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In this paper we consider the period vehicle routing problem, which is the problem of designing routes
for delivery vehicles to meet customer service level requirements (not all customers require delivery
on every day in the period). A heuristic algorithm, based upon the daily vehicle routing algorithm of
Fisher and Jaikumar, is presented and computational results are given for test problems drawn from

the literature.

INTRODUCTION

THE PERIOD vehicle routing problem (PVRP) is
the problem of designing routes for delivery
vehicles for all the days of a given T-day period
where not all customers require delivery on
every day in the period. Typically, if a customer
requires k (< T) visits during the period then
these visits may only occur in one of a given
number of allowable k-day delivery combina-
tions. For example, if a customer requires
two deliveries in a 5-day week then the allow-
able delivery combinations might be
Monday/Wednesday, Tuesday/Thursday or
Wednesday/Friday with no other combinations
of delivery days being acceptable. Note here
that the PVRP is a generalisation of the single-
day (daily) vehicle routing problem (VRP)
which has been extensively discussed in the
literature (see [8, 11]).

In this paper we present a heuristic algorithm
for the PVRP based upon the successful single-
day vehicle routing algorithm of Fisher ez al.
[5, 6], but first we review the work in the litera-
ture dealing with the PVRP.

PREVIOUS WORK

Early work on the PVRP was carried out by
Beltrami and Bodin [1] in their study of hoist
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compactor routing. They considered two ap-
proaches to the problem:

(1) developing routes which were then assigned
to delivery days; and

(2) assigning customers to delivery days and
then routing each day separately.

Russell and Igo [10] proposed three approaches
to the problem:

(1) assigning customers to delivery days by a
clustering algorithm where the clusters for
each day were formed around customers
with a single allowable delivery combina-
tion,

(2) an adaptation of the single-day vehicle rout-
ing heuristic MTOUR of Russell [9] which
is based on the travelling salesman heuristic
of Lin and Kernighan [7],

(3) an adaptation of the single-day vehicle rout-
ing heuristic of Clarke and Wright [3].

Christofides and Beasley [2] presented heuristic
algorithms for the PVRP based upon an initial
choice of customer delivery days to meet service
level requirements followed by an interchange
procedure to improve upon the choice of deliv-
ery days. Their algorithms replaced the under-
lying daily VRP by:

(1) a median problem; and
(2) a travelling salesman problem
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in order to computationally evaluate inter-
changes in customer delivery combinations.

In the next section we develop a formulation
of the PVRP based upon the formulation of the
single-day VRP given by Fisher and Jaikumar
[6]. Note here that although Fisher et al. [5] have
discussed an application of their approach [6] to
a practical problem involving choice of cus-
tomer delivery days, few details of the algorithm
used were given.

PROBLEM FORMULATION

In this section we first review the formulation
of the single-day VRP given by Fisher and
Jaikumar [6] and then extend that formulation
to the PVRP. This leads to a large, complex,
zero-one integer program and so we develop a
simpler formulation of the PVRP as a smaller
zero-one integer program and discuss how this
program can be solved computationally.

Fisher and Jaikumar formulation

Fisher and Jaikumar [6] formulated the
single-day VRP in the following way:
Let

g;  bethe demand of customeri(i =1,...,n)
0O, be the capacity of vehicle k (k =1, ..., K)
d, be a measure (derived in some fashion) of
the distance contribution of customer i
(i=1,...,n) to the route followed by

vehicle k (k =1, ..., K) if customer i were
to be delivered to by vehicle k.
Define
x; =1 if customer i (i =1,...,n) is delivered

to by vehicle k (k=1,...,K)
= 0 otherwise,

then the single-day VRP can be formulated as:

min ., 3 dyxy M
i=1 k=1
K
sty xp=1 i=1,...,n ?2)
k=1
Yogxu<Q k=1,..., K 3)
i=1
X e©1) i=1,....n k=1,....K )

Equation (1) represents the total distance trav-
elled, equation (2) ensures that each customer is
assigned to a vehicle, equation (3) ensures that
the vehicle capacity is not exceeded and equa-
tion (4) is the integrality constraint.
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As noted in [6] the program [equations (1) to
(4)], is a linear (n by K) generalised assignment
problem (for which computationally effective
optimal algorithms exist), the solution to which
defines a (capacity) feasible assignment of cus-
tomers to vehicles. The delivery sequence for
each vehicle can be determined by applying any
(heuristic or optimal) travelling salesman algor-
ithm to the customers assigned to the vehicle.

