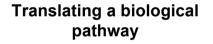


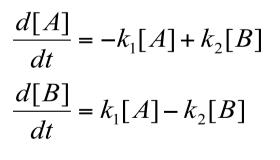
Bioinformatics

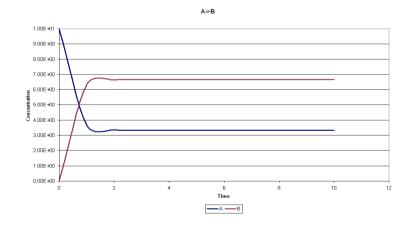

Modelling dynamic behaviour (Systems biology) Xu Gu **Bioinformatics Research Centre** www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow

Lecture outline

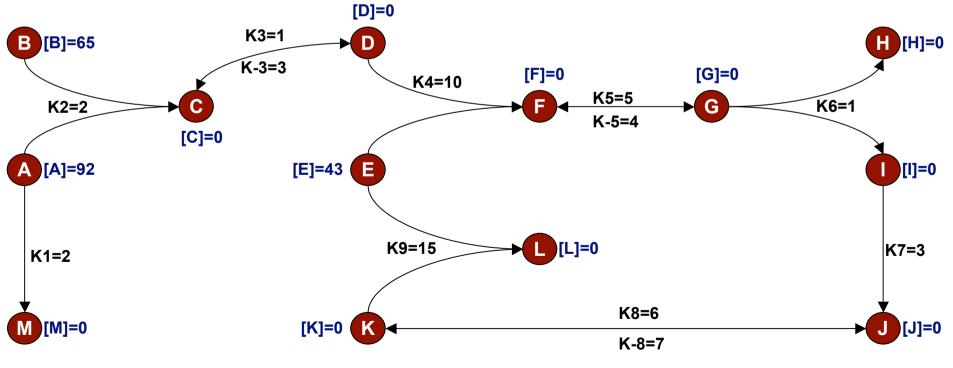
- Biochemical reactions
- Modelling with Ordinary Differential Equations
- Kinetics : Mass Action
- Examples
 - Signalling & metabolic pathways
 - Trypanothione metabolism in *Trypanosoma brucei*
 - Oscillators & Amplifiers
- Analysis
- ODE simulators

What is modelling?


- In this context:
 - Translating a biological pathway into mathematics for subsequent analysis

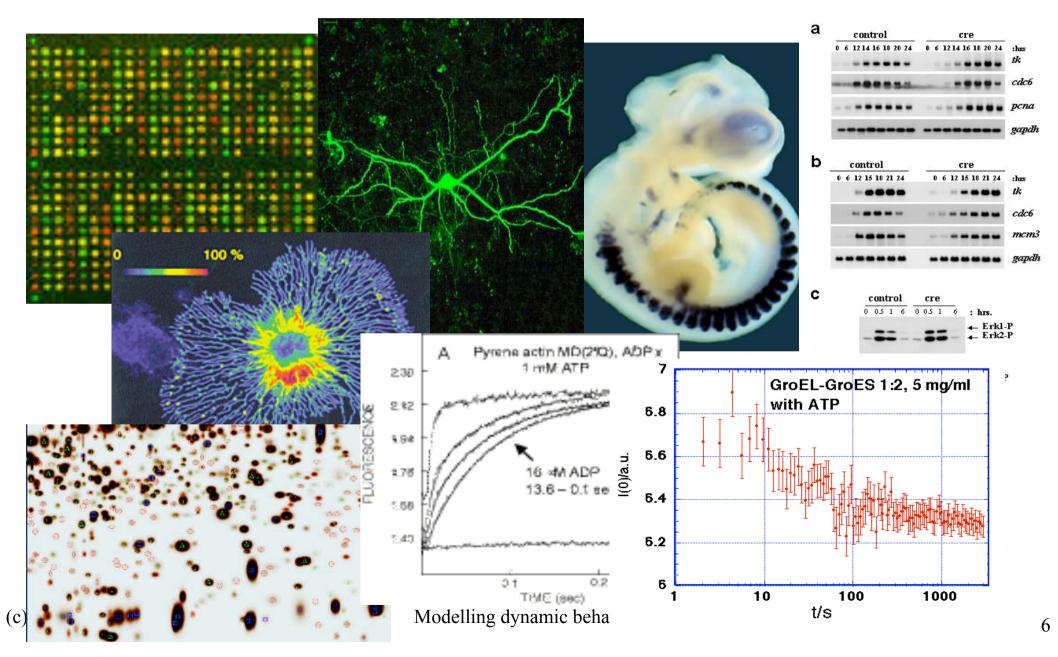

Into mathematics

[A] = 10; [B] = 0; k1 = 2; k2 = 1; Time = 10


Why model?

- Simplistic answers:
 - Because it's there...
 - Why not?
- Technical answer:
 - "The benefit of formal mathematical models is that they can show whether proposed causal mechanisms are at least theoretically feasible and can help to suggest experiments that might further discriminate between alternatives." (Franks & Tofts, 1994)
- Realistic answers:
 - A computer model can generate new insights
 - A computer model can make testable predictions
 - A computer model can test conditions that may be difficult to study in the laboratory
 - A computer model can rule out particular explanations for an experimental observation
 - A computer model can help you identify what's right and wrong with your hypotheses (could/is the proposed mechanism correct)

Slide from Richard Orton


Why model?

- In a complex pathway, knowing all the proteins involved and what they do, may still not tell you how the pathway works
- Furthermore, if all the initial concentrations and rate constants are known in the pathway, a computer simulation will probably still be needed to show how the system behaves over time

(c) David Gilbert, Xu Gu 2008

Biology = Concentrations

...but biological systems contain

non-linear interaction between components

- positive and negative feedback loops
- complex cross-talk phenomena

The simplest chemical reaction

$A \rightarrow B$

- irreversible, one-molecule reaction
- examples: all sorts of decay processes, e.g. radioactive, fluorescence, activated receptor returning to inactive state
- any metabolic pathway can be described by a combination of processes of this type (including reversible reactions and, in some respects, multi-molecule reactions)

The simplest chemical reaction

$A \rightarrow B$

various levels of description:

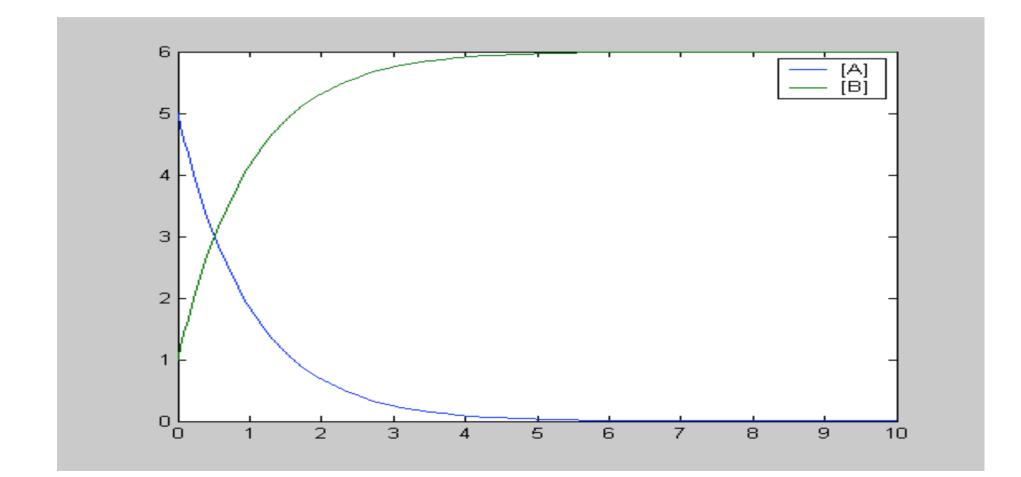
- homogeneous system, large numbers of molecules = ordinary differential equations, **kinetics**
- small numbers of molecules = probabilistic equations, stochastics
- spatial heterogeneity = partial differential equations, **diffusion**
- small number of heterogeneously distributed molecules = single-molecule tracking (e.g. cytoskeleton modelling)

Some (Bio)Chemical Conventions

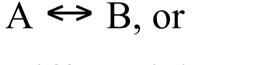
Concentration of Molecule A = [A], usually in units mol/litre (molar)

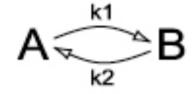
Rate constant = k, with indices indicating constants for various reactions $(k_1, k_2...)$

Therefore:


А→В

$$\frac{d[A]}{dt} = -\frac{d[B]}{dt} = -k_1[A]$$


Description in MATLAB: 1. Simple Decay Reaction


M-file (description of the model)

Decay Reaction in MATLAB

Reversible, Single-Molecule © Rainer Breitling Reaction

Differential equations:

forward reverse

$$\frac{d[A]}{dt} = -k_1[A] + k_2[B]$$
$$\frac{d[B]}{dt} = k_1[A] - k_2[B]$$

Main principle: Partial reactions are independent!

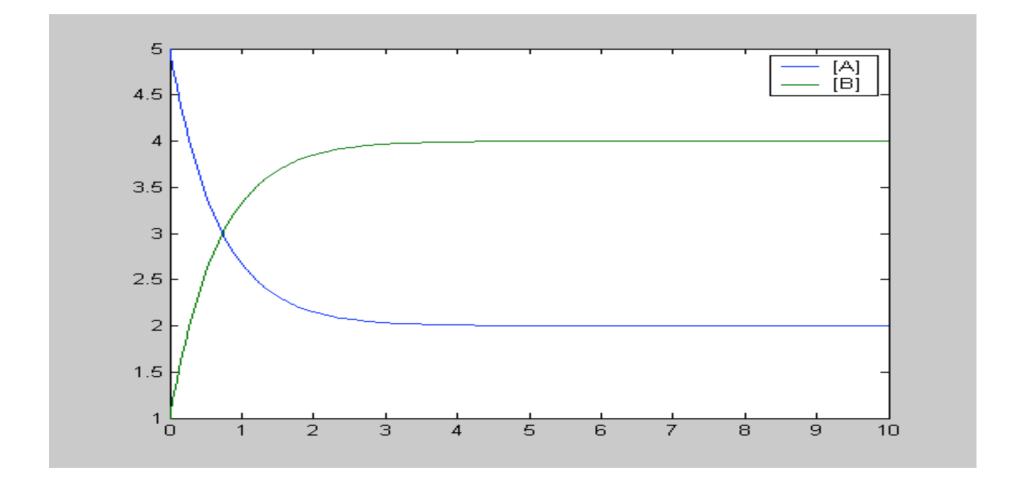
(c) David Gilbert, Xu Gu 2008

Reversible, single-molecule reaction – 2

Differential Equation:

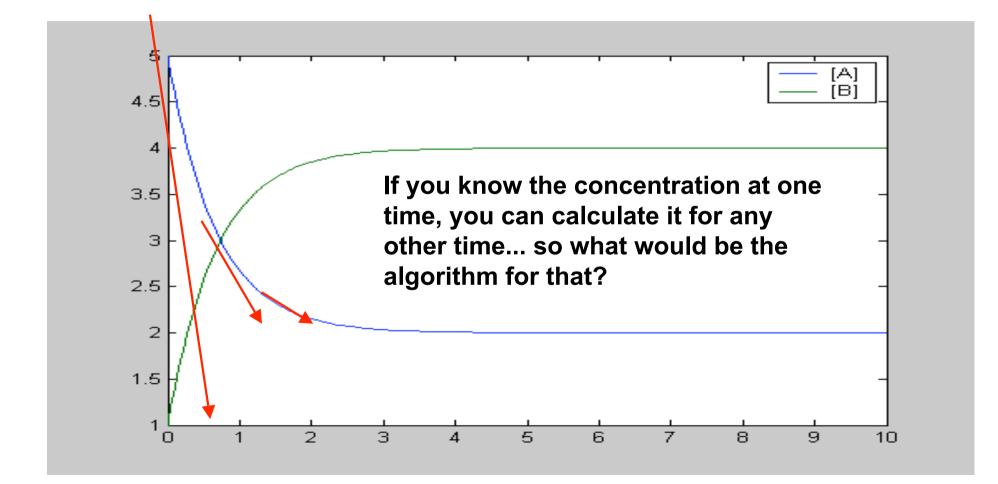
$$\frac{d[A]}{dt} = -k_1[A] + k_2[B]$$
$$\frac{d[B]}{dt} = k_1[A] - k_2[B]$$

Equilibrium (=steadystate):


$$\frac{d[A]_{equi}}{dt} = \frac{d[B]_{equi}}{dt} = 0$$
$$-k_1[A]_{equi} + k_2[B]_{equi} = 0$$
$$\frac{[A]_{equi}}{[B]_{equi}} = \frac{k_2}{k_1} = K_{equi}$$

