ERK 
and phosphorylates it to active ERK-PP. ERK-PP can interact with the Raf-1*/RKIP 
complex  to form a Raf-1*/RKIP/ERK-PP complex, 3) Then ERK-PP phosphorylates 
RKIP into RKIP-P causing the release of Raf-1* from RKIP-P. ERK does not 
dephosphorylate itself. ERK is dephosphorylated by Protein Phosphatase 2A (PP2A) 
and MAPK Phosphatases, MKPs [8]. The expression of MKP-1 is transcriptionally 
induced by ERK. In contrast, MKP-3 is constitutively expressed, but binding of ERK 
enhances its phosphatase activity. MKP-3 seems to serve as an anchor protein which 
binds ERK in resting cells keeping it inactive. PP2A is a constitutively expressed and 
constitutively active phosphatases, which probably is regulated by selective targeting 
to its substrates, 4) Raf-1* returns to its original active state Raf-1* after being re-
leased from the Raf-1*/RKIP-P/ERK-PP complex, 5) The timecourse analysis of 
ERK-PP and Raf-1/RKIP complex formation rather suggest the following: The in-
rease in free Raf-1* causes a further increase of MEK-PP and eventually ERK-PP, 6) 
The RKIP-phosphotase (RP) is artificially introduced to complete this model by 



showing the dephosphorylation of RKIP-P into the original active state RKIP. After 
dephosphorylation RKIP binds to Raf-1* and suppresses further phosphorylation and 
activation of MEK. MEK-PP and ERK-PP levels rapidly decline due to efficient de-
phosphorylation by PP2A and MKPs.   
Based on enzyme kinetics, we can derive a mathematical model, a set of nonlinear 
ODEs of this signaling pathway with respect to state variables 

11,2,1 L=ii
m  as shown 

by (5) in Appendix. For the purpose of simulation of this mathematical model, the 
initial value of all complex proteins and product proteins are assumed to be zero and 
other initial values such as signaling proteins, 109721 ,,,, mmmmm  are defined 
according to measured time course data. Based on the time course data, found in 
Table 2 and 3 of the Appendix, we can apply the proposed parameter estimation to 
this model, which is explained in detail in next section. The resultant parameter time 
series are also summarized in Table 4 and 5 of the Appendix.  
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Fig. 1. Graphical representation of the ERK signaling pathway Regulated by RKIP: a circle  
represents a state for the concentration of a protein and a bar  a kinetic parameter of reaction 
to be estimated. The directed arc (arrows) connecting a circle and a bar represents a direction 
of a signal flow. The bi-directional thick arrows represent a association and a dissociation rate 
at same time. The thin unidirectional arrows represent a production rate of products. 

 



4.  Parameter estimation and simulation studies 

4.1   Parameter estimation 

The estimated parameters usually appear as a time dependent profile since the time 
course data include various uncertain factors such as transient responses, noise terms,  
etc. However, if the signal transduction system itself is inherently time-invariant then 
estimated parameter profile should converge to a certain constant value at steady-state. 
Therefore we have to find this convergence value if the system is time-invariant. 
Otherwise we have to derive an interpolated polynomial function of time for time-
varying systems. 

 
Fig. 2. Parameter estimation process from time series data: the upper left shows Raf-1*/RKIP 
complex association parameter k1, the upper right shows Raf-1*/RKIP/ERK-PP association 
parameter k3, the lower left shows Raf-1* and RKIP dissociation parameter k2, and the lower 
right shows ERK-PP and Raf-1*/RKIP complex dissociation parameter k4.  

 



 
Fig. 3. Parameter estimation (cont’d): the upper left shows Raf-1*, ERK-P, and 
RKIP-P production parameter k5, the upper right shows MEK-PP and ERK dissocia-
tion parameter k7, the lower left shows MEK-PP/ERK association parameter k6, and 
the lower right shows ERK-PP production paramter k8. James O’Ferrell’s data from 
frog oocytes that ERK phosphorylation is non-processive, ie proceeds ERK->ERK-P-
>ERK-PP, may not apply in mammalian cells. We looked in NIH cells and did not 
see it. Therefore, and for the sake of simplicity we can simply assume that the reac-
tion catalysed by MEK is ERK->ERK-PP. 

 

 
Fig. 4. Parameter estimation process upon the time course data: the upper left shows RKIP-
P/RP association parameter k9, the upper right shows RKIP and RP production parameter k7, 
and the lower left shows RKIP-P and RP dissociation parameter k10. 



Figures 2 to 4 show the process of parameter estimation from the time series. Esti-
mated parameter values can be found as the convergence point since the parameter 
profile shows time-invariant characteristics. In each plot, we calculate the converging 
parameter value and the resultant estimation as summarized in Table 1. These esti-
mated parameter values are used for the simulation studies in the following sections. 