Fisher and Jaikumar [6] define the (d; ) matrix
by generating K ‘seed points’ (one for each
vehicle) and letting d; equal the extra distance
travelled when customer i is inserted into the
route in which vehicle k travels out from the
depot to its seed point and back again. Com-
putational results for the algorithm on a number
of test problems drawn from the literature indi-
cate that the method is, on average, currently
the best known method for the single-day VRP.

At first sight it might appear simple to extend
the formulation given above from the single-day
(n customers, K vehicles) VRP to the T-day [(n
customers, KT vehicles (K available each day)]
PVRP and still retain the linear generalised
assignment structure. In the next section we
show that this is not so and that the extended
formulation is a large, complex, zero-one
integer program.

Extension to the PVRP

In the PVRP we cannot assign customers
directly to vehicles but must first assign a cus-
tomer to an allowable delivery combination,
thereby defining the delivery days for the cus-
tomer, and then assign the customer to a deliv-
ery vehicle on each of the chosen delivery days.
This means that the PVRP is not an n by KT
linear generalised assignment problem, as might
be supposed, but a much larger and more
complex problem. Formally:

Let

R be the number of distinct delivery
combinations

S; be the set of allowable delivery
combinations for customer i

Scll,2,...,R](i=1,...,n)
q; be the demand of customer i
(i=1,...,n) for each delivery

Oy be the capacity of vehicle &k
k=1,...,K)
dy, be a measure (derived in some fashion)

of the distance contribution of customer
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i(i=1,...,n) to the route followed by
vehicle k (k=1,...,K) on day ¢
(¢=1,...,T) if customer i were to be
delivered to by vehicle k on day ¢ (note
here that, for simplicity, we assume all K
vehicles are available on each day of the
period).

Let
a,, =1 if delivery combination r (r =1,..., R)
involves delivery onday ¢t (¢t =1,...,T)
= 0 otherwise.

Define
x, =1 if customer i (i =1, ..., n) is assigned to
delivery combination r(eS))
= 0 otherwise.

Y= lif customeri (i =1,...,n)is delivered to
by vehicle £ (k=1,...,K) on day ¢
(t=1,...,7)

=0 otherwise.
Then the PVRP can be formulated as:

n K T
mlﬂz Z Zdiktyik/ (5)
i=1 k=1 1=1
sty x,=1 i=1,...,n (6)
reS;
K
N V=Y ayx, i=1..., nt=1,....,T (7)
k=1 reSi
ZqiyikISQk k=1,...,K t=1,..., T (8)
i=1
x,€(0,1) VreS, i=1,..., n 9)
V€@, 1) i=1,...,n k=1,...,K t=1,...,T (10)

Equation (5) represents the total distance trav-
elled and equation (6) ensures that an acceptable
delivery combination is chosen for each cus-
tomer. In equation (7) the term on the right-
hand side is one if a combination is chosen for
customer i that involves a delivery on day ¢ and
zero otherwise. Hence equation (7) ensures that
a vehicle is used for a delivery to a customer i
on some day ¢ if the delivery combination
chosen for i requires it. Equation (8) ensures
that the vehicle capacity is not exceeded and
equations (9) and (10) are the integrality con-
straints.

It is clear that the program [equations (5) to
(10)] is a large, complex, zero-one integer pro-
gram involving 0(n + nT + KT constraints and
O0(nKT) variables which would be (com-
putationally) difficult to solve optimally (unlike
the Fisher and Jaikumar [6] formulation of the
single-day VRP which being only a small linear

generalised assignment problem is relatively
easy to solve optimally).