Description in MATLAB: 2. Reversible Reaction

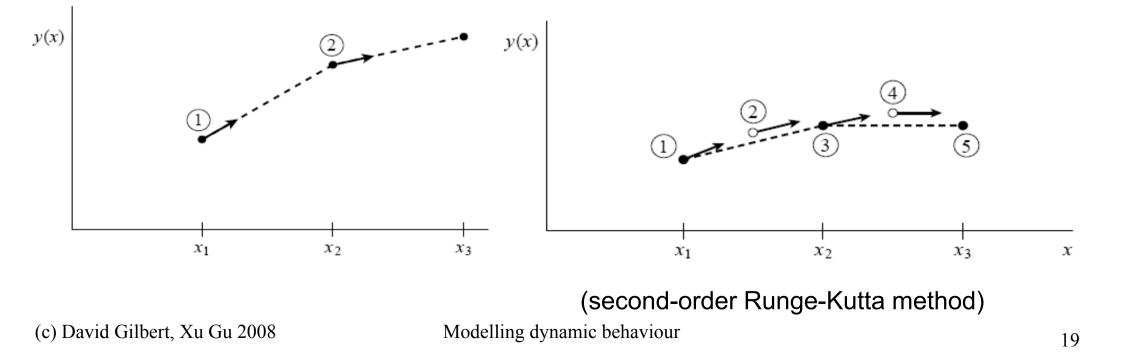
M-file (description of the model)


Analysis of the model

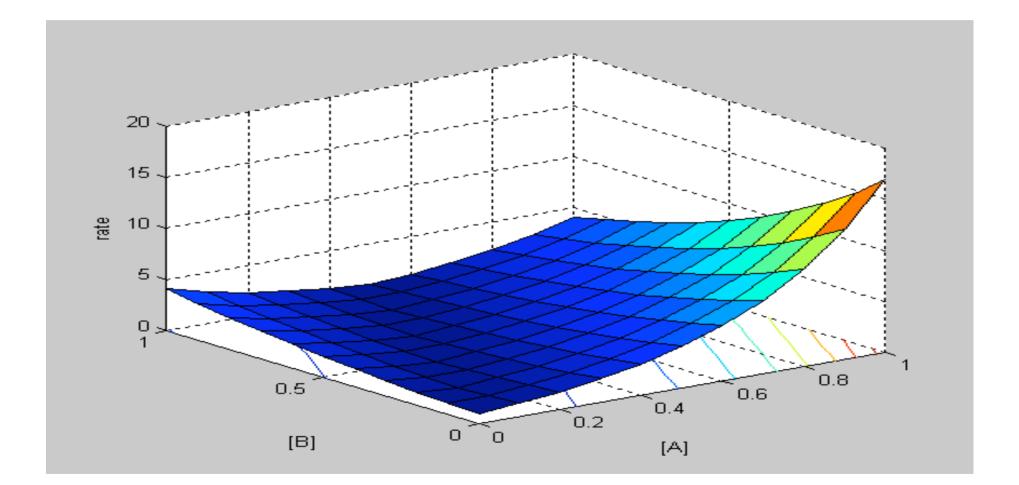
Isomerization Reaction in MATLAB

(c) David Gilbert, Xu Gu 2008

Isomerization Reaction in MATLAB


Euler's method - pseudocode $y_{n+1} = y_n + hf(t_n, y_n)$

1.	<pre>define f(t,y)</pre>		
2.	input t0 and y0.		
3.	input h and the number of steps, n.		
4.	for j from 1 to n do		
	a. $m = f(t0, y0)$		
	b. $y1 = y0 + h*m$		
	c. $t1 = t0 + h$		
	d. Print t1 and y1		
	e. $t0 = t1$		
	f. $y0 = y1$		
5.	end		


Where One step of Euler's integration from t_n to $t_n+1 = t_n + h$ is: $Y_{n+1} = y_n + hf(t_n, y_n)$ where h is the (time) step and $f(t_n, y_n)$ is the differential equation

(c) David Gilbert, Xu Gu 2008

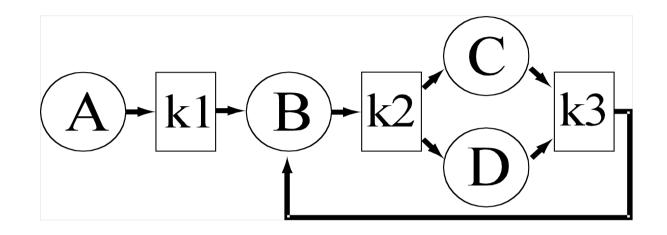
Improving Euler's method $y_{n+1} = y_n + hf(t_n, y_n)$ \downarrow $y_{n+1} = y_n + hf(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hf(t_n, y_n))$

Isomerization Reaction in MATLAB

Irreversible, two-molecule reaction

The last piece of the puzzle

 $A+B\rightarrow C$ Differential equations:

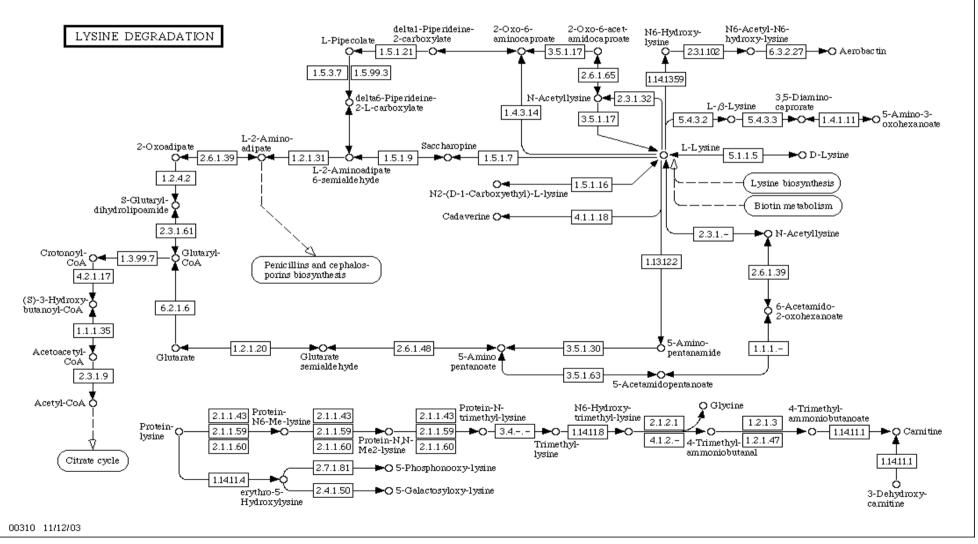

$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -\frac{d[C]}{dt}$$
$$\frac{d[A]}{dt} = -k[A][B]$$
Non-linear!

Underlying idea: Reaction probability = Combined probability that both [A] and [B] are in a "reactive mood":

$$p(AB) = p(A)p(B) = k_1^*[A]k_2^*[B] = k[A][B]$$

(c) David Gilbert, Xu Gu 2008

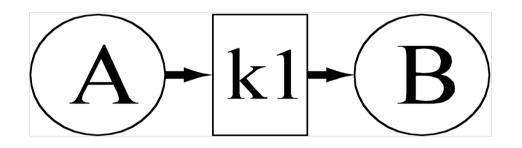
Metabolic Networks as Bigraphs

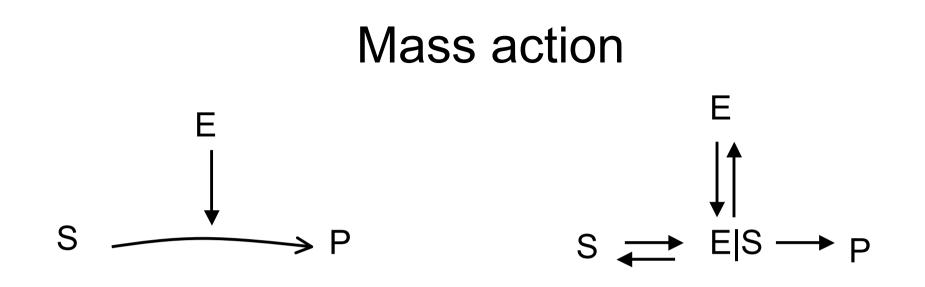


 $A \rightarrow B \leftarrow \rightarrow C + D$

	k1	k2	k3
А	-1	0	0
В	1	-1	1
С	0	1	-1
D	0	1	-1

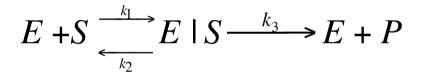
d/dt	decay	forward	reverse
[A]	-k1[A]		
[B]	+k1[A]	-k2[B]	+k3[C][D]
[C]		+k2[B]	-k3[C][D]
[D]		+k2[B]	-k3[C][D]


Biological description \rightarrow bigraph \rightarrow differential equations



23

Biological description \rightarrow bigraph \rightarrow differential equations

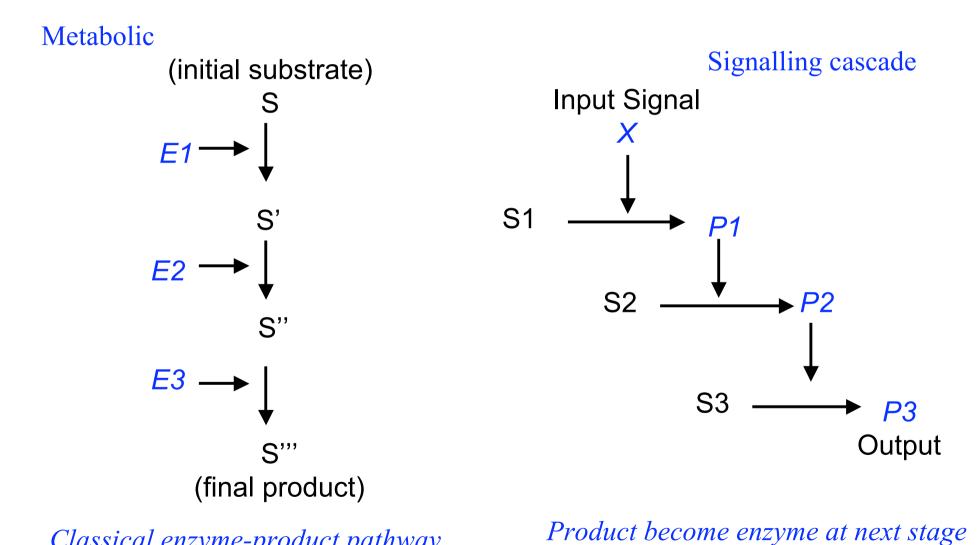

- S: substrate,
- P: product
- E: enzyme
- E|S substrate-enzyme complex

$$E + S \xrightarrow[k_2]{k_1} E \mid S \xrightarrow[k_3]{k_2} E + P$$

(c) David Gilbert, Xu Gu 2008

Mass action equations

- 1. $E + S (k1) \rightarrow E|S$
- 2. $E|S \rightarrow E+S$
- 3. $E|S \rightarrow E+P$


OR

1. E + S = (k1/k2) = E|S2. $E|S - (k3) \rightarrow E+P$

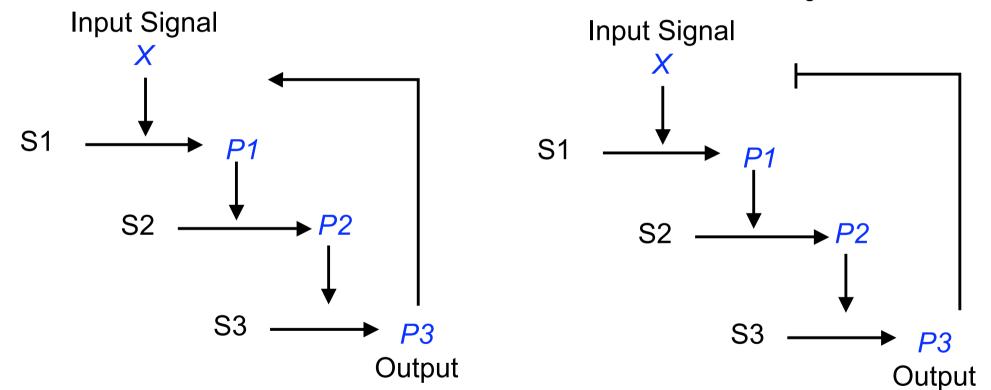
?Can you code the differential equations?

Metabolic pathways vs Signalling Pathways

(can you give the mass-action equations?)

