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Lecture outline
• Biochemical reactions
• Modelling with Ordinary Differential Equations
• Kinetics : Mass Action
• Examples

– Signalling & metabolic pathways
– Trypanothione metabolism in Trypanosoma brucei
– Oscillators & Amplifiers

• Analysis
• ODE simulators
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What is modelling?

• In this context:

– Translating a biological pathway into mathematics for subsequent analysis
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[A] = 10; [B] = 0; k1 = 2; k2 = 1; Time = 10

Into mathematics For subsequent analysis
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Why model?
• Simplistic answers:

– Because it’s there…
– Why not?

• Technical answer:

– “The benefit of formal mathematical models is that they can show whether proposed causal mechanisms are at
least theoretically feasible and can help to suggest experiments that might further discriminate between
alternatives.” (Franks & Tofts, 1994)

• Realistic answers:

– A computer model can generate new insights
– A computer model can make testable predictions
– A computer model can test conditions that may be difficult to study in the laboratory
– A computer model can rule out particular explanations for an experimental observation
– A computer model can help you identify what’s right and wrong with your hypotheses (could/is the proposed

mechanism correct)

Slide from
Richard Orton



(c) David Gilbert, Xu Gu 2008 Modelling dynamic behaviour 5

Why model?

• In a complex pathway, knowing all the proteins involved and what they do, may still not tell you how the
pathway works

• Furthermore, if all the initial concentrations and rate constants are known in the pathway, a computer
simulation will probably still be needed to show how the system behaves over time
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Biology = Concentrations
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...but biological systems contain

•non-linear interaction between components

• positive and negative feedback loops

• complex cross-talk phenomena
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The simplest chemical reaction

A  B

• irreversible, one-molecule reaction
• examples: all sorts of decay processes, e.g. radioactive, fluorescence,

activated receptor returning to inactive state
• any metabolic pathway can be described by a combination of processes of

this type (including reversible reactions and, in some respects, multi-
molecule reactions)
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The simplest chemical reaction

A  B
various levels of description:
• homogeneous system, large numbers of molecules = ordinary

differential equations, kinetics
• small numbers of molecules = probabilistic equations,

stochastics
• spatial heterogeneity = partial differential equations, diffusion
• small number of heterogeneously distributed molecules =

single-molecule tracking (e.g. cytoskeleton modelling)
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Some (Bio)Chemical Conventions

Concentration of Molecule A = [A], usually in units mol/litre
(molar)

Rate constant = k, with indices indicating constants for various
reactions (k1, k2...)

Therefore:
AB
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Description in MATLAB:
1. Simple Decay Reaction

M-file (description of the model)
function dydt = decay(t, y)
% A -> B   or   y(1) -> y(2)
k = 1;
dydt = [-k*y(1)
        k*y(1)];
Analysis of the model
>> [t y] = ode45(@decay, [0 10], [5 1]);
>> plot (t, y);
>> legend ('[A]', '[B]');
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Decay Reaction in MATLAB
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Reversible, Single-Molecule
Reaction

A ↔ B, or
Differential equations:
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Main principle: Partial reactions are independent!

© Rainer Breitling
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Reversible, single-molecule reaction – 2

Differential Equation:

Equilibrium (=steady-
state):
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Description in MATLAB:
2. Reversible Reaction

M-file (description of the model)
function dydt = isomerisation(t, y)
% A <-> B    or    y(1) <-> y(2)
k1 = 1;
k2 = 0.5;
dydt = [-k1*y(1)+k2*y(2)    % d[A]/dt
        k1*y(1)-k2*y(2)     % d[B]/dt
        ];
Analysis of the model
>> [t y] = ode45(@isomerisation, [0 10], [5
1]);

>> plot (t, y);
>> legend ('[A]', '[B]');
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Isomerization Reaction in MATLAB



(c) David Gilbert, Xu Gu 2008 Modelling dynamic behaviour 17

Isomerization Reaction in MATLAB

If you know the concentration at one
time, you can calculate it for any
other time... so what would be the
algorithm for that?
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Euler’s method - pseudocode