We see then that the extension of the Fisher
and Jaikumar formulation to the PVRP leads to
a program that is difficult to solve optimally.
However, by regarding the PVRP as the prob-
lem of assigning customers to delivery combina-
tions (and neglecting the assignment of custom-
ers to vehicles) we can represent the PVRP by
a smaller zero-one integer program. We outline
this approach in the next section.

Formulation of the PVRP

We can regard the PVRP as the problem of
assigning customers to delivery combinations
within an overall constraint upon the total
demand on any day of the period. Formally:

Let

D, be a measure (derived in some fashion)
of the distance contribution of customer
i (i=1,...,n) to any route involving
customer ionday t (¢ =1,...,T).

We shall call (D) the contribution matrix. The
PVRP can now be formulated as:

n T
min Y Y Y Da,x,

i=1 1= reS;

(In

sty x,=1 i=1,...,n (12)
reS;
n K
quianxirSZQk t=1,...,T (13)
i=1 reS; k=1
x,€(0,1) VreS, i=1,...,n (14)

Equation (11) represents the total distance trav-
elled, equation (12) ensures that an acceptable
delivery combination is chosen for each cus-
tomer, equation (13) ensures that the total deliv-
ered on any day does not exceed the total vehicle
capacity and equation (14) is the integrality con-
straint. We shall call the above program [equa-
tions (11) to (14)] the PVRP program.

Note here that the PVRP program only as-
signs customers to delivery days and we still have
to solve the T (independent) single-day VRP’s
that result. This could conveniently be done us-
ing the Fisher and Jaikumar [6] algorithm for the
VRP (or any other algorithm for the VRP).

Note also that, so far, we have only considered
the PVRP in terms of a constant amount (g; for
each customer i) being supplied at each delivery.
It is clear from the nature of equation (13) that
we could easily modify the PVRP program to
cope with the situations where:
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(a) the amount supplied at each delivery de-
pends upon the day of delivery (define ¢;,
i=1,...,nt=1,..., T in the obvious
way)

(b) the amount supplied at each delivery de-

pends upon the day of delivery and the
customer combination chosen (define g,,
i=1,...,nVreS, t=1,...,T in the
obvious way).
Both of these situations require only minor
changes to the algorithm presented below.
In the next section we consider how, com-
putationally, we might solve the PVRP program.

Solution of the PVRP program

Considering the PVRP program we see that it
involves (n + T') constraints and

(£5)

variables. Hence for a problem involving 100
customers for delivery over a five-day week with
an average of three allowable delivery combina-
tions per customer we would have a problem
involving 105 constraints and 300 variables. As
in linear programming (LP) terms this is not a
particularly large problem it raises the possi-
bility of solving the PVRP program via LP.
The LP relaxation of the PVRP program
involves replacing equation (14) by the equation

x,>20 Vres, (15)

Note here that the upper limit of one on each
variable from equation (14) is automatically
enforced by equation (12). Since, from equation
(12), we need at least n variables non-zero and
there are only (n + T') constraints then we claim
that, at most, 2T variables can be non-integer
(fractional) in the optimal solution to the LP
relaxation of the PVRP program. This can be
seen as follows: from equation (12), for each
customer i, we have that in the optimal solution
to the LP relaxation of the PVRP progra

either '

(a) exactly one x, (r €S;) value is non-zero
(and hence equal to one so integer); or
(b) two (or more) x, (r €S;) values are non-

zero (fractional, but summing to one).

Suppose n, customers fall into category (a).
Since the LP relaxation of the PVRP program
has (n + T') constraints then, at most, (n + T) x,
variables can be non-zero. Of these (n + T)
non-zero values n; values are integer and hence
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at most (n + T) — n, values are fractional. Now
(n — n,) customers fall into category (b) above
and as each customer in category (b) requires,
at least, two fractional variable values we must
have 2(n —n;) < (n + T) — n,. Rearranging we
get n, > (n — T) and hence the maximum num-
ber of fractional variable values (n + T) - n,
satisfies (n + T) —n, < 27, i.e. at most 2T vari-
ables can be fractional in the optimal solution to
the LP relaxation of the PVRP program. We
would expect that, in practice, far fewer than 2T
variables would be non-integer. Any non-
integer variables could be dealt with

(a)
(b)

heuristically (e.g. by rounding); or
optimally, by the wuse of cutting
planes/tree search.