Classical enzyme-product pathway

(c) David Gilbert, Xu Gu 2008


Feedback loops (signalling cascades)

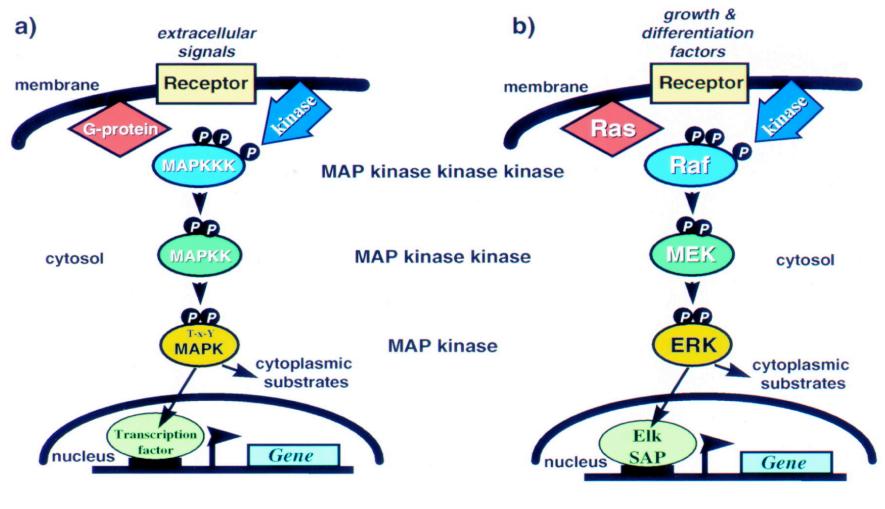
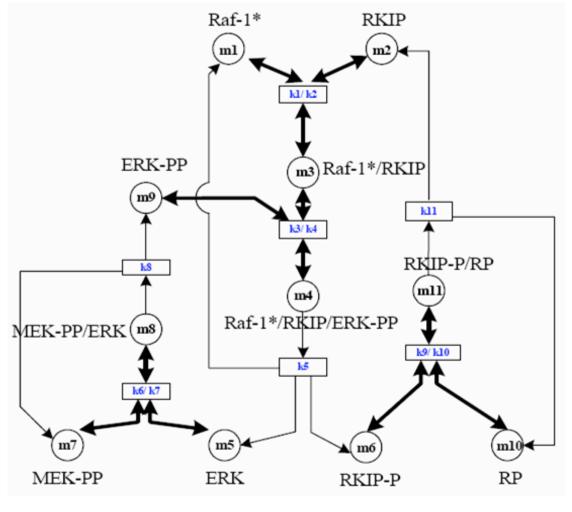
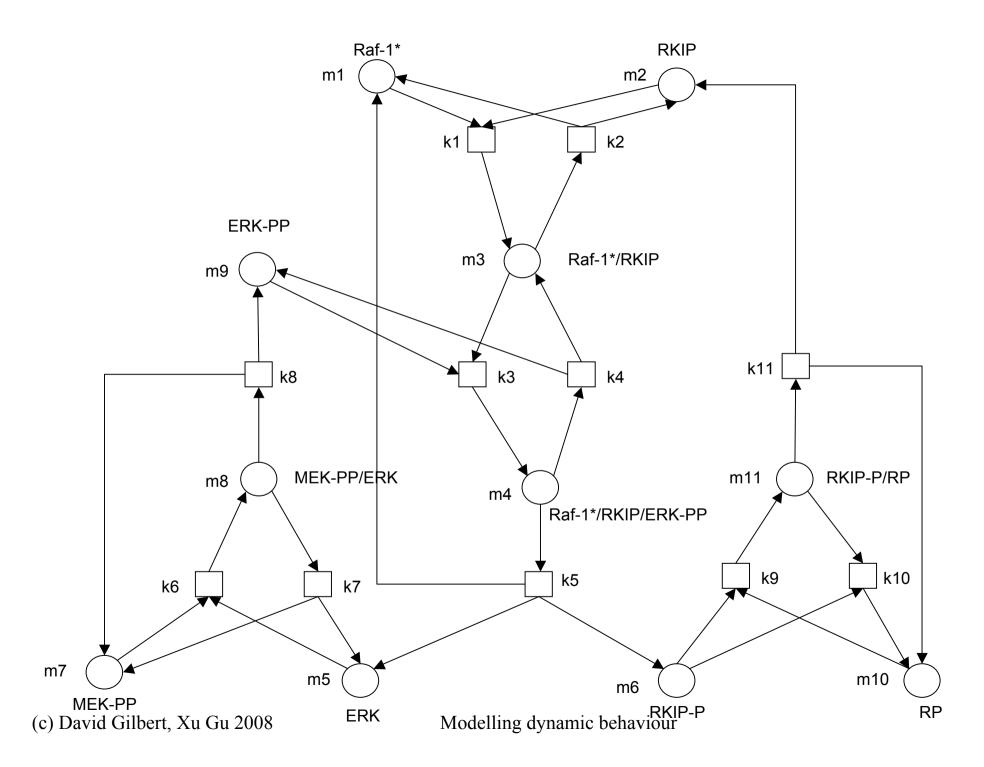
 $P3 + S1 = P3|S1 \rightarrow P3+P1$

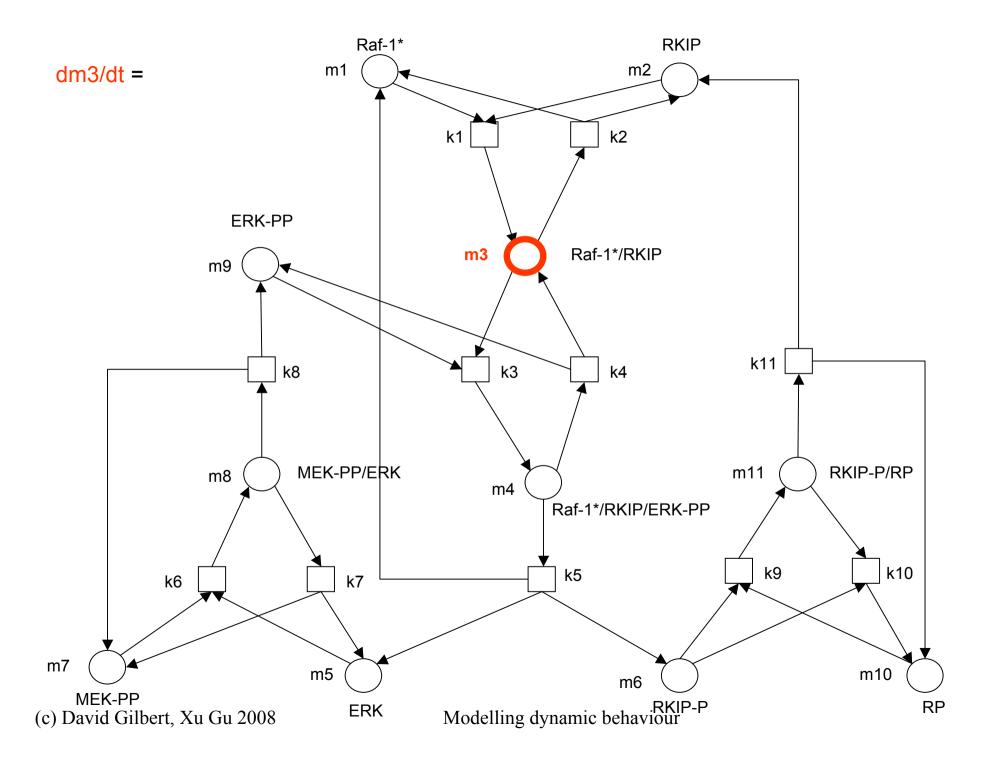
Positive feedback

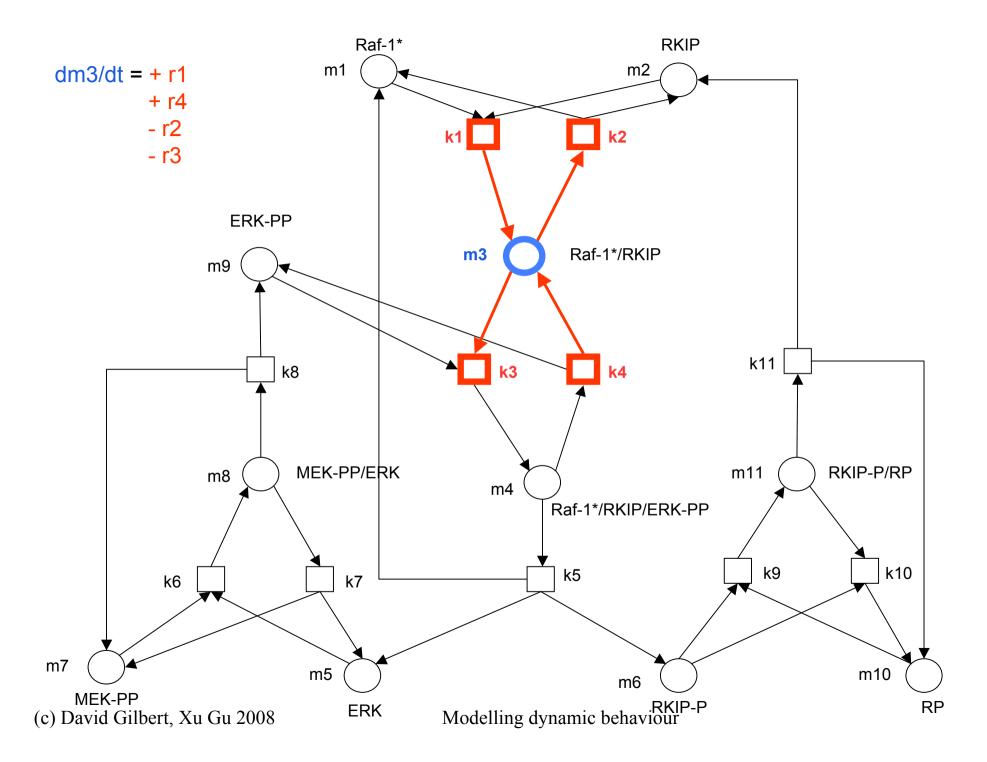
P3 + X = P3|X

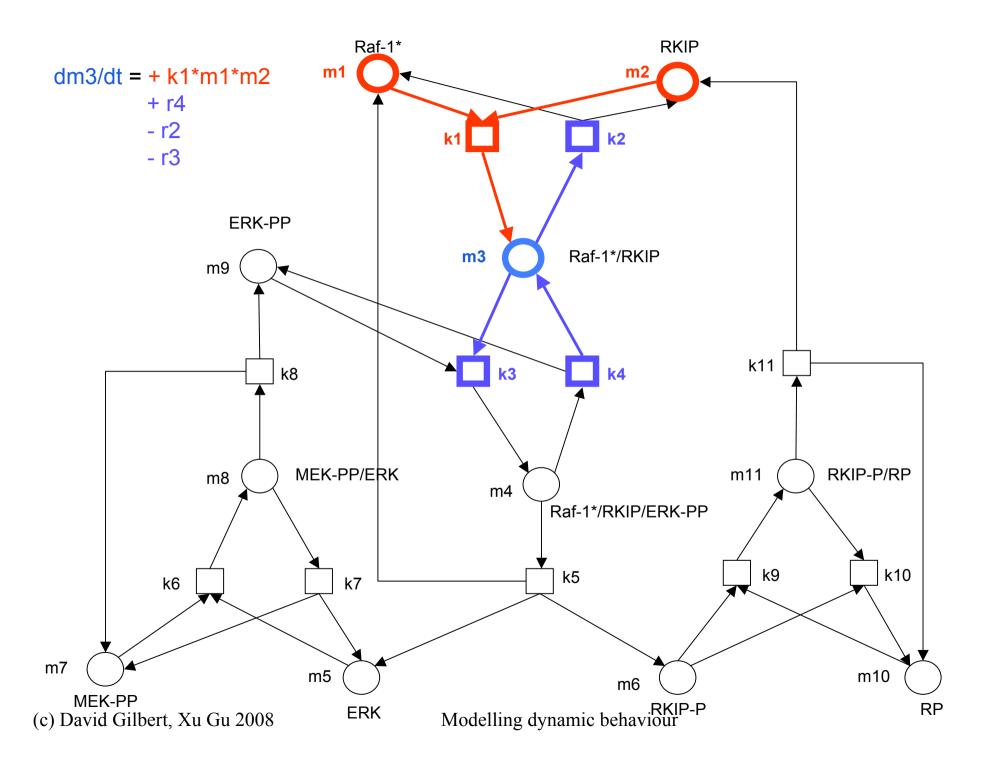
Negative feedback

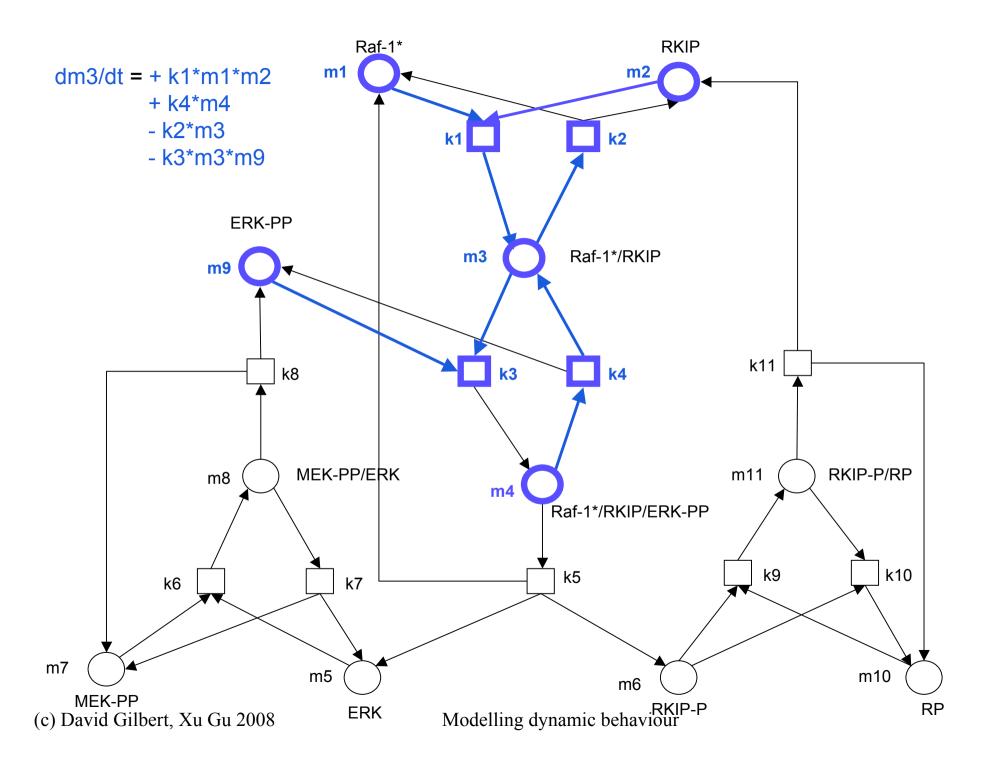
Biological description \rightarrow bigraph \rightarrow differential equations