1.      define f(t,y)
2.      input t0 and y0.
3.      input h and the number of steps, n.
4.      for j from 1 to n do
        a.      m = f(t0,y0)
        b.      y1 = y0 + h*m
        c.      t1 = t0 + h
        d.      Print t1 and y1
        e.      t0 = t1
        f.      y0 = y1
5.      end

Where
One step of Euler’s integration from tn to tn+1 = tn + h  is:
Yn+1 = yn + hf(tn,yn) where h is the (time) step and
f(tn,yn)is the differential equation

),(1 nnnn ythfyy +=+

© Rainer Breitling
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Improving Euler’s method
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(second-order Runge-Kutta method)

© Rainer Breitling
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Isomerization Reaction in MATLAB
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Irreversible, two-molecule reaction

A+BC
Differential equations:
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Underlying idea: Reaction probability = Combined probability that both [A]
and [B] are in a “reactive mood”:
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The last piece of the puzzle

Non-linear!
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Metabolic Networks as Bigraphs

ABC+D

-k3[C][D]+k2[B][D]

-k3[C][D]+k2[B][C]

+k3[C][D]-k2[B]+k1[A][B]

-k1[A][A]

reverseforwarddecayd/dt

-110D

-110C

1-11B

00-1A

k3k2k1
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Biological description  bigraph 
differential equations

KEGG
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Biological description  bigraph 
differential equations



(c) David Gilbert, Xu Gu 2008 Modelling dynamic behaviour 25

Mass action

• S: substrate,
• P: product
• E: enzyme
• E|S substrate-enzyme complex
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Mass action equations

1. E + S -(k1)→ E|S
2. E|S    -(k2)→ E+S
3. E|S    -(k3)→ E+P

OR

1. E + S =(k1/k2)= E|S
2. E|S    -(k3)→ E+P

?Can you code the differential equations?
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Metabolic pathways vs Signalling Pathways
(can you give the mass-action equations?)

E1

(initial substrate)
S

S’

E2

E3

S’’

S’’’
(final product)

Metabolic

S1

Input Signal
X

P2S2

S3 P3
Output

Signalling cascade

P1

Product become enzyme at next stageClassical enzyme-product pathway
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Feedback loops (signalling cascades)

S1

Input Signal
X

P2S2

S3 P3
Output

P1S1

Input Signal
X

P2S2

S3 P3
Output

P1

Positive feedback Negative feedback

P3 + X = P3|XP3 + S1 = P3|S1 →P3+P1
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Biological description  bigraph 
differential equations

Fig. courtesy of W. Kolch
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The Raf-1/RKIP/ERK pathway

Can you model it?
(11x11 table, 34 entries)
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k1 k2

k3 k4

k5k6 k7

k8

k9 k10

k11

m1
Raf-1*

m3 Raf-1*/RKIP

m2
RKIP

m4
Raf-1*/RKIP/ERK-PP

m9

ERK-PP

m5

ERK

m8 MEK-PP/ERK

m7

MEK-PP
m6

RKIP-P

m10

RP

m11 RKIP-P/RP
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k1 k2

k3 k4

k5k6 k7

k8

k9 k10

k11

m1
Raf-1*

m3 Raf-1*/RKIP

m2
RKIP

m4
Raf-1*/RKIP/ERK-PP

m9

ERK-PP

m5

ERK

m8 MEK-PP/ERK

m7

MEK-PP
m6

RKIP-P

m10

RP

m11 RKIP-P/RP

dm3/dt = 
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k1 k2

k3 k4

k5k6 k7

k8

k9 k10

k11

m1
Raf-1*

m3 Raf-1*/RKIP

m2
RKIP

m4
Raf-1*/RKIP/ERK-PP

m9

ERK-PP

m5

ERK

m8 MEK-PP/ERK

m7

MEK-PP
m6

RKIP-P

m10

RP

m11 RKIP-P/RP

dm3/dt = + r1
               + r4
               - r2
               - r3
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k1 k2