Since the PVRP program cannot really be re-
garded as an exact formulation of the PVRP
problem (depending, as it does, on actually
knowing the (D,) values) we decided to solve
the PVRP program heuristically by solving the
LP relaxation of the PVRP program exactly and
then rounding any non-integer variable values
in the following manner:

(1) Let (X,,) represent the values of (x;) in the

solution to the LP relaxation of the PVRP

program.

Consider the (X;) in descending order and

for each X, (s € S;) assign combination s to

customer j if

(a) j has not previously been assigned a
delivery combination; and

(b) combination s together with the pre-
viously assigned delivery combinations
do not produce any capacity infeasible
days.

At the end of (2) any customer j not as-

signed a delivery combination is assigned

the combination s(eS;) with the largest X

value (in which case the (rounded) integer

solution will be infeasible).

()

A3)

It is clear that for the PVRP program to give a
reasonable assignment of customers to delivery
days care must be taken in the definition of the
contribution matrix (D, ). In the next section we
outline our approach to defining this matrix.

CONTRIBUTION MATRIX DEFINITION

In their algorithm for the single-day VRP
Fisher and Jaikumar [6] defined their measure
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[di—equation (1)] of the distance contribution
of a customer to a vehicle route by first gener-
ating a seed point for each vehicle route and
then calculating the extra distance involved in
inserting customers into the routes from the
depot to the seed points. Since their approach
was so successful computationally we will fol-
low a similar approach in defining our measure
(D,,) of the contribution of a customer to the
routes on any particular day. We shall assume
here that the reader is familiar with the seed
point generation procedure of Fisher and Jaiku-
mar [6].

Initially we want to choose KT seed points (K
for each day) but, in general, have little idea of
the customers that will be scheduled for delivery
on day ¢ (except for any customers i for which
there is only one allowable delivery combina-
tion, i.e. |S;| =1). Hence we will choose KT
points to act as seed points and associate a day
with each one. Formally this can be accom-
plished as follows.

Step 1. Define

(i)

and use the Fisher and Jaikumar seed gener-
ation procedure on the single-day VRP consis-
ting of:

(a)
(b)

(the average vehicle capacity)

KT vehicles of capacity Q*
n customers where customer i has demand
given by
T
min<q,- Y a,|Vre S,-)

=1

(16)

Essentially this equation represents the total
amount delivered to customer i over the T-day
period.

Step 2. Let P be the entire set of KT seed
points as decided at step 1 above. Then to
associate a day ¢ with each seed point p we form
the matrix (v,) where v, is interpreted as the
value of having seed point p(eP) assigned to
day ¢ (¢ =1,..., T). This matrix is formed by:

(i) let B be the set of customers such that

(a) the total demand of the customers in
B does not exceed the vehicle
capacity Q*
<i.e‘2qisQ*>

ieB
(b) each customer i€ B could be as-

signed a combination which would

501

result in a delivery on day ¢

<i.e. Y oa,> 1>
reSi

the customers in B are the |B |
nearest customers to the seed point
p with regard to all the customers
for whom it is possible to make a
delivery on day ¢

(d) | B is a maximum

then we define v, by

©

(if)

vp,=2[z ar1/|S1|:| amn

ieB | _reSi

where the value in square brackets in
equation (17) above is the fraction of those
combinations for i which include ¢ as a
delivery day. Intuitively the larger the
value v, is the more attractive it is to
associate day ¢ with seed point p

let y,, = 1 if seed point p € P is assigned to

day t (¢t =1,...,7)
= 0 otherwise,
then consider the prcgram

T
max Y, ) U,y

peP 1=1

(iif)

(18)

T
st.) yy=1 VpeP (19)
=1

(20)
@n

Equation (19) ensures that each seed point
is allocated to just one day and equation
(20) ensures that K seed points are chosen
for each day. This program [equations (18)
to (21)] can be viewed as a linear assign-
ment problem and is easily solved to give
K seed points for each day. Note here that
this approach to assigning seed points to
days is based on a similar approach given
in [2].