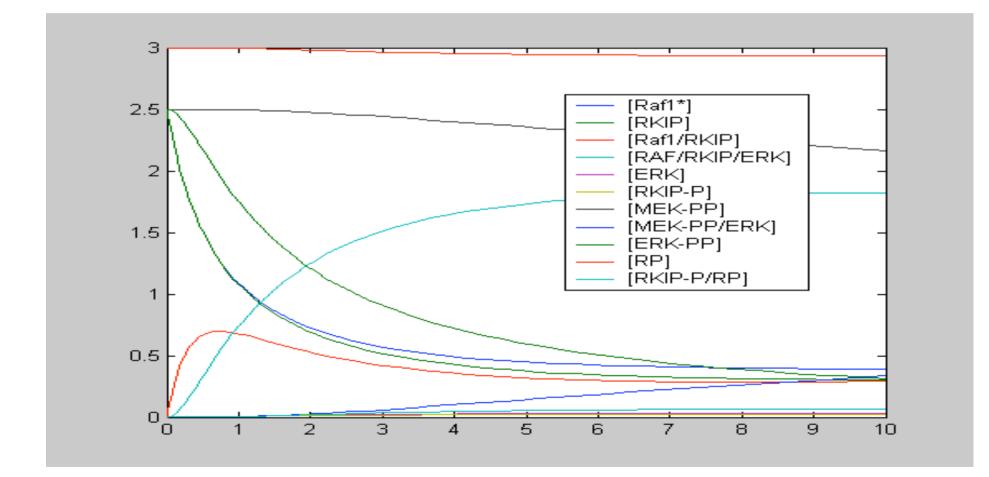

Fig. courtesy of W. Kolch


The Raf-1/RKIP/ERK pathway




Can you model it? (11x11 table, 34 entries)

Description in MATLAB: 3. The RKIP/ERK pathway


```
function dydt = erk pathway wolkenhauer(t, y)
% from Kwang-Hyun Cho et al., Mathematical Modeling...
k1 = 0.53;
k2 = 0.0072;
k3 = 0.625;
k4 = 0.00245;
k5 = 0.0315;
k6 = 0.8;
k7 = 0.0075;
k8 = 0.071;
k9 = 0.92;
k10 = 0.00122;
```

k11 = 0.87;

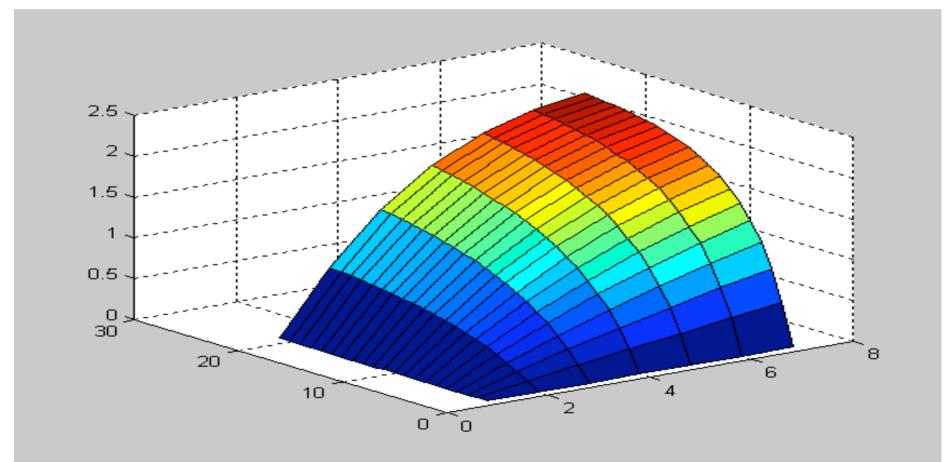
Description in MATLAB: 3. The RKIP/ERK pathway

Analysis of the model:

The RKIP/ERK pathway in MATLAB

Further Analyses in MATLAB et al.

- All initial concentrations can be varied at will, e.g. to test a concentration series of one component (sensitivity analysis)
- Effect of slightly different k-values can be tested (stability of the model with respect to measurement/estimation errors)
- Effect of inhibitors of each reaction (changed k-values) can be predicted
- Concentrations at each time-point are predicted exactly and can be tested experimentally

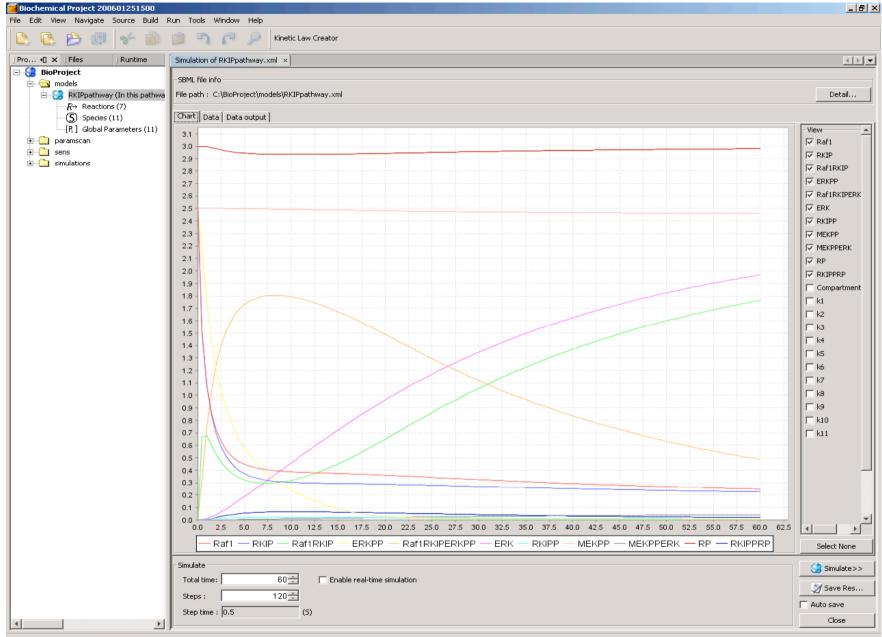

```
function [tt,yy] = sensitivity(f, range, initvec,
    which_stuff_vary, ep, step, which_stuff_show, timeres);
```

```
timevec = range(1):timeres:range(2);
vec = [initvec];
[tt y] = ode45(f, timevec, vec);
yy = y(:,which_stuff_show);
```

```
for i=initvec(which_stuff_vary)+step:step:ep;
    vec(which_stuff_vary) = i;
    [t y] = ode45(f, timevec, vec);
    tt = [t];
    yy = [yy y(:,which_stuff_show)];
end
```

>> surf (y);

varies concentration of m5 (ERK-PP) from 0..6, outputs concentration of m8 (ERK/MEK-PP), time range [0 1], steps of 0.05. Then plots a surface map.



after Cho et al. (2003) CSMB

(longer time course)

Simulation in BioNessie

(c) David Gilbert, Xu Gu 2008

SBML: http://www.sbml.org

- The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks. SBML is applicable to metabolic networks, cell-signaling pathways, regulatory networks, and many others.
- SBML has been evolving since mid-2000 through the efforts of an international group of software developers and users. Today, SBML is supported by over 75 software systems including Gepasi. Also an SBML->MatLab converter
- Advances in biotechnology are leading to larger, more complex quantitative models. The systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. SBML's widespread adoption offers many benefits, including:
 - enabling the use of multiple tools without rewriting models for each tool
 - enabling models to be shared and published in a form other researchers can use even in a different software environment
 - ensuring the survival of models (and the intellectual effort put into them) beyond the lifetime of the software used to create them.

SBML - XML Based Language

<sbml> <model></model></sbml>	
	
	listOfReactants>
	<speciereference></speciereference>
	listOfProducts>
	<speciereference></speciereference>
	<kineticlaw></kineticlaw>
	stOfParameters>
	<pre><parameter></parameter></pre>

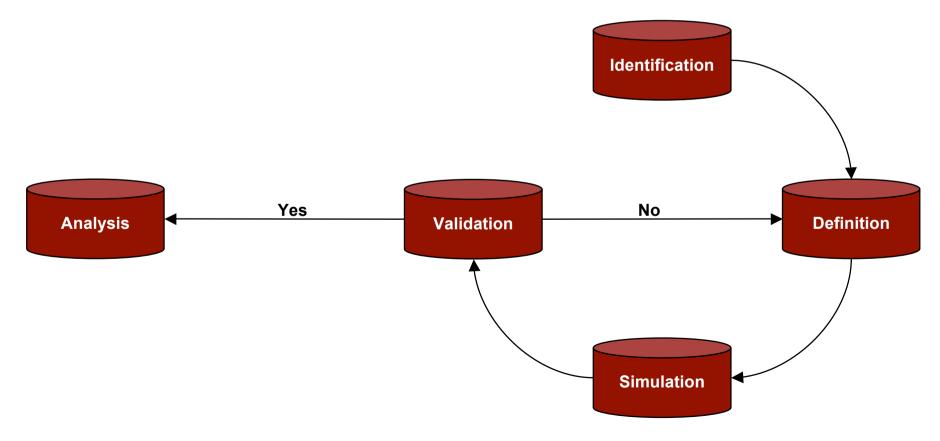
SBML Example

Specie representation: m1 in RKIP model:

<specie name="m1" compartment="compartment" initialAmount="2.5" boundaryCondition="false" />

Reaction representation: k1 in RKIP model: $m1 + m2 \rightarrow m3$ (rate = k1 = 0.53) <reaction name="k1" reversible="false">

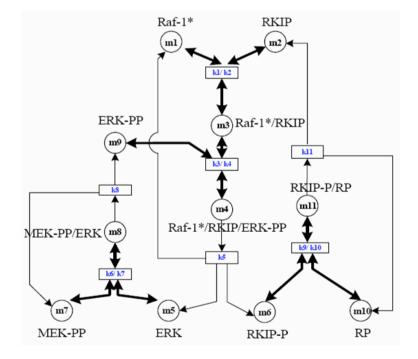
```
tOfReactants>
<specieReference specie="m1" stoichiometry="1" />
<specieReference specie="m2" stoichiometry="1" />
</listOfReactants>
```


tOfProducts> <specieReference specie="m3" stoichiometry="1" /> </listOfProducts>

```
<kineticLaw formula="k_1*m1*m2">
<listOfParameters>
<parameter name="k_1" value="0.53" />
</listOfParameters>
</kineticLaw>
```

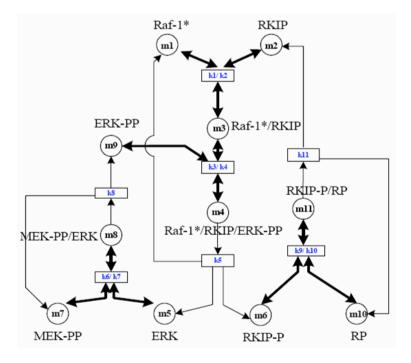
```
</reaction>
```


How to model



How to model...1: Identification

- Identify the biological pathway to model (what)
 - RKIP
 - EGF and NGF activated MAPK
- Or, more importantly, identify the biological question to answer (why)
 - What influence does the Raf Kinase Inhibitor Protein (RKIP) have on the Extracellular signal Regulated Kinase (ERK) signalling pathway?
 - How do EGF and NGF cause differing responses in ERK activation, transient and sustained, respectively?