k3 k4

k5k6 k7

k8

k9 k10

k11

m1
Raf-1*

m3 Raf-1*/RKIP

m2
RKIP

m4
Raf-1*/RKIP/ERK-PP

m9

ERK-PP

m5

ERK

m8 MEK-PP/ERK

m7

MEK-PP
m6

RKIP-P

m10

RP

m11 RKIP-P/RP

dm3/dt = + k1*m1*m2 
               + r4
               - r2
               - r3
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k1 k2

k3 k4

k5k6 k7

k8

k9 k10

k11

m1
Raf-1*

m3 Raf-1*/RKIP

m2
RKIP

m4
Raf-1*/RKIP/ERK-PP

m9

ERK-PP

m5

ERK

m8 MEK-PP/ERK

m7

MEK-PP
m6

RKIP-P

m10

RP

m11 RKIP-P/RP

dm3/dt = + k1*m1*m2
               + k4*m4
               - k2*m3
               - k3*m3*m9
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Description in MATLAB:
3. The RKIP/ERK pathway

function dydt = erk_pathway_wolkenhauer(t, y)
% from Kwang-Hyun Cho et al., Mathematical Modeling...
k1 = 0.53;
k2 = 0.0072;
k3 = 0.625;
k4 = 0.00245;
k5 = 0.0315;
k6 = 0.8;
k7 = 0.0075;
k8 = 0.071;
k9 = 0.92;
k10 = 0.00122;
k11 = 0.87;
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Description in MATLAB:
3. The RKIP/ERK pathway

Analysis of the model:
>> [t y] =
ode45(@erk_pathway_wolkenhauer, [0
10], [2.5 2.5 0 0 0 0 2.5 0 2.5 3
0]); %(initial values!)

>> plot (t, y);
>> legend ('[Raf1*]', '[RKIP]',
'[Raf1/RKIP]', '[RAF/RKIP/ERK]',
'[ERK]', '[RKIP-P]', '[MEK-PP]',
'[MEK-PP/ERK]', '[ERK-PP]', '[RP]',
'[RKIP-P/RP]' );
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The RKIP/ERK pathway in MATLAB
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Further Analyses in MATLAB et al.

All initial concentrations can be varied at will, e.g. to test a
concentration series of one component (sensitivity analysis)

Effect of slightly different k-values can be tested (stability of the model
with respect to measurement/estimation errors)

Effect of inhibitors of each reaction (changed k-values) can be
predicted

Concentrations at each time-point are predicted exactly and can be
tested experimentally
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Example of Sensitivity Analysis
function [tt,yy] = sensitivity(f, range, initvec,

which_stuff_vary, ep, step, which_stuff_show, timeres);

timevec = range(1):timeres:range(2);
vec = [initvec];
[tt y] = ode45(f, timevec, vec);
yy = y(:,which_stuff_show);

for i=initvec(which_stuff_vary)+step:step:ep;
    vec(which_stuff_vary) = i;
    [t y] = ode45(f, timevec, vec);
    tt = [t];
    yy = [yy y(:,which_stuff_show)];
end
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Example of Sensitivity Analysis

>> [t y] =
sensitivity(@erk_pathway_wolkenhau
er, [0 1], [2.5 2.5 0 0 0 0 2.5 0
2.5 3 0], 5, 6, 1, 8, 0.05);

>> surf (y);
varies concentration of m5 (ERK-PP) from 0..6,

outputs concentration of m8 (ERK/MEK-PP), time
range [0 1], steps of 0.05. Then plots a surface
map.
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Example of Sensitivity Analysis

after Cho et al. (2003) CSMB
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Example of Sensitivity Analysis
(longer time course)
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Simulation in BioNessie
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SBML: http://www.sbml.org

• The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical
reaction networks. SBML is applicable to metabolic networks, cell-signaling pathways, regulatory networks, and many
others.