Table 1. Summary of the estimated parameter values. 

Para-
meter 

Estimated 
Value 

Para-
meter 

Estimated 
Value 

Para-
meter 

Estimated 
Value 

Para-
meter 

Estimated 
Value 

k1 0.53 k2 0.0072 k3 0.625 k4 0.00245 
k5 0.0315 k6 0.8 k7 0.0075 k8 0.071 
k9 0.92 k10 0.00122 k11 0.87  

4.2 Two-dimensional simulation for fixed initial conditions 

Based on the mathematical model summarized in Appendix and the estimated pa-
rameter values in Table 1, we perform simulation studies to analyze the signal 
transduction system with respect to the sensitivity for the variation of RKIP and 
ERK-PP. For this purpose, we first simulate the pathway model according to the 
variation of the initial concentration of RKIP (RKIP sensitivity analysis). Next we 
perform the simulation according to the variation of the initial concentration of ERK-
PP in this case (ERK-PP sensitivity analysis). Since ERK-PP causes the release of 
Raf-1* from the Raf-1*/RKIP/ERK-PP complex, the inhibitory effect of RKIP is 
dependent upon the concentration of ERK-PP and therefore this ERK-PP sensitivity 
analysis is very important to understand the ERK pathway  suppressed by RKIP. 
Figure 5 shows the simulation results for fixed initial conditions. The upper left of 
Fig. 5 shows the dynamics of Raf-1*, RKIP, and Raf-1*/RKIP complex. We can see 
Raf-1* quickly binds to RKIP, but after a while Raf-1* and RKIP reach their steady 
states. The upper right shows the activity of MEK-PP which phosphorylates ERK. 
The concentration of ERK-P/MEK-PP complex increases up to about 0.5 µM. Al-
though it is not shown here, this complex concentration however might decrease after 
a while since  the phosphorylated ERK-P (ERK-PP) is released from the complex.  
The lower left shows the activity of ERK-PP which phosphorylates RKIP in the Raf-
1*/RKIP complex and then also releases Raf-1* from the complex. We can  see that 
Raf-1*/RKIP complex also decreases to a steady state. The lower right shows the 
activity of the RKIP Phosphatase (RP). In this case, it changes very little; however, 
for different initial conditions corresponding to different microenvironments such as 
different in-vivo conditions it could change dramatically. After all, throughout these 
simulation results, we can confirm the crucial role of RKIP as an inhibitor of the ERK 
pathway by binding to Raf-1* and dissociating the Raf-1*/MEK complex .Our 
simulation allows us to now make quantitative predictions of the impact of RKIP on 
the activity of the ERK pathway in different cells lines and at different conditions of 
stimulation. 
 



 
Fig. 5. Simulation results of the mathematical modeling for fixed initial condition: the upper 
left shows the dynamics for Raf-1*, RKIP, and their complex Raf-1*/RKIP, the upper right 
shows the activity of MEK-PP which phosphorylates and activates ERK, the lower left shows 
the activity of ERK-PP, and the lower right shows the activity of RP. 

 

4.3   Sensitivity analysis according to the variation of initial RKIP 

In this section, we show the sensitivity analysis with respect to the variation of initial 
RKIP. RKIP has been recently identified as a potent Raf-1* inhibitor in the ERK 
pathway. RKIP binds to Raf-1* and thereby prevents Raf-1* from phosphorylating 
and activating MEK. Based on the variation of the concentration of RKIP from 0.5 to 
5 µM, we investigate its effect to the concentration change of other proteins. We find 
that if the initial concentration of RKIP increases over time then the concentration of 
active MEK-PP and ERK-PP decreases while the concentrations of inactive MEK and 
ERK  increase at the same time. Likewise, when the concentration of RKIP increases 
linearly along with time, the concentration of Raf-1* available to activate MEK de-
creases exponentially. Under these conditions  RKIP-P increases exponentially, be-
cause more RKIP is available for phosphorylation by ERK-PP, and ERK-PP does not 
immediately decline when MEK activation is inhibited. Eventually, as ERK-PP is 
being dephosphorylated, the levels of MEK and RKIP-P reachsteady-statevalues. 
Likewise MEK-PP decreases to steady-state level. If all Raf-1* becomes engaged by 
RKIP then the ERK pathway becomes completely suppressed since no MEK-PP can 
be generated.  
   



 
Fig. 6. The simulation results according to the variation of the concentration of RKIP: The 
upper left shows the change of concentration of Raf-1*, the upper right shows ERK, the lower 
left shows RKIP, and the lower right shows RKIP-P. 