How to model...2: Definition

- This is the key step and is not trivial
- Draw a detailed picture of the pathway to model
 - Define all the proteins/molecules involved
 - Define the reactions they are involved in
 - Where do you draw the model boundary line?
- Check the literature
 - What is known about the pathway and proteins?
 - What evidence is there that protein A binds directly to protein B?
 - Protein C also binds directly to protein B: does it compete with protein A or do they bind to protein B at different sites?
 - Trust & Conflicts: it is important to recognize which evidence to trust and which to discard (talk to the people in the wet lab)
- Simplifying assumptions
 - Many biological processes are very complex and not fully understood
 - Therefore, developing a model often involves making simplifying assumptions
 - For example, the activation of Raf by Ras is very complicated and not fully understood but it is often modelled as:
 - Raf + Ras-GTP = Raf/Ras-GTP -> Raf-x + Ras-GTP
 - Although this is a simplification, it is able to explain the observed data

How to model...2: Definition


- Define the kinetic types
 - Each reaction has a specific kinetic type
 - All the reactions in the RKIP model are mass action (plain, uncatalysed kinetic type):
 - V = k1[m1][m2] k2[m3]
 - Another common kinetic type is Michaelis Menten (enzyme catalysis):
 - V = Vmax[S] / (Km+[S])
- Define the rate constants (k's, km's, Vmax's etc)
- Define the initial concentrations
- Check the literature
 - What values have been previously reported?
 - What values are used in similar models?
 - Do you trust them? Are there any conflicts?
 - Measure them yourself in the wet lab
 - Parameter estimation techniques: estimate some parameters based on others and observed data

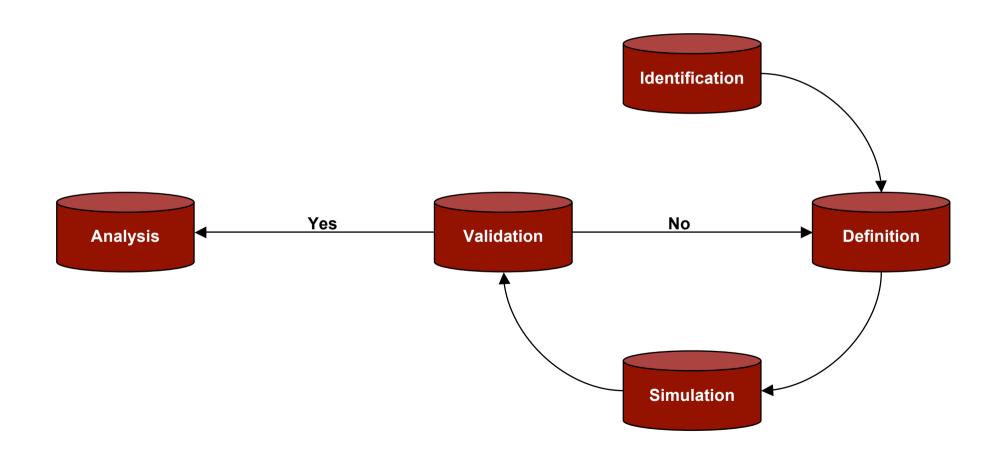
How to model...3: Simulation

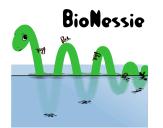
- Once the model has been constructed and parameter data has been assigned you can simulate (run) the model
- This is a relatively straightforward step as there are many software tools available to simulate differential equation based models
- For example:
 - BioNessie
 - MatLab
 - Copsai / Gepasi
 - CellDesigner
 - Jarnac
 - WinScamp
 - Many many more
- Runtime options include setting the time to run the model for and the number of data points to take

Slide from Richard Orton

How to model...4: Validation

- Simulating the model typically returns a table of data which shows how each specie's concentration varies over time
- This table can then be used to generate graphs of specie concentrations
- Do the model results match the experimental data?
 - Yes: validation
 - No: back to definition and check for errors
 - Simple typos
 - Wrong kinetics
 - Over simplifications of processes
 - Missing components from the model
 - Incorrect parameter data
- The model can then be validated further by checking the system behaves correctly when things are varied:
 - It might be known how the system behaves when you overexpress or knockout a component
 - The model should be able to recreate this behaviour
- If the model's results do not match known biology, we cannot rely on predictions about unknown biology

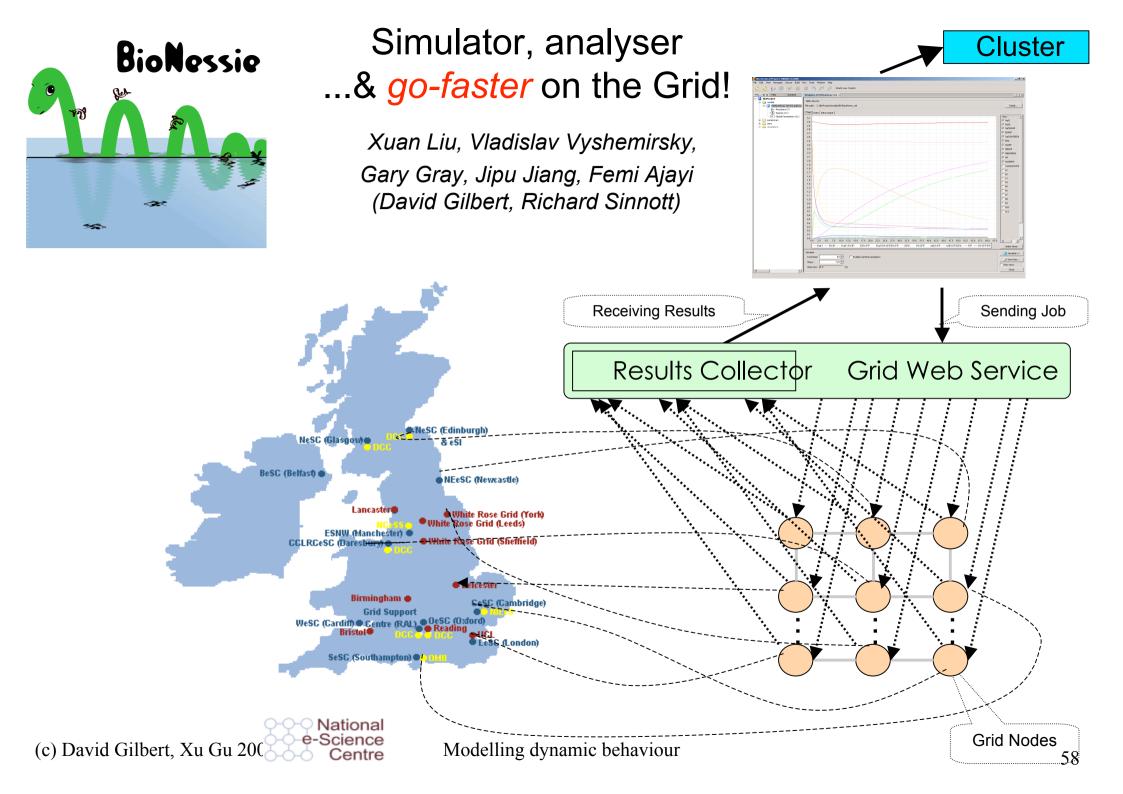

	2 🖬 🗋 R1		▲ =BG1+0		8 · 🛷 🕛	9 - (* -)	🤶 Σ -	21 <u>2</u> 1 (<u>0</u>	100%	Arial		 10 	- B Z	<u>n</u> ⊨ :	= = H	- N 🖓	24 .22	读 读) []) - <u>0</u> -
T	A	8	C	D	E	F	G	н	1	J	К	L	м	N	0	Р	0	R	S
	0	50000	0	0	0	0	0	0	0	0	0	81000	0	12000	0	0	0	0	
	120		961.4048		13650.67	32.541		965.6397		76.9274			0.009019	2451.348			120.6348		271.53
	240		932.3613	133.6072	13247.01	13.1452	40.9189	2875.424		337.9202	27.806	79013.32	0.19824	5300.775	535.7037	5.1316	277.8654	43.9373	318.106
	360	23.8694	918.0514	128.4444	12717.55	7.8166	49.2258	2717.191	0.002215	406.0962	27.2316		0.83942	6405.861	602.9155	10.4323	237.3849	39.8148	293.985
	480	23.3566		119.5797	11827.66	5.5277	50.7636	2360.018		383.4977	23.7035	79592.69	1.8281	6656.709	581.2097	13.9512		37.5412	279.756
	600		857.3281	110.2248	10892	4.451		2155.839		364.2798		79637.95		6834.799		16.4708		35.9244	
	720		825.0579	101.2089		3.8599	46.9958		0.001942			79684.11	4.459				193.5004	34.5409	257.515
	840		793.5317		9146.473	3.4844	44.602	1902.957		340.8547		79731.85	5.9908	7182.411	482.354		186.1797	33.2412	
	960		763.0342	84.8917	8361.408	3.2194	42.2191	1797.019		331 2802		79779.56	7.6188	7353.603	450.4931	20.7376		31.9763	237.64
4	1080	20.8156		77.6114	7634.373	3.0194	39.8819	1696.676	0.001732	322.039		79626.52	9.3183	7521.76	419.7444	21.4997	172.0751	30.7346	228.042
	1200		705.3837	70.885		2.8611	37.6049		0.001664	312.9786		79672.47	11.0705	7686.39	390.2022		165.1062	29.5151	218.646
	1320		678.2688	64.6828		2.7314			0.001598	304.0681 295.3041	15.13	79917.3		7847.147			158.1961	28.3201	209.472
	1440		652.3051	58.9756 53.7345	5773.585 5250.358	2.6222	33 2653	1422 192	0.001534	295.3041 286.6922		79960.92	14.6767	8003.752 8155.968	335.0151		151.3643	27.1526	200.542
	1680		627.4976		5250.358 4770.934	2.6283	31.216 29.2541	1339.035	0.001471	286.6922		80003.27 80044.32	16.5096	8155.968	205.3479		144.6319	26.0156 24.9118	191.875
	1680		681.3637		4332.695	2.4461	29.2541 27.3838	1259.918		269.9567		80084.01	20.197	8446.48	262.6566		138.0199	23.8437	183.492
	1920	18.0244		40.5331	4332.595	2.37.29	25.608		0.001352			80122.32		8584.472	241.401		125.2362	23.843/ 22.8134	167.642
	2040		539,8694	36.8854	3558.731	2.3071	23.929	1046.059		253.9258		80159.21	23.8772	8717.46	221.5765		119.1009	21.8228	160,202
	2160		520.8508	33.5722	3238.171	2.192	22.3479	982.3401		245.1951		80194.66	25.7043	8845.366	203.1628		113.1586	20.8734	
	2280		502.9717	30.5698	2938.663	2.1411	20.8646	922.2652		238 6653		80228.65	27.5188	8968.132	186 1283	22.48	107.4237	19.9662	146.333
	2400		486.2167	27.8553	2667.923	2.0938	19.4784		0.001091	231.3448		80261.18	29.3185	9085.723	170.4311		101.9082	19.1019	
	2520		470.5633		2423.847	2.0498	18.187		0.001045			80292.23	31.1019	9198.13		22.0614	96.6216	18,2806	
	2640		455.9939	23.2049		2.0086		762.9652		217.3634	7.6556	80321.8	32.867	9305.327	142.8395	21.8223	91.675	17.5028	128.105
	2760		442.4892	21.2247	2006.823	1.9698	15.8833	716 523		210.7186		80349.87	34.6117	9407.29	130 8522	21.5699	86.7792	16.769	122.718
	2890		429.9877	19.4522	1830 163	1.9337	14 8626	673 2045		204 3123	6 7557	80376.49	36 3365	9504 141	119.9436	21.3046	82 2264	16.0771	117.659
	3000		418.4742	17.8647	1671.973	1.8996	13.9261	632.9188	0.000883	198.1528	6.3517	80401.62	38.0392	9595.844	110.0721	21.0314	77.929	15.4278	112.929
	3120	15.5802	407.9019	16.4457	1530.596	1.8676	13.069	595.5385	0.000848	192.2446	5.9767	80425.31	39.7192	9682.483	101.163	20.7525	73.8858	14.8198	108.518
	3240	15.4243	398.2083	15.1821	1404.725	1.8377	12,2848	660.9165	0.000815	186 5898	5.6293	80447.6	41.3771	9764.212	93.1313	20.4685	70.0883	14.2511	104.407
	3360	15.2821	389.3628	14.0539	1292.353	1.8097	11.5705	528.9451	0.000785	181.1956	5.3084	80468.49	43.0114	9841.049	85.9133	20.1829	66.5423	13.7213	100.59
	3480	15.1524	381.3032	13.0495	1192.339	1.7836	10.9206	499.47	0.000756	176.0605	5.0124	80488.03	44.6224	9913.187	79.4367	19.8966	63.2358	13.2283	97.056
	3600	15.0344	373.9707	12.1565	1103.429	1.7594	10.3297	472.343	0.000729	171.1845	4.74	80506.29	45.2104	9980.797	73.6295	19.611	60.1592	12.7701	93.780
1																			
i l																			
1																			
-																			
-																			
-																			
-																			
	H \ Nar	nes), Mod	el_1 / Chart	1 / Mode	1.2 / Chart	2 / Model	3 / Chart	3 / Mode	4 / GAP,	GAP_Chart	/ CAP2/	YETI/		<					
where the														-		Sum=228			LM.