• SBML has been evolving since mid-2000 through the efforts of an international group of software developers and users.
Today, SBML is supported by over 75 software systems including Gepasi. Also an SBML->MatLab converter

• Advances in biotechnology are leading to larger, more complex quantitative models. The systems biology community
needs information standards if models are to be shared, evaluated and developed cooperatively. SBML's widespread
adoption offers many benefits, including:

– enabling the use of multiple tools without rewriting models for each tool
– enabling models to be shared and published in a form other researchers can use even in a different software environment
– ensuring the survival of models (and the intellectual effort put into them) beyond the lifetime of the software used to create them.
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SBML - XML Based Language

<sbml>
<model>

<listOfCompartments> <compartment/> </listOfCompartments>
<listOfSpecies> <specie/> < /listOfSpecies>
<listOfReactions>

<reaction> 
<listOfReactants> 

<specieReference/>
</listOfReactants>
<listOfProducts> 

<specieReference/> 
</listOfProducts>
<kineticLaw> 

<listOfParameters> 
<parameter/> 
</listOfParameters> 

</kineticLaw>
</reaction>

</listOfReactions>
</model>
</sbml>
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SBML Example

Specie representation: m1 in RKIP model:
<specie name="m1" compartment="compartment" initialAmount="2.5" boundaryCondition="false" />

Reaction representation: k1 in RKIP model: m1 + m2 -> m3 (rate = k1 = 0.53)
<reaction name="k1" reversible="false">

<listOfReactants>  
<specieReference specie="m1" stoichiometry="1" />
<specieReference specie="m2" stoichiometry="1" />
</listOfReactants>

<listOfProducts>
<specieReference specie="m3" stoichiometry="1" />
</listOfProducts>

<kineticLaw formula="k_1*m1*m2">
<listOfParameters>
<parameter name="k_1" value="0.53" />
</listOfParameters>
</kineticLaw>

</reaction>
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How to model

Identification

Simulation

DefinitionAnalysis Validation
Yes No

Slide from
Richard Orton
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How to model…1: Identification

• Identify the biological pathway to model (what)

– RKIP
– EGF and NGF activated MAPK

• Or, more importantly, identify the biological question to answer (why)

– What influence does the Raf Kinase Inhibitor Protein (RKIP) have on the
Extracellular signal Regulated Kinase (ERK) signalling pathway?

– How do EGF and NGF cause differing responses in ERK activation, transient and
sustained, respectively?

Slide from
Richard Orton
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How to model…2: Definition
• This is the key step and is not trivial

• Draw a detailed picture of the pathway to model
– Define all the proteins/molecules involved
– Define the reactions they are involved in
– Where do you draw the model boundary line?

• Check the literature
– What is known about the pathway and proteins?
– What evidence is there that protein A binds directly to protein B?
– Protein C also binds directly to protein B: does it compete with protein A or

do they bind to protein B at different sites?
– Trust & Conflicts: it is important to recognize which evidence to trust and

which to discard (talk to the people in the wet lab)

• Simplifying assumptions
– Many biological processes are very complex and not fully understood
– Therefore, developing a model often involves making simplifying

assumptions
– For example, the activation of Raf by Ras is very complicated and not fully

understood but it is often modelled as:
• Raf + Ras-GTP = Raf/Ras-GTP -> Raf-x + Ras-GTP

– Although this is a simplification, it is able to explain the observed data

Slide from
Richard Orton
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How to model…2: Definition
• Define the kinetic types

– Each reaction has a specific kinetic type
– All the reactions in the RKIP model are mass action (plain,

uncatalysed kinetic type):
• V = k1[m1][m2 ] - k2[m3]

– Another common kinetic type is Michaelis Menten (enzyme
catalysis):

• V = Vmax[S] / (Km+[S])

• Define the rate constants (k’s, km’s, Vmax’s etc)

• Define the initial concentrations

• Check the literature

– What values have been previously reported?
– What values are used in similar models?
– Do you trust them? Are there any conflicts?
– Measure them yourself in the wet lab
– Parameter estimation techniques: estimate some parameters based

on others and observed data

Slide from
Richard Orton
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How to model…3: Simulation

• Once the model has been constructed and parameter data has
been assigned you can simulate (run) the model

