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Lecture summary

• Characterising families of sequences
• Multiple sequence alignment
• Weight matrices
• Searching for distant relatives: beyond Blast - PSI-Blast
• Patterns
• Pattern discovery
• Rating & using patterns
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Multiple Sequence Alignment
• Why do MSA?

– Help prediction of the secondary and tertiary structures of proteins of new
sequences

– Help to find motifs or signatures characteristic of protein family

VTISCTGSSSNIGAG-NHVKWYQQLPGQLPG
VTISCTGTSSNIGS--ITVNWYQQLPGQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPGQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPGQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWWSNG--
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MSA
VTISCTGSSSNIGAG-NHVKWYQQLPGQLPG
VTISCTGTSSNIGS--ITVNWYQQLPGQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPGQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPGQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWWSNG--

• 8 fragments from immunoglobulin sequences
• alignment highlights

– conserved residues,
–conserved regions
–more sophisticated patterns, like the dominance of hydrophobic residues (V,L,I) at
fragment positions 1 and 3.

– http://www.techfak.uni-bielefeld.de/bcd/Curric/MulAli
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MSA
VTISCTGSSSNIGAG-NHVKWYQQLPGQLPG
VTISCTGTSSNIGS--ITVNWYQQLPGQLPG
LRLSCSSSGFIFSS--YAMYWVRQAPGQAPG
LSLTCTVSGTSFDD--YYSTWVRQPPGQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG---
VSLTCLVKGFYPSD--IAVEWWSNG--

•The alignment can also enable us to infer the evolutionary history
of the sequences.
• It looks like the first 4 sequences and the last 4 sequences are
derived from 2 different common ancestors, that in turn derived
from a "root" ancestor.
• But true phylogentic analysis is more complex
• http://www.techfak.uni-bielefeld.de/bcd/Curric/MulAli
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• Simultaneous: N-wise alignment (adapted from pairwise approach)
– uses N-dimension dynamic programming matrix.
– Complexity is for global alignment

• O(m1m2) [2 sequences length  m1 & m2 ]
• O(m2)     [2 sequences of length m]
• O(mn)     [n sequences of length m]
• Ten sequences of length 1000 requires 100010  = 10?

– Approximate age of universe in pico-seconds
– Combinatrial explosion!
– Thus only good for short sequences.

• Manua1 (!)

• Heuristic…

Multiple sequence aligment - methods
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• Heuristic methods, e.g. Progessive -- ClustalW:
– Split multiple alignment into pairwise alignments (?how?)
– optimise locally – greedy – at each step

• Many possibilities as to how the sequence of (pairwise) alignments can
be built

• Must attempt to minimise errors introduced in early alignments which
will accumulate during the progressive alignment

• Can be achieved in part by aligning the MOST similar sequences in turn
• Employ a phylogenetic tree to ‘guide’ the progressive alignment

– compute pairwise sequence identities
– construct binary tree (can output phylogenetic tree)
– align similar sequences in pairs, add distantly related ones later.

• No guarantee that the global optimum will be found
– But provides a computationally tractable and biologically useful algorithm

Multiple sequence aligment - methods
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Multiple Sequence Alignment
• Outline of CLUSTAL (Thomson et al 1994)

–  Calculate the pairwise similarity scores for the sequences
• Can use full dynamic programming approach

– Employing similarity score create a phylo tree (UPGMA)
– From tree produce weights for each sequence

• Based on similarities
– High weighting to dissimilar sequences
– Low weighting to similar sequences

• Weighting used when combining alignments
– Employing tree structure as a guide perform progressive pairwise alignments
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Multiple Sequence Alignment
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Multiple sequence alignment (globins)
CLUSTAL W (1.81) multiple sequence alignment

Human    VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60
Gorilla  VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60
Rabbit   VHLSSEEKSAVTALWGKVNVEEVGGEALGRLLVVYPWTQRFFESFGDLSSANAVMNNPKV 60
Pig      VHLSAEEKEAVLGLWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSNADAVMGNPKV 60
         ***:.***.** .*******:****************************..:***.****

Human    KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120
Gorilla  KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKLLGNVLVCVLAHHFGK 120
Rabbit   KAHGKKVLAAFSEGLSHLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVIVLSHHFGK 120
Pig      KAHGKKVLQSFSDGLKHLDNLKGTFAKLSELHCDQLHVDPENFRLLGNVIVVVLARRLGH 120
         ******** :**:** **********.*******:********:*****:* **::::*:

Human    EFTPPVQAAYQKVVAGVANALAHKYH 146
Gorilla  EFTPPVQAAYQKVVAGVANALAHKYH 146
Rabbit   EFTPQVQAAYQKVVAGVANALAHKYH 146
Pig      DFNPNVQAAFQKVVAGVANALAHKYH 146
         :*.* ****:****************
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Multiple sequence
alignments &

phylogenetic trees

((Human:0.00000,
Gorilla:0.00685) :0.04110,
Rabbit:0.05479,
Pig:0.10959);

Pair  Score
Human-Gorilla   99
Human-Rabbit   90
Gorilla-Rabbit  89
Human-Pig   84
Gorilla-Pig   84
Rabbit-Pig   83
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Multiple alignments
• Analyse gene families

– reveal (subtle) conserved family characteristics

                        characters
   1   2   3   4   5   6   7   8   9   10

  S1    Y   D   G   G   A   V   -   E   A   L
  S2    Y   D   G   G   -   -   -   E   A   L
  S3    F   E   G   G   I   L   V   E   A   L
  S4    F   D   -   G   I   L   V   Q   A   V
  S5    Y   E   G   G   A   V   V   Q   A   L

consensus   y   d   G   G  AI  VL  V   e   A   l

se
qu

en
ce

s
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Profile (frequency matrix)
                        characters

   1   2   3   4   5   6   7   8   9   10

  S1    Y   D   G   G   A   V   -   E   A   L
  S2    Y   D   G   G   -   -   -   E   A   L
  S3    F   E   G   G   I   L   V   E   A   L
  S4    F   D   -   G   I   L   V   Q   A   V
  S5    Y   E   G   G   A   V   V   Q   A   L

          y   d   G   G   AI  VL   V   e   A   l
          Y=.6   D=.6   G=1   G=1  A=.5  V=.5  V=1  E=.6    A=1   L=.8
          F=.4   D=.4              I=.5  L=.5       Q=.4          V=.2

se
qu

en
ce

s

(Can further weight the profile using PAM or BLOSUM matrices)
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Sequence logos

A graphic representation of an aligned set of binding sites. A logo displays the frequencies of
bases at each position, as the relative heights of letters, along with the degree of sequence
conservation as the total height of a stack of letters, measured in bits of information. Subtle
frequencies are not lost in the final product as they would be in a consensus sequence
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What can we do with multiple alignments?
• Create (databases of) profiles derived from multiple alignments for protein families

– profile = multiple alignment + observed character frequencies at each position

• Search with a sequence against a database of profiles
(e.g. PROSITE database)
– faster than sequence against sequence
– gives a more general result (“the input sequence matches globin profile”)

• Search with a profile against a database of sequences
– PSI-BLAST : can identify more distant relationships than by normal BLAST

search
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PSI-BLAST (position specific iterated BLAST)

Single protein
sequence

Search database(BLAST)

Multiple alignment
Profile

Estimate statistical
significance of local

alignments

?iterate
until

convergence
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PSI-BLAST (Altschul et al 1997)

(1) Start with 1 sequence (or profile) = ‘probe’

(2) Search with BLAST and select top hits manually or automatically

(3) Make multiple alignment & profile

(4) Estimate statistical significance of local alignments.
If significance ok & you want to continue, then go to (1) using the profile, else exit
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Dates &
programs
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Patterns and alternative representations

• Patterns
– unions of patterns
– decision trees
– exact/approximate matching

• Alignments, weight matrices, profiles, HMMs,
Neural networks, SCFGA, ...

Brazma et al, Approaches to the automatic discovery of patterns in
biosequences, Journal of Computational Biology, 5(2):277-303, 1998
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Some terminology
Common similarities between sequences/structures:
• pattern, motif, fingerprint, template, fragment, core,

site, alignment, weight matrix, profile…
• “Pattern”: description of structure properties

– (Deterministic) Decide if a protein matches it or not
– (Probabilistic) Assign a value to the match

• “Motif” - pattern with biological meaning

Adapted from: Eidhammer, Jonassen & Taylor, “Structure Comparison
and Structure Patterns”, JCB, 7:5 pp 685-716, 2000.