Step 3. Let (Y,,) represent the values of (y,)
in the optimal solution of the above program
[equations (18) to (21)]. Then we can define the
contribution matrix (D,) by D, = min(extra
distance travelled in inserting customer i in the
route from the depot to seed point p and back
again | Y, =1VpeP).

Once the contribution matrix has been de-
cided as above then we can solve the PVRP
program, as discussed previously, to assign cus-
tomers to delivery combinations. We felt that
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(since the choice of seed points for each day was
fairly arbitrary) a better solution would be
obtained by repeating the process, but with the
seed points adjusted to cope with the customer
delivery combinations chosen. Hence we have

Step 4. Let V, (t=1,...,T) be the set of
customers who have a delivery on day 7 in the
solution to the PVRP program obtained as
described above. Then use the Fisher and Jaiku-
mar seed generation procedure, for each day ¢,
where the VRP for day ¢ consists of

(a) K vehicles of capacity Q*
(b) the customer set ¥, where customer i € V,
has demand g¢;.

We can use the seed points associated with each
day to again define the contribution matrix (D,,)
and hence to resolve the PVRP program. Whilst
step 4 could be repeated, examination of a
limited number of computational experiments
appeared to show no significant advantage in
doing so, and so in the computational results
reported later we only carried out step 4 once.

In the next section we discuss how we can
evaluate the final set of customer delivery com-
binations produced by the above algorithm in
order to ascertain whether they are a ‘good’ set
of customer delivery combinations or not.

COMBINATION EVALUATION

There is a computational difficulty with eval-
uating any set of customer delivery combina-
tions and this can be illustrated by the following
question: “suppose I give you two sets of cus-
tomer delivery combinations and ask you to
choose the better set—how can you choose?”’

The better set of delivery combinations is the
set that has the lowest total routing distance
across the period (all days having a feasible
routing). To decide the total distance for any set
of customer delivery combinations we need to
solve the VRP for each of the T days in the
period optimally. This is computationally very
difficult to do for even a small (say 20-30)
number of customers per day. Accordingly all
we can do is use the same (single-day VRP)
heuristic algorithm on each set of delivery com-
binations and choose the combination set that
gives the lowest overall routing distance (all
days feasible). Note that this choice might differ
from the choice that we would have made if we
could have solved the daily VRP’s optimally.

We mentioned before that one way of solving
the 7 daily VRP’s associated with each set of
customer delivery combinations would be to use
the Fisher and Jaikumar [6] algorithm. Since, in
this paper, we were primarily interested in com-
paring the quality (in routing terms) of the
customer delivery combinations chosen by our
algorithm with those chosen by the algorithms
given in [2] we decided to adopt the same
approach as used in [2] to solving daily VRP’s.
In that paper we generated many solutions for
each daily VRP, and improved these solutions
using a sophisticated interchange algorithm.
For tightly constrained VRP’s routes were also
constructed manually.

In the next section we report on the com-
putational performance of our algorithm for the
PVRP on test problems drawn from the litera-
ture.

COMPUTATIONAL RESULTS

The algorithm for the PVRP presented in this
paper was programmed in FORTRAN and run
on a CDC 7600 using the FTN compiler with
maximum optimisation. The LP relaxation of
the PVRP program was solved using the APEX-
III linear programming package.

Table 1 (from [2]) gives details of the prob-
lems solved, all of which were taken from
Christofides and Beasley [2] being derived from
problems in Eilon ef al. [4] and Russell and Igo
[10]. Note here that to solve the problem from
Russell and Igo [10] we had to change our
algorithm to cope with the situation where the
amount delivered to a customer depends upon
the day delivery is made (a simple modification).