• This is a relatively straightforward step as there are many
software tools available to simulate differential equation based
models

• For example:

– BioNessie
– MatLab
– Copsai / Gepasi
– CellDesigner
– Jarnac
– WinScamp
– Many many more

• Runtime options include setting the time to run the model for
and the number of data points to take

Slide from
Richard Orton
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How to model…4: Validation
• Simulating the model typically returns a table of data which

shows how each specie’s concentration varies over time

• This table can then be used to generate graphs of specie
concentrations

• Do the model results match the experimental data?
– Yes: validation
– No: back to definition and check for errors

• Simple typos
• Wrong kinetics
• Over simplifications of processes
• Missing components from the model
• Incorrect parameter data

• The model can then be validated further by checking the
system behaves correctly when things are varied:

– It might be known how the system behaves when you over-
express or knockout a component

– The model should be able to recreate this behaviour

• If the model’s results do not match known biology, we cannot
rely on predictions about unknown biology

Slide from
Richard Orton
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How to model…5: Analysis
• After the model has been validated we can then analyse and interpret the results

– What do the results imply or suggest?
– What do they tell us that is new and that we did not know/understand before?
– What predictions can we make?

• Sensitivity analysis can be used to identify the key steps and components in the pathway as well as
monitoring how robust the system is:

– Vary an initial concentration or rate by a small amount and see what affect it has on the system as a whole:
small changes in a key value are likely to have a large affect

– How robust is the system to changes?

• Knockout experiments are easy to do in a model: for example, simply set the initial concentration of
the desired component to 0

– Knockout experiments can be used to identify which components are essential and which are redundant
– Can also knockout reactions (set rate to 0) to identify essential and redundant reactions in the system

Slide from
Richard Orton
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How to model…Overview

Identification

Simulation

DefinitionAnalysis Validation
Yes No

Slide from
Richard Orton
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BioNessie ODE workbench
• Platform independent

– Windows, Linux ( i386 or AMD64) and Mac Os with Intel i386.
– Released on 5th October 2006 for internal use.
– JAVA Web Start

• Simulation
– Multithreaded: simulation of different models at the same time.
– User-friendly data viewer and printable data output

• SBML model construction
– Graphical tool supports creation & editing of SBML biochemical models
– Kinetic Law creation and management

• Parameter Scanning
• Sensitivity Analysis
• Grid
• Model Version Control System
• Model Development Management
• Optimisation
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Simulator, analyser
...& go-faster on the Grid!

 Xuan Liu, Vladislav Vyshemirsky,
Gary Gray, Jipu Jiang, Femi Ajayi
(David Gilbert, Richard Sinnott)

Grid Nodes

… … …

Sending JobReceiving Results

 Results Collector     Grid Web Service

 Cluster
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Multi-threaded Parameter Scan

Slide from Xuan Liu
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This plot shows the whole trace of selected species - ERKPP for a parameter scan in RKIPpathway.xml of parameter K2 from 0 through 4.5 in
steps of 0.5 with linear density for the timecourse of 100 timesteps of 100 time units.

Slide from Xuan Liu
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This plot shows the min. max and final values of monitoring function Raf1+RKIP for a parameter scan in RKIPpathway.xml of parameter K2 from
0 through 5 in steps of 0.5 with linear density for the timecourse of 100 timesteps of 100 time units.

Slide from Xuan Liu
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• Sensitivity analysis investigates the changes in the system outputs or behavior with respect to the
parameter variations. It is a general technique for establishing the contribution of individual
parameter values to the overall performance of a complex system.

• Sensitivity analysis is an important tool in the studies of the dependence of a system on external
parameters, and sensitivity considerations often play an important role in the design of control
systems.