 

 
Fig. 7. The simulation results according to the variation of the concentration of RKIP (contin-
ued): The upper left shows the change of concentration of MEK-PP, the upper right shows 
RKIP-P-RP, the lower left shows ERK-P-MEK-PP, and the lower right shows RP. 

4.4 Sensitivity analysis according to the variation of initial ERK-PP 

In this section, we show the sensitivity analysis with respect to the variation of initial 
ERK-PP reflecting different basal activities of the ERK pathway in different cell 



types. By changing the concentration of ERK-PP from 0.5 to 5 µM, we investigate 
the change of concentration for other proteins. 

 

 
Fig. 8 The simulation results according to the variation of the concentration of ERK-PP: The 
upper left shows the change of concentration of Raf-1*, the upper right shows ERK-P, the 
lower left shows RKIP, and the lower right shows RKIP-P. 

 

 
Fig. 9 The simulation results according to the variation of the concentration of ERK-PP (con-
tinued): The upper left shows the change of concentration of MEK-PP, the upper right shows 
RKIP-P-RP, the lower left shows ERK-P-MEK-PP, and the lower right shows RP. 

 



5   Concluding remarks and further studies 

In this paper, we introduced a system-theoretic approach to the analysis and quantita-
tive modeling of the ERK pathway regulated by RKIP. To this end, a parameter esti-
mation technique was proposed by first approximating the differential operator by a 
difference operator and then by utilizing time course data to resolve the transformed 
simultaneous linear algebraic difference equations with respect to parameters for each 
frozen time point. The estimated parameter time series show a profile converging to a 
constant value at steady-state, suggesting signal transduction system is time-invariant. 
For a simulation study of the ERK pathway regulated by RKIP, we made use of these 
parameter values in a model of nonlinear ODEs. Based on this mathematical model, 
we performed the sensitivity analysis of the pathway with respect to the initial RKIP 
and ERK-PP variation. These simulation studies provide a qualitative validation of 
the mathematical model compared to experimental results in view of the transient 
behavior and sensitivity analysis.  
A remarkable result of this simulation is that RKIP inhibition of the Raf-MEK-ERK 
pathway is non-linear. This is completely unexpected given that RKIP acts as a 
stoichiometric inhibitor, which in enzyme kinetic assays behaves like a competitor for 
substrate, i.e. MEK [1]. The non-linearity appears to be caused by a previously unac-
counted feedback phosphorylation of RKIP induced through the ERK pathway. This 
phosphorylation diminishes the affinity of RKIP for Raf-1 [McFerran et al., manu-
script in preparation].  As Fig. 6 shows the maximal sequestration of Raf-1 by RKIP 
occurs at a particular RKIP expression level.  However, the prevention of MEK-PP 
accumulation is mainly a function of time. The expression level of RKIP determines 
the kinetics of MEK-PP decrease rather than the final extent (Fig. 7). At the level of 
ERK activation this translates into a response curve with a steep initial slope, but very 
different levels of final activity (Fig. 7). Importantly, this predicted behavior corre-
lates with experimental data that revealed a non-linearity of RKIP inhibition of the 
Raf-MEK-ERK pathway [2]. In these experiments RKIP mediated inhibition reached 
a saturation level rather than showing a linear decline. Our simulation model confirms 
and explains this experimentally determined behavior of the pathway. It also makes a 
further important prediction, namely that RKIP modulates the final extent and dura-
tion of ERK activity rather than the initial activation kinetics. This property assigns 
RKIP a crucial role as a decision maker in situations where the level and duration of 
ERK activity determines the biological outcome. It will be interesting to test this 
prediction in a relevant biological system such as PC12 cell. The proliferation of 
these cells is stimulated by a short burst of ERK activity, whereas differentiation 
requires a sustained level of high ERK activity. Our simulation model would predict 
that RKIP will preferentially interfere with differentiation and would redirect the 
biological decision to a proliferation response. 
In order to further investigate the influence of RKIP on the ERK signaling pathway, 
we wish to expand on the proposed mathematical modeling and simulation studies to 
cover more aspects of the ERK pathway. This will involve  time consuming experi-
ments to allow parameter identification from time series data. However, we deem it 
necessary to develop simulation models hand in hand with experimental validation. 
The current study shows that simulation actually can aid in the interpretation of ex-



perimental data and promote the formulation of new hypotheses that provide direction 
in the investigation of complex biological systems. 
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Appendix: The mathematical model of ERK pathway regulated by 
RKIP, time course data, and estimated parameter values  

The following set of nonlinear ODEs (5) represents the developed mathematical 
model of the ERK pathway suppressed by RKIP shown in Fig. 1. 
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The following Table 2 and 3 show the time course data used for parameter estimation.  