(c) David Gilbert 2007 Multiple Alignment, Patterns & Profiles 21

Classification of functions

Deterministic

Statistical

Consensus patterns

Alignments

Blocks or Weight Matrices

Templates or Profiles

Bayesian Networks

Hidden Markov Models
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Discrete patterns

• Advantages
– simple and easily interpretable objects
– easier to discover from scratch (i.e., if no additional

information to sequences are given), particularly in
noisy data

• Disadvantages
– limited descriptive power (no weights can be

attributed to alternatives)
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Regular expressions
• Symbol: for each symbol a in the alphabet of the language, the regular expression a

denotes the language containing just the string a

• Alternation: Given 2 regular expressions M and N then M | N is a new regex.  A
string is in lang(M|N) if it is lang(M) or lang(N).  The lang(a|b) = {a,b} contains the 2
strings a and b.

• Concatenation: Given 2 regexes M and N then M•N is a new regex.  A string is in
lang(M•N) if it is the concatenation of 2 strings α and β s.t. α in lang(M) and β in
lang(N).  Thus regex (a|b)•a = {aa,ba} defines the language containing the 2 strings
aa and ba
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Regular expression notation
a ordinary character, stands for itself
ε the empty string
 another way to write the empty string!
M | N alternation
M • N concatenation
M* repetition (zero or more times)
M+ repetition (one or more times)
M? Optional, zero or one occurrence of M
[a-zA-Z]Character set alternation

. Period stands for any single character except newline
"a.+*" quotation, string stands for itself
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Biosequences - general
• Basic alphabet
Σ = { a, t/u, c, g} (DNA/RNA)
Σ = {A, C, .., Y} (Protein sequence)

• Character group alphabet Π = {g1…gn}
(e.g. amino-acid class)

• Wild card X = { x(n1,n2) |  n1<n2 ∈ N}

• V(x(c1,c2)) set of all words over Σ of length between c1 and c2

• Pattern P = p1…pn , pi ∈Σ ∪ Π ∪ X

 → character & position constraints ←
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Pattern notation and matching
• Separate the pattern alphabet characters by a dash “-”
• Pattern

P = A-x(2,6)-[LI]-x(0,∞)
   matches string

S = ACDEFLGHJKL
   because

S = A • CDEF • L • GHJKL
   (• meaning concatenation) and

A∈V(A),  CDEF∈V(x(2,6)), L∈V([LI]), GHJKL∈V(x(0,∞))



(c) David Gilbert 2007 Multiple Alignment, Patterns & Profiles 27

PROSITE
patterns

• `x'   any amino acid
• Ambiguities :

[ALT] =Ala or Leu or Thr
{AM} any amino acid except Ala and Met.

• `-’ separator, `<` N-terminal, `>` C-terminal
• `.` end of pattern
• Repetition: x(3) =  x-x-x
• x(2,4) = x-x or x-x-x or x-x-x-x.

• Database of protein families and domains

•  Consists of biologically significant sites, patterns
and profiles that help to reliably identify to which
known protein family (if any) a new sequence
belongs
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PROSITE examples

• [AC]-x-V-x(4)-{ED}.
– [Ala or Cys]-x-Val-x-x-x-x-{any but Glu or Asp}

• <A-x-[ST](2)-x(0,1)-V.
– Start at N-terminal of the sequence
– Ala-x-[Ser or Thr]-[Ser or Thr]-(x or none)-Val

How to obtain these patterns?
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Example property

A given sequence belongs to the chromo-domain family if

it matches either the pattern:

         E-x(0,1)-E-E-[FY]-x-V-E-K-[IV]-[IL]-D-[KR]-R-x(3,4)-G-x-V- 

x-Y-x-L-K-W-K-G-[FY]-x-[ED]-x-[HED]-N-T-W-E-P-x(2)-N- 

x-[ED]-C-x-[ED]-L-[IL]

or the pattern:

           L-x(2,3)-E-[KR]-I-[IL]-G-A-[TS]-D-[TSN]-x-G-[EDR]-L-x-F- 

 L-x(2)-[FW]-[KE]-x(2)-D-x-A-[ED]-x-V-x-[AS]-x(2)-A-x(2)-K- 

 x-P-x(2)-[IV]-I-x-F-Y-E

or the pattern:

          Y-x(0,2)-L-[IV]-K-W-x(6)-[HE]-x-[TS]-W-E-x(4)-[IL]
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                  xxx

                 V   x

                x     x

                x     x

                x     x
                 C   H

                x \ / x

               x   Zn  x

                x /  \ x

                 C    H

             xxxx      xxxxxx

  C-x(2,4)-C-x(3)-[ILVMFYWC]-x(8)-H-x(3,5)-H

Example family (zinc finger c2h2)
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RNA structural patterns

• Constraints:
– string length
– inter-string distance
– character contents
– matching positions
– correlation (identical, reverse, complement).