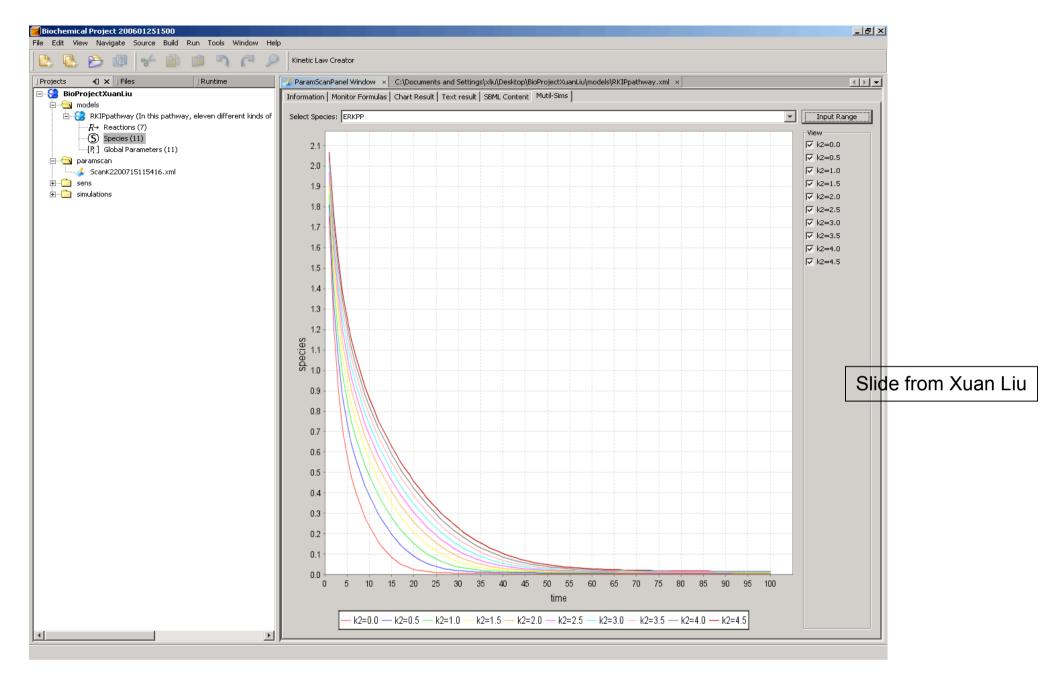
How to model...5: Analysis

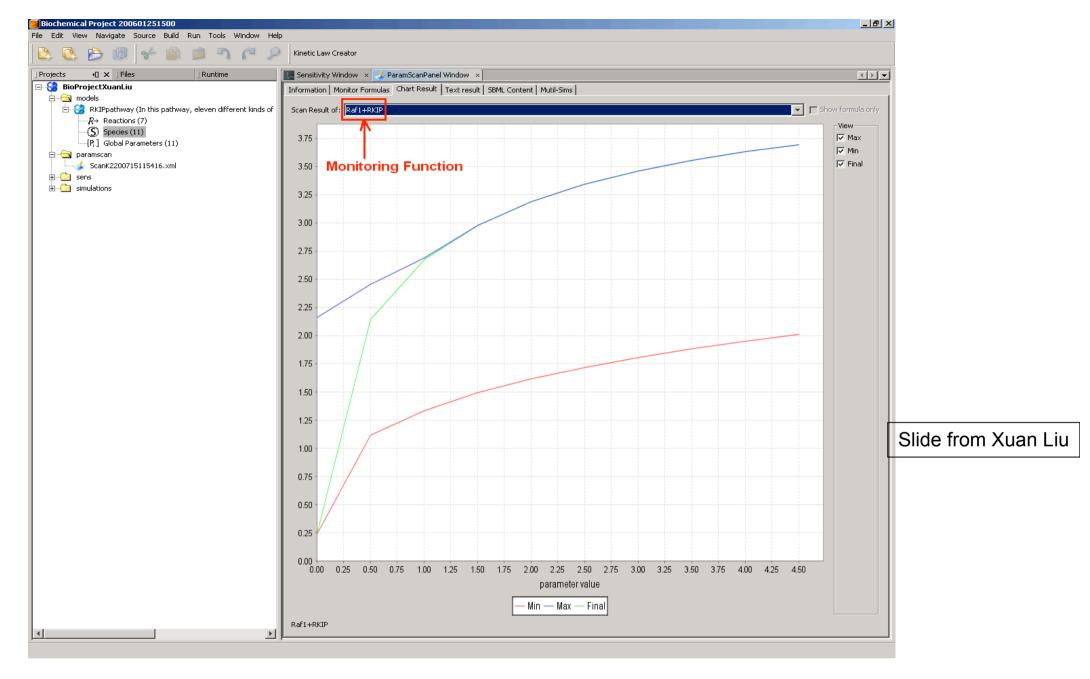
- After the model has been validated we can then analyse and interpret the results
 - What do the results imply or suggest?
 - What do they tell us that is new and that we did not know/understand before?
 - What predictions can we make?
- Sensitivity analysis can be used to identify the key steps and components in the pathway as well as monitoring how robust the system is:
 - Vary an initial concentration or rate by a small amount and see what affect it has on the system as a whole: small changes in a key value are likely to have a large affect
 - How robust is the system to changes?
- Knockout experiments are easy to do in a model: for example, simply set the initial concentration of the desired component to 0
 - Knockout experiments can be used to identify which components are essential and which are redundant
 - Can also knockout reactions (set rate to 0) to identify essential and redundant reactions in the system

How to model...Overview



BioNessie ODE workbench

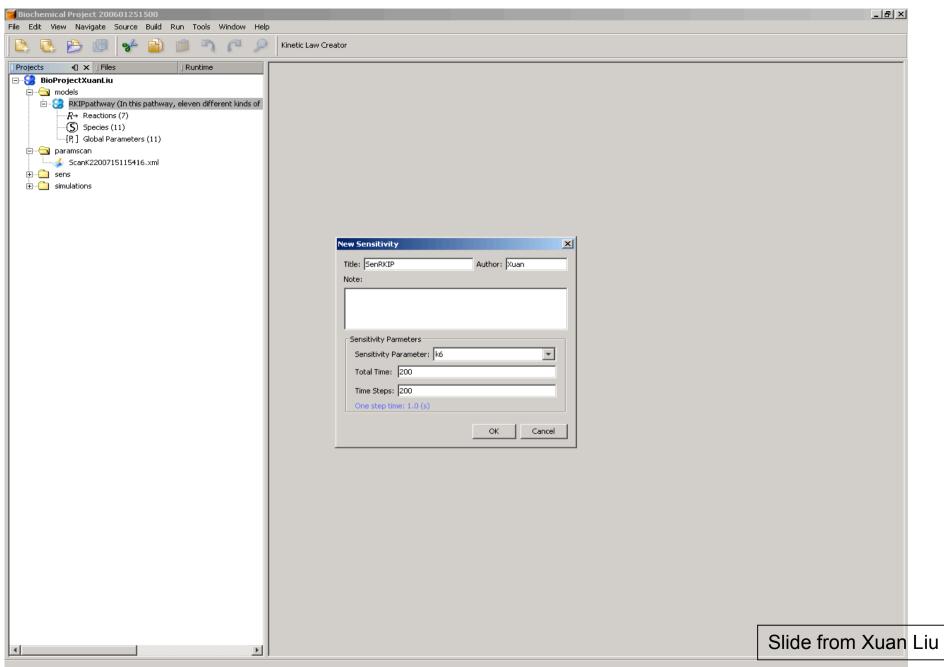

- Platform independent
 - Windows, Linux (i386 or AMD64) and Mac Os with Intel i386.
 - Released on 5th October 2006 for internal use.
 - JAVA Web Start
- Simulation
 - Multithreaded: simulation of different models at the same time.
 - User-friendly data viewer and printable data output
- SBML model construction
 - Graphical tool supports creation & editing of SBML biochemical models
 - Kinetic Law creation and management
- Parameter Scanning
- Sensitivity Analysis
- Grid
- Model Version Control System
- Model Development Management
- Optimisation


Multi-threaded Parameter Scan

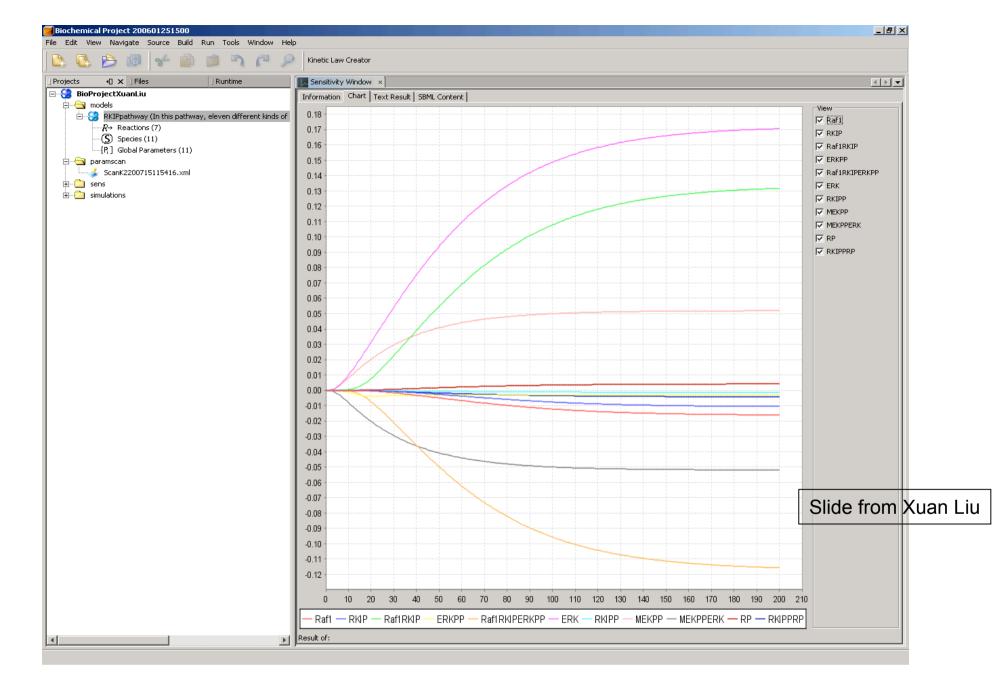
File Edit View Navigate Source Bui		p	
🕒 🖪 🖻 🕼 🗲 🕯	10772	Kinetic Law Creator	
] Projects I Files] Runtime	Z ParamScanPanel Window ×	
BioProject		Information Monitor Formulas Chart Result Text result SBML Content Mutil-Sims	
🗄 😌 RKIPpathway (In this path	thway, eleven different kinds of	C:/Documents and Settings/xliu/Desktop/BioProject/paramscan/ScanK22007151135	Create at Mon Feb 05
R→ Reactions (7) Species (11)			Author: Xuan
[P;] Global Parameters (11	1)	Note:	A
⊕ … 🛄 paramscan ⊕ … 🛄 sens		Parameter setting Scan Parameter Name: k2	
		Begin Value: 0.0 End Value: 5	5.0
		Scan Steps: 10 Denisty:	
		Time setting	
		End Time: 100.0 Total Steps: 100	
		SBML file path: C:\Documents and Settings\Xliu\Desktop\BioProject\models\RKIPpathway.xml	
		Prameter scan not complete.	
		Multi-threaded	
		Slid	le from Xua
			le from Xua

This plot shows the whole trace of selected species - ERKPP for a parameter scan in RKIPpathway.xml of parameter K2 from 0 through 4.5 in steps of 0.5 with linear density for the timecourse of 100 timesteps of 100 time units.

(c) David Gilbert, Xu Gu 2008

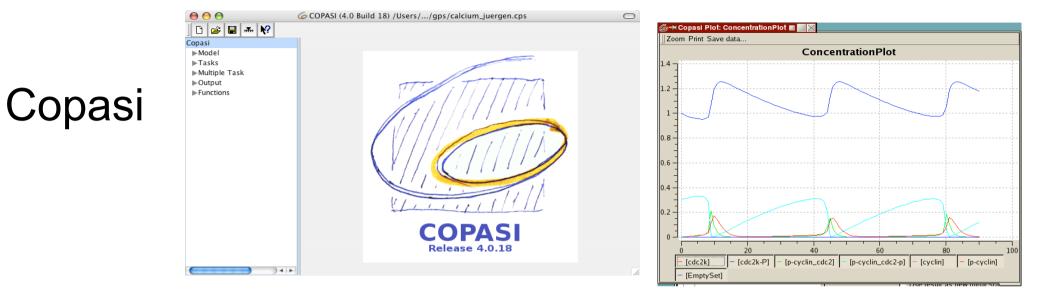

This plot shows the min. max and final values of monitoring function Raf1+RKIP for a parameter scan in RKIPpathway.xml of parameter K2 from 0 through 5 in steps of 0.5 with linear density for the timecourse of 100 timesteps of 100 time units.