Table 2. Time course data used for parameter estimation 

Time 
\ States[ Mµ ] 1m  2m  3m  4m  5m  6m  

0t  120.00 48.00 1.500 4.800 12.400 4.800 

1t  67.95505535 0.3727182703

 
0.09086956972 58.25407508 0.08846427918

 

0.2285471542

 

2t  66.81423242

 

0.05476449029

 

0.1696162456

 

59.46880595

 

0.044260337

 

0.01466380983

 

3t  66.71360883

 

0.05019133182

 

0.01767995587

 

59.56871120

 

0.04176942763

 

0.01527704430

 

4t  66.75214784

 

0.05490721213

 

0.01816772905

 

59.52968441

 

0.03971032950

 

0.01349091559

 

5t  66.63570088

 

0.05405994303

 

0.01801622209

 

59.64628287

 

0.03590036227

 

0.01158526073

 

6t  66.68508855

 

0.05314008775

 

0.01784579291

 

59.59706563

 

0.03603602473

 

0.01172030400

 

7t  66.86290844

 

0.06026147126

 

0.01994358152

 

59.41714795

 

0.04015689155

 

0.01337477790

 

8t  66.58789649

 

0.04974222183

 

0.01621135867

 

59.69589212

 

0.03435528707

 

0.01089921955

 



9t  66.72289041

 

0.04488809471

 

0.01739192477

 

59.55971763

 

0.04010491475

 

0.01208455211

 

10t  66.74940877

 

0.05439326527

 

0.01921204205

 

59.53137916

 

0.03968304675

 

0.01232880325

 

Table 3. Time course data for parameter estimation (continued) 

Time \ States 
[ Mµ ]  7m  8m  9m  10m  11m  

0t  87.8 3.7 240.2 160.5 2.7 

1t  70.87529418

 

20.62470582

 

182.1327548

 

160.1405176

 

3.059482367

 

2t  66.32835993

 

25.17164007

 

176.4152936

 

160.9551958

 

20244804126

 

3t  63.54630193

 

27.95369807

 

173.5358213

 

161.0518595

 

2.148140465

 

4t  62.88014832

 

28.61985168

 

172.9107536

 

161.0162502

 

2.183749727

 

5t  64.13673735

 

27.36326265

 

174.0545541

 

161.1299442

 

2.070055695

 

6t  65.00392062

 

26.49607938

 

174.9708189

 

161.0797717

 

2.120228173

 

7t  63.70607809

 

27.79392191

 

173.8487732

 

160.9107277

 

2.289272205

 

8t  65.27236498

 

26.22763502

 

175.1421175

 

161.1727448

 

2.027255065

 

9t  65.81873686

 

25.68126314

 

175.8189142

 

161.0340821

 

2.165917780

 

10t  65.03152288

 

26.46847712

 

175.0604606

 

161.0173132

 

2.182686714

 

 
The following Table 4 and 5 summarize the estimated parameter values.  

Table 4. The estimated parameter values. 

Time \ Parameter 
1k  2k  3k  4k  5k  6k  

1t  0.24 0.0048 0.38 0.0012 0.015 0.34 

2t  0.34 0.0051 0.45 0.0016 0.019 0.42 

3t  0.43 0.00678 0.51 0.0021 0.024 0.59 

4t  0.47 0.00688 0.59 0.0022 0.029 0.76 

5t  0.5 0.0071 0.62 0.0024 0.03 0.87 

6t  0.52 0.0072 0.634 0.0023 0.031 0.869 

7t  0.497 0.00701 0.621 0.00254 0.034 0.871 

8t  0.531 0.00691 0.67 0.0024 0.029 0.867 

9t  0.612 0.0073 0.65 0.0026 0.031 0.78 



10t  0.524 0.0075 0.61 0.00251 0.032 0.81 

Table 5. The estimated parameter values (continued). 

Time \ Parameter  
7k  8k  9k  10k  11k  

1t  0.0013 0.02 0.37 0.00087 0.43 

2t  0.00392 0.027 0.48 0.00097 0.54 

3t  0.00487 0.0412 0.582 0.0011 0.67 

4t  0.00598 0.058 0.796 0.00118 0.789 

5t  0.0078 0.07 0.96 0.0012 0.87 

6t  0.0071 0.073 0.98 0.00125 0.869 

7t  0.0075 0.068 0.94 0.00131 0.875 

8t  0.0081 0.072 0.987 0.00118 0.867 

9t  0.0083 0.074 0.95 0.00115 0.846 

10t  0.007 0.069 0.961 0.00126 0.872 

 