• Complements  a-u g-c, g-u (weaker)

• Structures: Stem-loops, Pseudo-knots, Clover leafs
• Context free grammar

Eidhammer, Jonassen, Grinhang, Gilbert
& Ratnayake,
A contraint-based structure description
language for biosequences,
Journal of Constraints 6:2/3, 2001
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Possible patterns
• Tandem repeat α-α acg acg

• Simple repeat α-β-α acgaaaacg

• Multiple repeat α-β-α-δ-α
acgaaacguuacg

• Palindrome α-αr acg gca

• Stem loop α-β-αrc acgaacgu

• Pseudoknot α-γ1-β-γ2-αrc-γ3-βrc
auggcugaaggccgaucucagggcauaucgccgu
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Stem loops

 (1)   c          (2)    g
      a-u                 u-a
      g-c                   a-u
      u-a                   g-c
      c-g                   c-g
augg       ggcau     aggc        ccgu

(1) auggcugacucagggcau
(2) aggccgaugaucgccgu
        α  β αrc
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            ggcauaucgccgu
                 ||||
            gacucuagc
            ||||
        auggcugaaggc

String:
auggcugaaggccgaucucagggcauaucgccgu

     α  γ1  β  γ2 αrc  γ3  βrc

Pseudo-knot
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Various ways of using pattern matching
for family characterization

A sequence belongs to the family if
1. it matches the given sequence pattern;
2. if it is within a certain distance from a string that matches a the pattern

(distance between strings can be defined either as a number of mismatches, or as an edit-distance,
or based on similarity matrices or some other way) ;

3. if it matches one of a given set of patterns (i.e.,if it matches a union of
patterns);

4. if a decision-tree over the matching patterns returns “yes”



(c) David Gilbert 2007 Multiple Alignment, Patterns & Profiles 36

Learning
• Automatically find pattern (given a training set)

• Characterisation: (positive examples only) patterns describing
“interesting” properties of a family

• Classification: (positive and negative examples) pattern distinguishing
S+ and S- .. Which may overlap...

• Formal language for descriptions
• Scoring function to rate descriptions
• Algorithm
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Pattern discovery in biosequences

• Motivation:
– gene functional class prediction
– RNA splicing
– protein structure & function
– gene regulation (transcription factor

binding site prediction)
– detection of repeats

• Prediction of structure/function
from sequence:
– sequence database similarity

search
– compare to family

descriptions
– structure prediction

programs

[Alvis Brazma & Inge Jonnassen]
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Pattern discovery in biosequences
• Group together sequences thought to have common biological

(structural, functional) properties -> families
(biological - semantic level)

• Study the purely syntactic properties common to these sequences
ignoring their biological (semantic) properties -> patterns, clusters

(mathematical - syntactic level)

• Test whether the discovered patterns make sense (back to semantic
level)
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Protein family analysis

• Collect sequences (structures) in family

• Analyze
– local multiple alignment
– global multiple alignment
– pattern discovery

• Make family description

• Pick up more family members?
– Analyze extended set
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Pattern discovery
(machine learning)

• Languages & associated discovery mechanisms

• Strings - much work

• Finding gene expression sites in DNA may require
context sensitive patterns.

• Structures
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Approaches to pattern discovery

• Pattern driven:
enumerate all (or some) patterns up to  certain
complexity (length), for each calculate the
score, and report the best

• Sequence driven:
look for patterns by aligning the given
sequences
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Pattern driven algorithms
• Brute force - enumerate all patterns (for instance, all

substrings) up to a given length (complexity)

• Evaluate their fitness with respect to the input
sequences and output the best

• Unrealistic for patterns of even modest size even for
substring patterns (e.g., for substring patterns of length 10 over
the amino acid alphabet, there are more than 1013 different substrings
to enumerate in this way)
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Sequence driven algorithms

• Group similar sequences together (e.g., in
pairs);

• For each group find a common pattern (e.g., by
dynamic programming);