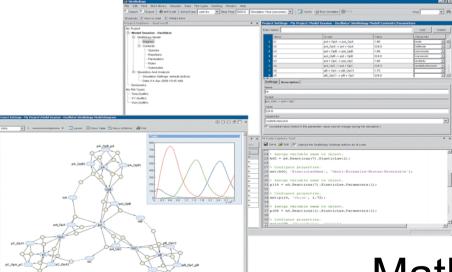
Sensitivity analysis


- Sensitivity analysis investigates the changes in the system outputs or behavior with respect to the parameter variations. It is a general technique for establishing the contribution of individual parameter values to the overall performance of a complex system.
- Sensitivity analysis is an important tool in the studies of the dependence of a system on external parameters, and sensitivity considerations often play an important role in the design of control systems.
- Parameter sensitivity analysis can also be utilised to validate a model's response and iteratively, to design experiments that support the estimation of parameters

Slide from Xuan Liu

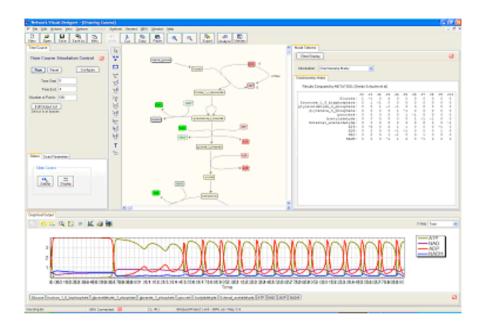
Sensitivity Analysis Creation in BioNessie



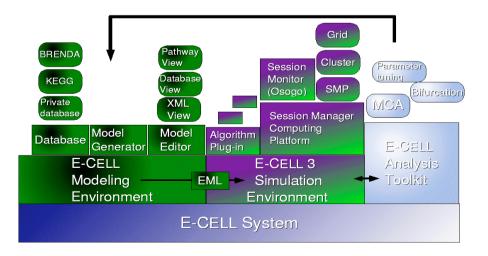

(c) David Gilbert, Xu Gu 2008

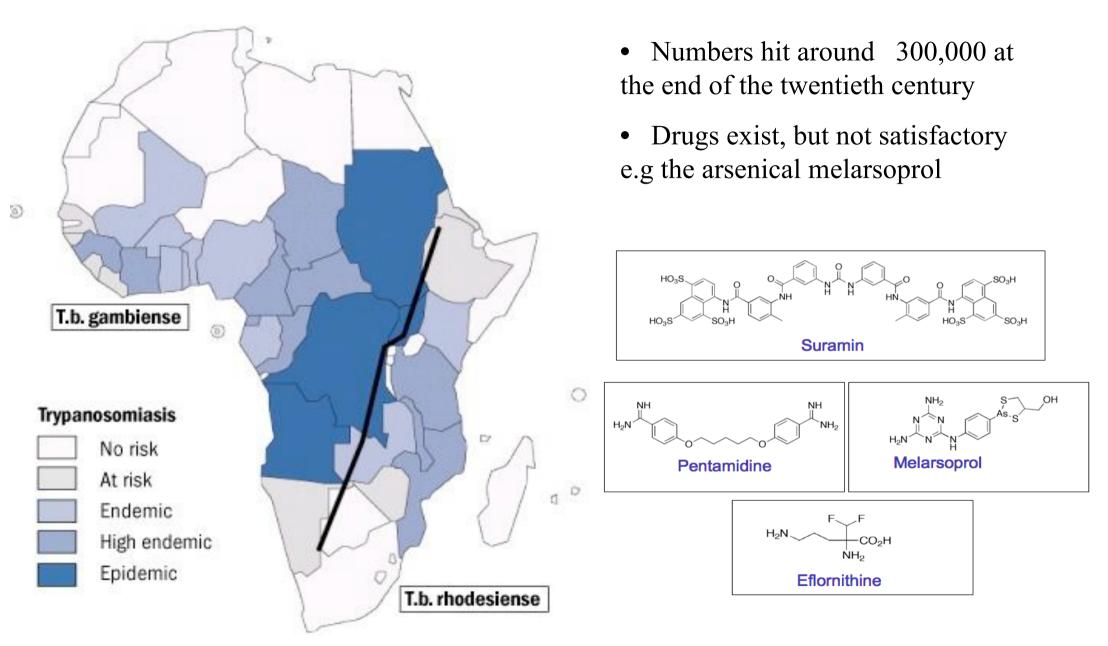
This creates a plot of the sensitivity of species Raf1, RKIP, Raf1RKIP, ERKPP, Raf1RKIPERKPP, ERK, RKIPP, MEKPP, MEKPPERK, RP and RKIPPRP to the values of the parameter K6 for the timecourse of 200 timesteps of 200 time units.

Other simulators include...


MatLab & SimBio

(c) David Gilbert, Xu Gu 2008

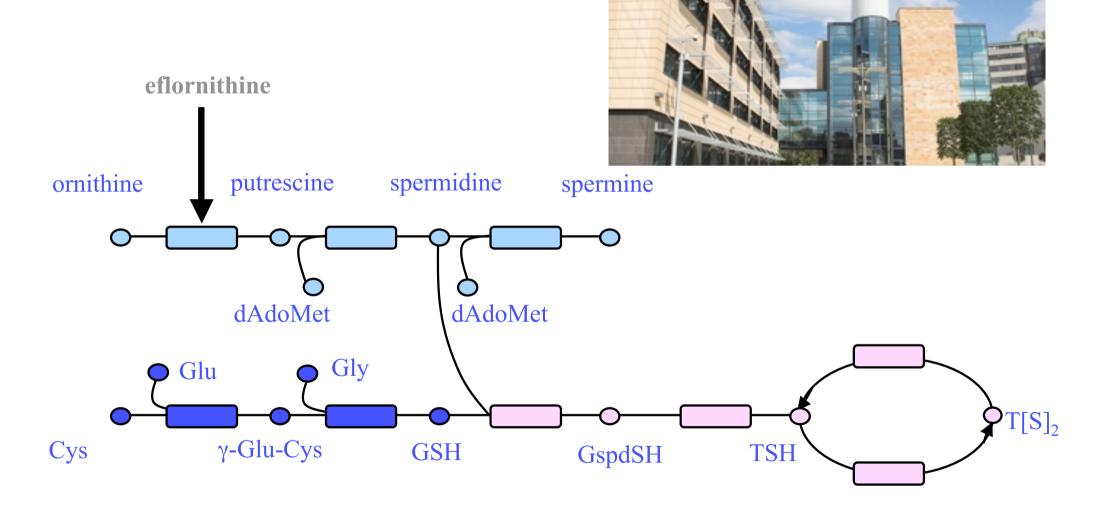

more simulators ...


SBW - standard parts

E-CELL Development Overview

Human African Trypanosomiasis

Human African trypanosomiasis (1999)


Number infected	0.3 million
Deaths per year	50,000
DALYs	1 598,000
Distribution	Sub-Saharan Africa
Causative organisms	T. brucei rhodesiense
	T. brucei gambiense
Vector	Tsetse fly (Glossina)
Natural habitat	forested rivers & shores (gambiense)
	Savannah (rhodesiense)
Natural host	Ungulates & other mammals (rhodesiense). Mainly man only (gambiense)

(c) David Gilbert, Xu Gu 2008

Genomic Biological Research Center, University of Glasgow

Trypanothionine ODE model

Equations and parameters	References
ODE	
$V_{ODC} = \frac{V_{max}^{ODC} * [\text{Orn}]}{K_M^{ODC} \left(1 + \frac{[\text{P}]}{K_{ip}^{ODC}}\right) + [\text{Orn}]}$	(11)
SAMdc	
$V_{SAMdc} = \frac{V_{max}^{SAMdc}}{1 + \frac{[S]}{K_{is}^{SAMdc}}} * \frac{[SAM]}{K_{M}^{SAMdc} \left(1 + \frac{K_{aP}^{SAMdc}}{[P]} + \frac{[dSAM]}{K_{idSAM}^{SAMdc}}\right) + [SAM]}$	(11)
MAT	
$V_{MAT} = \frac{V_{max}^{MAT}}{1 + \left(\frac{\kappa_M^{MAT}}{[\text{Met}]}\right) * \left(1 + \frac{[\text{SAM}]}{\kappa_{iMet}^{MAT}}\right)}$	(11)
\mathbf{SpdS}^{a}	
$V_{SpdS} = \frac{V_{max}^{SpdS} * [dSAM] * [P]}{K_{dSAM}^{SpdS} * \left(1 + \frac{[MTA]}{\kappa_{iMTA}^{SpdS}}\right) * K_{p}^{SpdS} * \left(1 + \frac{[D]}{\kappa_{iD}^{SpdS}}\right) + K_{p}^{SpdS} * \left(1 + \frac{[D]}{\kappa_{iD}^{SpdS}}\right) * [dSAM] + K_{dSAM}^{SpdS} * \left(1 + \frac{[dSAM]}{\kappa_{iMTA}^{SpdS}}\right) * [P] + [dSAM] * [P]}$	(1)
\mathbf{SpmS}^{a}	
$V_{SpmS} = \frac{V_{max}^{SpmS} * [dSAM] * [D]}{K_{dSAM}^{SpmS} + \left(1 + \frac{[MTA]}{\kappa_{iMTA}^{SpmS}}\right) * K_D^{SpmS} * \left(1 + \frac{[S]}{\kappa_{iS}^{SpmS}}\right) + K_D^{SpmS} * \left(1 + \frac{[S]}{\kappa_{iS}^{SpmS}}\right) * [dSAM] + K_{dSAM}^{SpmS} * \left(1 + \frac{[dSAM]}{\kappa_{iMTA}^{SpmS}}\right) * [D] + [dSAM] * [D]}$	(1)
$\gamma \mathbf{GCS}^b$	
$V_{\gamma GCS} = \frac{\underbrace{V_{max}^{\gamma GCS} * [\text{Glu}] * [\text{Aba}] * [\text{ATP}]}_{\alpha * \beta * \gamma * K_{Glu} * K_{Aba} * K_{ATP}}}{1 + \underbrace{[\text{Glu}] * [\text{Aba}]}_{K_{Aba}} + \underbrace{[\text{Glu}] * [\text{Aba}]}_{\gamma * K_{Glu} * K_{Aba}} + \underbrace{[\text{Glu}] * [\text{ATP}]}_{\beta * K_{Glu} * K_{ATP}} + \underbrace{[\text{Aba}] * [\text{ATP}]}_{\alpha * K_{Aba} * K_{ATP}} + \underbrace{[\text{Glu}] * [\text{Aba}] * [\text{ATP}]}_{\alpha * \beta * \gamma * K_{Glu} * K_{Aba} * K_{ATP}}$	(2)
$\gamma {f GCS}^c$	
$\begin{split} V_{\gamma GCS} &= \phi_0 + \frac{\phi_1}{[\text{Glu}]} + \frac{\phi_2}{[\text{ATP}]} + \frac{\phi_3}{[\text{Ala}(\text{CI})]} + \frac{\phi_{12}}{[\text{ATP}]^*[\text{Glu}]} + \frac{[\text{GSH}]}{[\text{Glu}]} \left(\frac{\phi_1}{K_{ig}} + \frac{\phi_{12}}{K_{ig*}[\text{ATP}]}\right) \\ &+ \frac{[\text{GSH}]*\phi_2}{[\text{ATP}]*K_{ig'}} + \left(\frac{[\text{Glu}-\text{Ala}(\text{CI})]}{[\text{Glu}]}\right) \left(\frac{\phi_1}{K_{id}} + \frac{\phi_{12}}{[\text{ATP}]*K_{id}}\right) + \frac{[\text{ADP}]*\phi_2}{[\text{ATP}]*K_{iADP'}} \\ &+ \left(\frac{[\text{ADP}]*\phi_2}{[\text{Ala}(\text{CI})]}\right) \left(\frac{1}{K_{iADP}} + \frac{1}{[\text{ATP}]*K_{iADP}*K_{aATP}} + \frac{1}{[\text{ATP}]^*[\text{Glu}]*K_{iADP}*K_{aATP}*K_{KaGlu}}\right) \end{split}$	(4)

^aThe equation takes MTA into account, which behaves behaves as competitive inhibitor onto dAdoMet (dSAM)

^bOnly one Cys residue (Cys-319 in T.brucei γ GCS) is invariant. Mutation of Cys-319 to Ala in T. brucei γ GCS renders the enzyme insensitive to cystamine inactivation without significantly affecting the enzyme's catalytic effciency, kinetic mechanisms or substrate affinities.