• Parameter sensitivity analysis can also be utilised to validate a model’s response and iteratively,
to design experiments that  support the estimation of parameters

Sensitivity analysis

Slide from Xuan Liu
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Sensitivity Analysis Creation in BioNessie

Slide from Xuan Liu



(c) David Gilbert, Xu Gu 2008 Modelling dynamic behaviour 64

This creates a plot of the sensitivity of species Raf1, RKIP, Raf1RKIP, ERKPP, Raf1RKIPERKPP, ERK, RKIPP, MEKPP,
MEKPPERK, RP and RKIPPRP to the values of the parameter K6 for the timecourse of 200 timesteps of 200 time units.

Slide from Xuan Liu
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Other simulators include…

Copasi

MatLab & SimBio
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more simulators …

SBW - standard parts
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Human African Trypanosomiasis

•   Numbers hit around   300,000 at
the end of the twentieth century

•   Drugs exist, but not satisfactory
e.g the arsenical melarsoprol
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Human African trypanosomiasis (1999)
Number infected           0.3  million

Deaths per year           50,000

DALYs           1 598,000

Distribution           Sub-Saharan Africa

Causative organisms      T. brucei rhodesiense

          T. brucei gambiense

Vector           Tsetse fly (Glossina)

Natural habitat           forested rivers & shores 
          (gambiense)

          Savannah (rhodesiense)

Natural host           Ungulates & other  mammals 
          (rhodesiense).  Mainly man 
          only (gambiense)
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T[S]2

ornithine putrescine spermidine spermine

Cys

Glu

γ-Glu-Cys GSH GspdSH TSH

Gly

dAdoMet dAdoMet

eflornithine

Genomic Biological Research Center,
University of Glasgow
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Trypanothionine ODE model
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Kinetic Data

A black art?
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Conclusions and Outlook

• Differential equations allow exact predictions of systems behaviour
in a unified formalism

• Modelling = in silico experimentation
• Difficulties:

– translation from biology
• modular model building interfaces, e.g. Gepasi/COPASI, Genomic Object Net, E-

cell, Ingeneue
– managing complexity explosion

• pathway visualization and construction software
• standardized description language, e.g. Systems Biology Markup Language

(SBML)
– lack of biological data

• perturbation-based parameter estimation, e.g. metabolic control analysis (MCA)
• constraints-based modelling, e.g. flux balance analysis (FBA)
• semi-quantitative differential equations for inexact knowledge

© Rainer Breitling



Modelling and modularisation

Example:
Signalling pathway cascades
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Mass action for enzymatic reaction -
phosphorylation

• R: substrate,
• Rp: product (phosphorylated R)
• S1: enzyme (kinase)
• R|S1 substrate-enzyme complex
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Phosphorylation - dephosphorylation loop
Mass action model 1

• R: unphosphorylated form
• Rp: phosphorylated form
• S1: kinase
• S2: phosphotase
• R|S1 unphosphorylated+kinase complex
• R|S2 unphosphorylated+phosphotase complex
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Phosphorylation cascade:
2-stage, Mass Action model 1

RpR
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RRpRR
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Phosphorylation cascade:
3-stage, Mass-Action model 1
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Phosphorylation cascade + negative feedback: 3-
stage, Mass Action, model 1
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Phosphorylation cascade + negative feedback: 3-
stage, Inhibitor on 2nd stage, Mass Action
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Further Analyses

All initial concentrations can be varied at will, e.g. to test a
concentration series of one component (sensitivity analysis)

Effect of slightly different k-values can be tested (stability of the model
with respect to measurement/estimation errors)

Effect of inhibitors of each reaction (changed k-values) can be
predicted

Concentrations at each time-point are predicted exactly and can be
tested experimentally

© Rainer Breitling
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No Feedback Positive Feedback

Negative Feedback Positive & Negative Feedback

Combination of positive & negative feedback: Simulation



(c) David Gilbert, Xu Gu 2008 Modelling dynamic behaviour 82

Combination of positive & negative feedback:
Simulation vs. Experimental Data
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Lecture outline
• Biochemical reactions
• Modelling with Ordinary Differential Equations
• Kinetics : Mass Action
• Examples

– Signalling & metabolic pathways
– Trypanothione metabolism in Trypanosoma brucei
– Oscillators & Amplifiers

• Analysis
• ODE simulators