• Group similar patterns together and repeat the
previous step until there is only one group left
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Sequence driven approach

s1

s2

s3

s4

s5

p1

p2

p3

p4
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Algorithm for string pattern discovery
• Design (a naive) algorithm for a simple language *s*

where s ∈Σ* and * is a wild card of arbitrary length,
i.e. x(0,inf)

Example: s1 = TAWCEFGOPA
s2 = FGOPAAWCES
s3 = WUVTAWCESAW

Try discovering patterns using pattern-driven & sequence-driven approaches
Sequence-driven: P(s) == set of patterns for s

P(s1) = {s1}, P(s2) = {s2}, P(s3) = {s3}
P(s1,s2) = {...}, P(s1,s2,s3) = {...}
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Amino acid residue groups

Residue property Residue groups

Small Ala, Gly       A,G
Small hydroxyl Ser, Thr       S,T
Basic Lys, Arg       K,R
Aromatic Phe, Tyr, Trp       F,Y,W
Basic+ His, Lys, Arg       H,K,R
Small hydrophobic Val, Leu, Ile       V,L,I
Medium hydrophobic Val, Leu, Ile, Met       V,L,I,M
Acidic/amide Asp, Glu, Asn, Gln       D,E,N,Q
Small/polar Ala, Gly, Ser, Thr, Pro     A,G,S,T,P
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Deriving regular expressions

s1 = ALDGAVFALCDRYFQ
s2 = SDVGPRSCFCERFYQ
s3 = ADLGRTQNRCDRYYQ
s4 = ADIGQPHSLCERYFQ

Make a regular expression & a ‘fuzzy’ regular expression!

use table
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Rating patterns
• Size (e.g. number of characters…).

– Hence Information content: e.g. length of the pattern
(& perhaps penalties for wild cards)

• Compression
– measure of how much of each of the items in the learning set

is described

• Sensitivity, Specificity etc
– requires evaluation against learning [training] & test sets
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Compression - see updated slides

(1) Raw Compression (chars k):

Craw = (∑i ∈ 1..n  N(ki)) - (n-1)*N(kp)

sum of chars in the examples minus (No_examples - 1) * chars_in_pattern
Varies from  ? to ?

(2) Normalised compression:
Cnorm = 1 - ((∑i ∈ 1..n N(ki))- Craw) /((∑i ∈ 1..n N(ki))- min(N(ki)))

This is a goodness of compression measure (0=good to 1=bad).

Send the pattern once,  and then for each item, send the unmatched parts
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Compression

(1) Raw Compression:

i.e. SumOfElementsInExamples - (NumberOfExamples - 1) * elements in pattern

(2) Normalised compression:

This is a goodness measure (1=good, 0=bad).

! 
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Send the pattern once,  and then for each item, send the unmatched parts
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More compression
 (3) Substituting (1) into (2):

(4) Pairwise comparison
via compression:

! 

! ! 

normC =
(n "1)# P

iS
i=1

n

$
% 

& 
' 

( 

) 
* "

i=1

n

min iS( )

! 

Comp(
1S , 2S ) =

P

max 1S , 2S( )
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Characteristic string function for
family F+

F-

F+

Σ*

g(s)= { TRUE  if s ∈ F+
FALSE if s ∈ F-

function  g : Σ* → {FALSE,TRUE}
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Classification & conservation problems

S-

S+

Σ*
F+

F-
S+

Σ*

F+

F-

S-

S+

Σ*F+

F-
S+

Σ*
F+

F-

Classification: + and - examples Characterisation: + examples only
cl

ea
n 

tra
in

in
g 

da
ta

clean training data
noisy training data

no
is

y 
tra

in
in

g 
da

ta
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Classification problem C1
• Given a set S+ of sequences believed to be members of family F+, and a set S- of

sequences believed not to be members, i.e.
S+ ⊂ F+ and S- ⊂ F-
F+  ∩ F- = ∅ and F+ ∪ F- = Σ*

• Find compact string functions that return
– TRUE for all s ∈ S+ and FALSE for all s ∈ S- , and
– have a high likelihood for returning TRUE for s ∈ F+ and FALSE for s ∈ F-