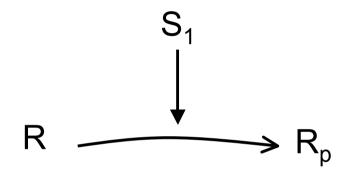
^cthe equation includes the inhibitory terms resulting from the presence of glutathione (GSH) and all the inhibitor terms containing phosphate concentration have been omitted due to the lack of phosphate binding to enzymes species.

(c) David Gilbert, Xu Gu 2008

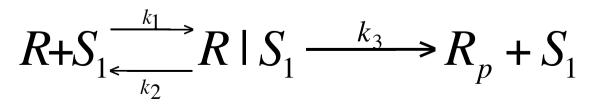
Kinetic Data

Discription	Experimental measurements	References
s-adenosylmethionine decarboxylase	$K_m = 0.38 \pm 0.15 mM$ $V_{max} = 3s^{-1}(4\mu mol/min/mg)$ $k_{cat} = 0.0013 \pm 0.0004s^{-1}$ AdoMetDC _{MW} = 0.25 - 0.3ng [AdoMet] _{initial} = 0.04mM	(9)
Ornithine decarboxylase	$\begin{split} K_m &= 280 \pm 30 \mu M \\ K_{iDFMO} &= 220 \pm 70 \mu M \\ V_{max} &= 2.7 \times 10^6 nmolCO_2/h/mg \\ [\text{Ornithine}]_{initial} &= 50 \mu M \end{split}$	(7)

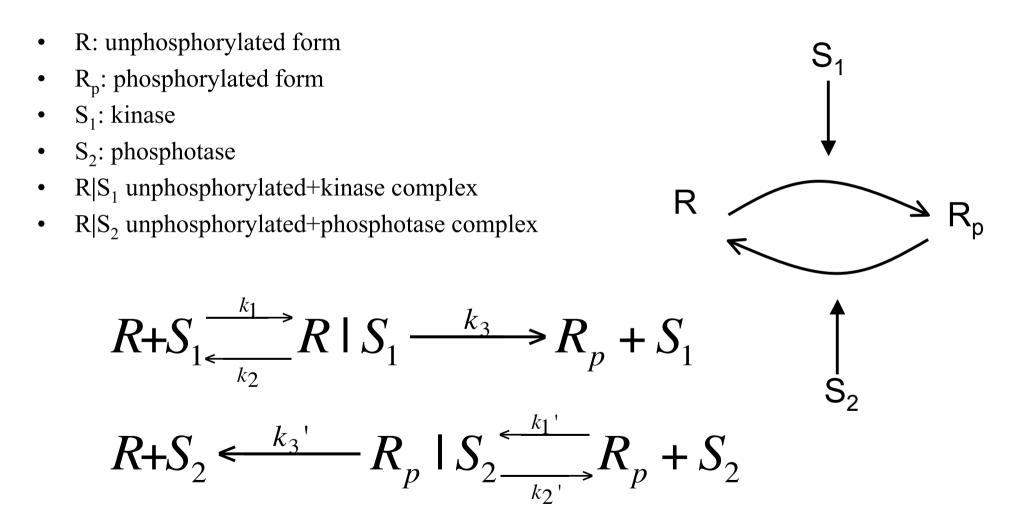
A black art?

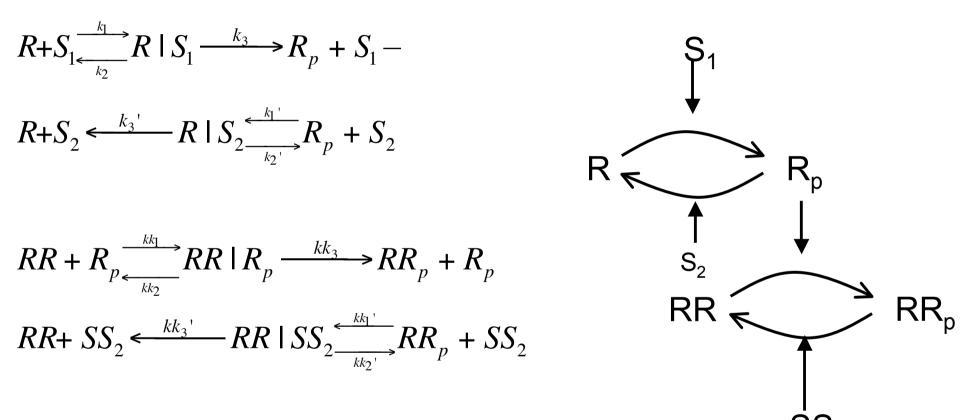

Conclusions and Outlook

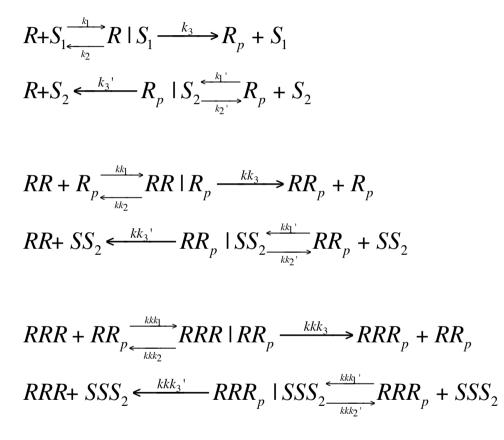
- Differential equations allow exact predictions of systems behaviour in a unified formalism
- Modelling = *in silico* experimentation
- Difficulties:
 - translation from biology
 - modular model building interfaces, e.g. Gepasi/COPASI, Genomic Object Net, E-cell, Ingeneue
 - managing complexity explosion
 - pathway visualization and construction software
 - standardized description language, e.g. Systems Biology Markup Language (SBML)
 - lack of biological data
 - perturbation-based parameter estimation, e.g. metabolic control analysis (MCA)
 - constraints-based modelling, e.g. flux balance analysis (FBA)
 - semi-quantitative differential equations for inexact knowledge

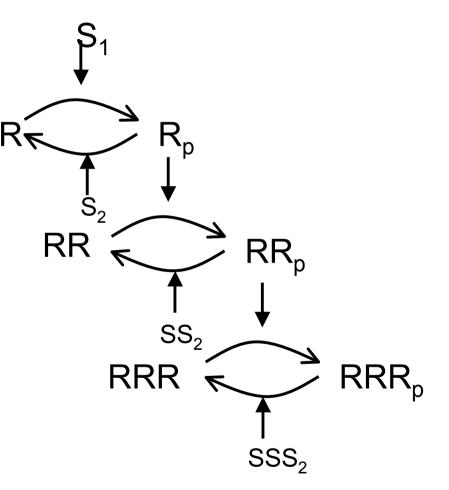

Modelling and modularisation

Example: Signalling pathway cascades

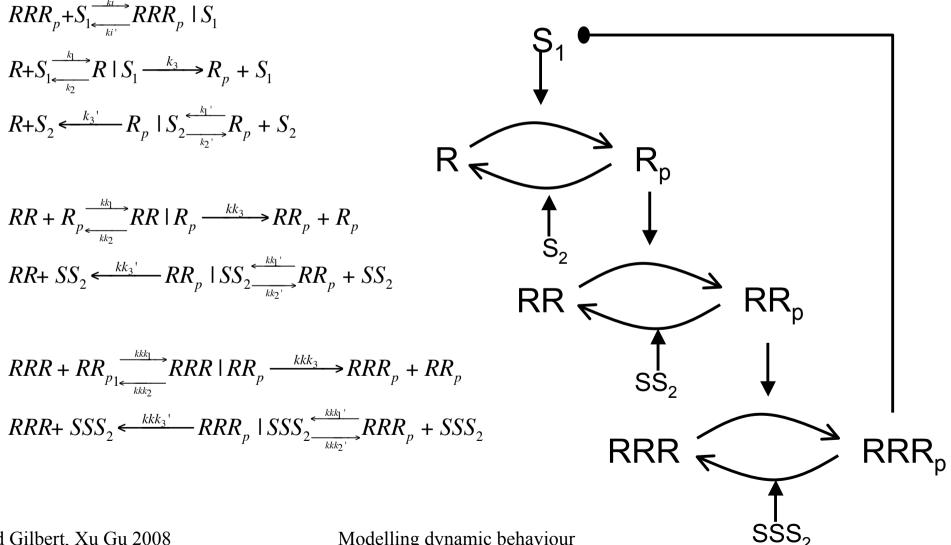

Mass action for enzymatic reaction - phosphorylation


- R: substrate,
- R_p: product (phosphorylated R)
- S₁: enzyme (kinase)
- $R|S_1$ substrate-enzyme complex

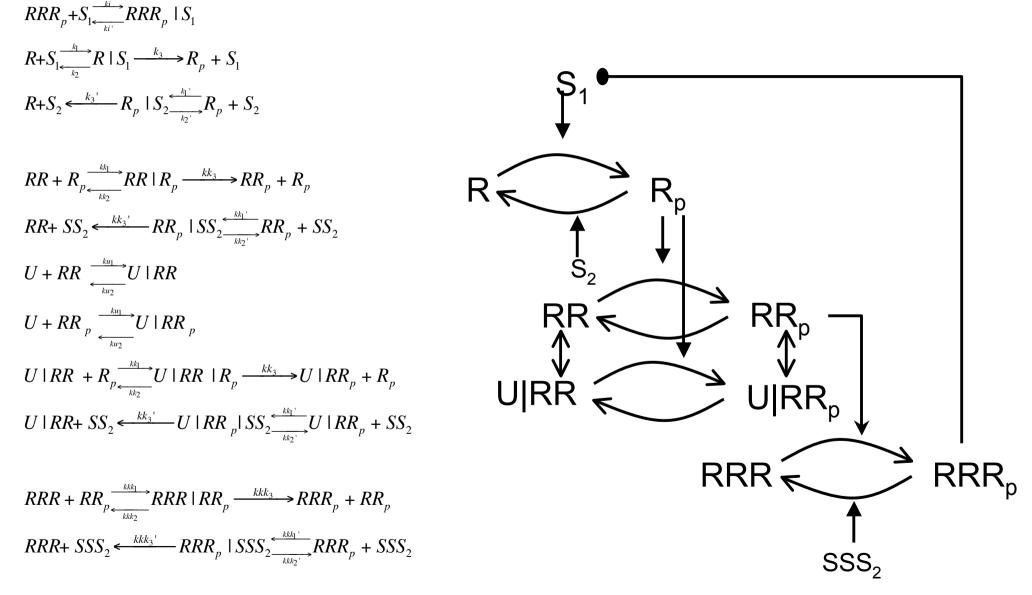

Phosphorylation - dephosphorylation loop Mass action model 1



Phosphorylation cascade: 2-stage, Mass Action model 1



Phosphorylation cascade: 3-stage, Mass-Action model 1



Phosphorylation cascade + negative feedback: 3stage, Mass Action, model 1

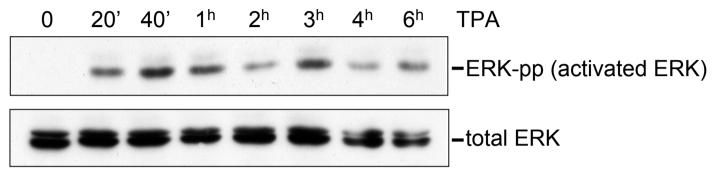
(c) David Gilbert, Xu Gu 2008

Phosphorylation cascade + negative feedback: 3stage, Inhibitor on 2nd stage, Mass Action

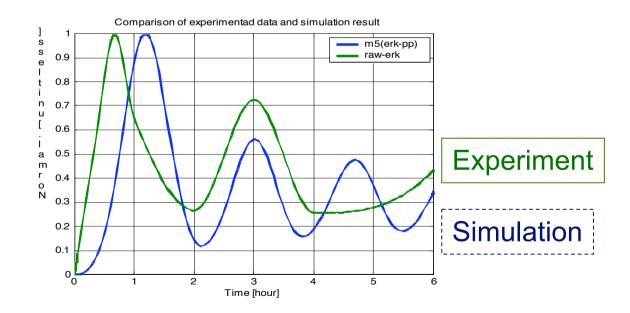


(c) David Gilbert, Xu Gu 2008

Further Analyses


- All initial concentrations can be varied at will, e.g. to test a concentration series of one component (sensitivity analysis)
- Effect of slightly different k-values can be tested (stability of the model with respect to measurement/estimation errors)
- Effect of inhibitors of each reaction (changed k-values) can be predicted
- Concentrations at each time-point are predicted exactly and can be tested experimentally

Combination of positive & negative feedback: Simulation



(c) David Gilbert, Xu Gu 2008

Combination of positive & negative feedback: Simulation vs. Experimental Data

Western blots COS1 cell lysates

Lecture outline

- Biochemical reactions
- Modelling with Ordinary Differential Equations
- Kinetics : Mass Action
- Examples
 - Signalling & metabolic pathways
 - Trypanothione metabolism in *Trypanosoma brucei*
 - Oscillators & Amplifiers
- Analysis
- ODE simulators