Table 2 shows the results of the heuristic
algorithm. In that table we give, for each prob-
lem, the total number of variables

(é:l | S, l)

in the PVRP program, the number of fractional
variable values in the solution to the LP relax-
ation of the PVRP program (final iteration) and
the total time in CDC 7600 seconds. We also
give, for each problem, the total routing dis-
tance across the period (derived as described
above) for the final set of customer delivery
combinations as decided by our algorithm and
the best total routing distance across the period
as reported in [2] for the Christofides and
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Table 1. Problem details

Number of Eilon et al. [4] Length of Vehicles
Problem customers problem period T each day
number n number (days) (K) Combination details
50b 50 8 5 3 demand < 10 one delivery in period
11 < demand < 25 (10100) or (01010) or (00101)
demand > 26 delivery every day
75b 75 9 5 6 demand < 15 one delivery in period
16 < demand < 27 (10100) or (01010) or (00101)
demand > 28 delivery every day
100b 100 10 5 5 demand < 10 one delivery in period
11 < demand < 25 (10100) or (01010) or (00101)
demand > 26 delivery every day
100d 100 10 5 4 demand < 10 one delivery in period
11 < demand < 25 (10100) or (01010) or (00101)
demand > 26 (10101) or (01011) or (11010)
Russell 126 5 4 See Russell and Igo [10] and section 7 of [2]

Note: (01010) means no delivery on the first day of the period, delivery on the second day, no delivery on the third day etc.

Beasley algorithms where the underlying daily
VRP’s are replaced by

(1) a median problem; and
(2) a travelling salesman problem (TSP)

together with the total time in CDC 7600
seconds for the Christofides and Beasley
algorithms. Note here that all the times given
exclude the time to generate the routes for the
daily VRP’s (in order to evaluate the chosen
delivery combinations).

Examining Table 2 we see that the optimal
solution to the LP relaxation of the PVRP
program is often integer or nearly all-integer (as
expected) and also that the computation times
are reasonable. Turning to the total routing
distance the computational results show that,
over all five problems attempted, the algorithm
presented in this paper is roughly competitive
with the algorithm of Christofides and Beasley
based on a median problem. Note however that
the result for the Russell problem indicates that
as both the number of customers and, more
critically, the amount of customer combination

choice

(£1s1)

in the problem increase, the algorithm presented
in this paper becomes very competitive with the
algorithm of Christofides and Beasley based on
a median problem.

It is also clear from Table 2 that the algorithm
of Christofides and Beasley based on a travel-
ling salesman problem produces a lower total
routing distance, but at the expense of a much
higher computation time. This tradeoff between
quality of result and computer time incurred is
common with heuristic algorithms.

Overall then we conclude that the heuristic
algorithm presented in this paper for the PVRP
is a computationally inexpensive way of solving
the problem which leads (in terms of underlying
total routing distance) to a reasonable set of
customer delivery combinations.

CONCLUSIONS

In this paper we considered the period vehicle
routing problem (PVRP) and extended the

Table 2. Computational results

Christofides and Beasley
algorithm
Best routing distance

Christofides and Number of (Time CDC 7600 seconds)
Beasley problem Number of  fractional Routing distance
number n variables values (Time CDC 7600 seconds) Median problem TSP problem
50b 50 170 — 1481.3(2.2) 1487.6 (1.0) 1443.1 (2.7)
75b 75 263 2 2192.5(3.6) 2207.9 (1.5) 2187.3(25.2)
100b 100 352 e 2281.8 (4.1) 2294.2 (4.8) 2153.3(63.3)
100d 100 380 2 1833.7 (4.2) 1819.2(3.9) 1674.0 (26.7)
Russell 126 665 2 878.5(6.0) 883.4(16.8) 847.3(73.4)
Total 8667.8 (20.1) 8692.3 (28.0) 8305.0 (191.3)
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heuristic algorithm of Fisher and Jaikumar,
designed for the daily vehicle routing problem,

to

the PVRP. Computational results for test

problems drawn from the literature indicated
that the algorithm developed is a com-
putationally inexpensive way of obtaining
reasonable quality results.
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