• C1a: find compact “explanations” of known sequences
• C1b: try to predict the family relationship of yet unknown sequences
• N1: suppose F+  ∩ F- = ∅ and F+ ∪ F- = Σ*, and S+ ∩ F- and S- ∩ F+ are small,

find  compact string functions that return
– TRUE for most s ∈ S+ and FALSE for most s ∈ S- , and
– have a high likelihood for returning TRUE for s ∈ F+ and FALSE for s ∈ F-
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Characterisation: conservation problem C2
• Given a set S+ of sequences believed to be members of family F+, i.e. S+ ⊂ F+
• Find interesting string functions that return

– TRUE for all s ∈ S+
– have a high likelihood for returning TRUE for s ∈ F+

• N2: suppose F+ ⊂ Σ*, and given S+ ⊂ Σ*, such that
S+ ∩ (F+)- is small, find interesting string functions that return
– TRUE for most s ∈ S+, and
– have a high likelihood for returning TRUE for s ∈ F+

• Interesting: have a low probability for returning TRUE for random sequences
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Training and test sets
• training set of

 S+ positive examples from F+, and
optionally a set S- of negative examples from F-

• test set
T+ from F+ where T+ ∩ S+ = ∅, and
optionally T- from F- where T- ∩ S- = ∅

• In practice, we may not know all members of F+ and F-
– Thus to construct training & test sets, we can randomly divide an initial set of

positive examples into a training set S+ and a test set T+ , similarly for S- and T-
– The goal is to accurately describe “new” members of F+ and F- when we come

across them
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Training and test sets

S+

Σ*

F+

F-

T+

As yet not met sequences

S- T-
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Goal

“All possible data”
(in the universe)

Language of the
pattern L(P)

Current
Data
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The challenge of increasing data

Language of the  
pattern L(P)

Training
Set

“All data”

Current data
(continues to expand)
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True positives, true negatives, false
positives, false negatives

L(P) - the set of sequences matched
by the pattern P

S+ S-

L(P)
TP TN

FN

FP

TP - true pos
TN - true neg
FP - false pos
FN - false neg

TP = L(P) ∩ S+
TN = ¬L(P) ∩ S-
FP = L(P) ∩ S-
FN = ¬L(P) ∩ S+
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Statistical Evaluation
Sensitivity (Recall)

0 ≤ Sn ≤ 1 

FNTP

TP
Sn

+
=

Specificity

0 ≤ Sp  ≤ 1 
FPTN

TN
Sp

+
=

[Brazma et.al., 1998]

Correlation Coefficient

)(*)(*)(*)(

)**(

TPFNFNTNTNFPFPTP

FNFPTNTP
cc

++++

!
=

1.0 no FP or FN
0.0 when f is random with respect to S+ and S-
-1.0 only FP and FN

cc-1≤cc ≤1

FPTP

TP
PPV

+
=

0 ≤ PPV  ≤ 1 

Positive Predictive Value
(Precision)

TP - true pos  TN - true neg
FP - false pos FN - false neg

F-measure = 2 * (Precision * Recall) / (Precision + Recall)
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F-measure

F1-measure = 2 * (Precision * Recall) / (Precision + Recall)

General
F-measure = (1+α) * (Precision * Recall) / (α*Precision + Recall)
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Training and test sets (positive examples only)

S+

Σ*

F-

T+

TP
TP

FP
TN

FN

L(π)
Training set S+
Test set       T+
Pattern π
Language  L(π) 
of the pattern

Assume that
S+ ∪ T+ = F+
(S+ ∪ T+) ∩F- = ∅
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Methodology
• Solution space / hypothesis space / target class: find a

good class of string functions from which the
approximating function f is chosen for a real-world
problem

• Fitness measure: define a ranking of the solution
space, evaluating how good each function is for the
training set (how likely f is to approximate g

• Develop an algorithm returning those classifier
functions from the given solution space that rate high
enough according to the fitness measure
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Defining string functions via patterns

f(s)= { TRUE  if s ∈ L(π)
FALSE otherwise

f(s)= { TRUE  if Dist(π,s) ≤ const
FALSE otherwise

Given a string s and a pattern π which defines a
language L(π) , define a classification
(conservation) function f  by

Where Dist(π,s) = mins’∈L(π) dist(s’,s) 

e.g. string
comparison
distance
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Clean / Noisy Data

• Clean data: the training set is assumed to be
“correct”

• Noisy data: training set
– sequences may contain errors
– sequences may have been assigned to the wrong

family
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PROSITE profiles
• Uses Hidden Markov Model - can characterise

an entire family of sequences.


