RN

EISEVIER

European Journal of Operational Research 94 (1996) 517-526

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

A tree search algorithm for the crew scheduling problem

J.E. Beasley ", B. Cao
The Management School, Imperial College, London SW7 2AZ, United Kingdom

Received 7 October 1993; revised 7 March 1995

Abstract

In this paper we consider the crew scheduling program, that is the problem of assigning K crews to N tasks with fixed
start and finish times such that each crew does not exceed a limit on the total time it can spend working.

A zero—one integer linear programming formulation of the problem is given, which is then relaxed in a lagrangean way
to provide a lower bound which is improved by subgradient optimisation. Finally a tree search procedure incorporating this

lower bound is presented to solve the problem to optimality.

Computational results are given for a number of randomly generated test problems involving between 50 and 500 tasks.

Keywords: Crew scheduling; Lagrangean relaxation; Optimisation

1. Introduction

Crew scheduling problems occur frequently in the
real world, such as those found in the airline and
mass transit (typically bus) industries. Although pa-
pers can be found in the literature dealing with
“‘crew scheduling’’ problems they often present al-
gorithms tailored to the constraints and conditions
prevailing in a particular industry.

In our view, however, a generic industry indepen-
dent ‘‘crew scheduling’’ problem is important in the
sense that it conveys a clear view of the underlying
structure of industry dependent crew scheduling
problems. On top of this generic problem any partic-
ular industrial application may impose a number of
additional constraints /conditions.

In this paper therefore we, following the approach
of earlier workers [8,11,14], adopt the approach of

" Corresponding author.

defining the generic crew scheduling problem. We
then present a zero—one integer linear programming
formulation for this generic crew scheduling prob-
lem, which is relaxed to provide a lower bound for
imbedding in a tree search procedure to solve the
problem optimally.

1.1. The generic problem

The generic crew scheduling problem (henceforth
the CSP) involves a number of distinct elements:

1. N tasks which have to be performed by K (< N)
crews (each crew being identical and located at
the same depot from which they start their work
“‘day’’ and at which they end their work ‘‘day’’)

2. each task i has associated with it:

- d, the cost of performing task i,

- a fixed start time s, together with a fixed
finish time f; (> s,, implying a fixed duration
of f,—s; for the task),

0377-2217,/96 /$15.00 © 1996 Elsevier Science B.V. All rights reserved

SSDI 0377-2217(95)00093-3

518

J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526

- atravel time and cost (b; and c,, respectively)
which are the time /cost incurred when a crew
travels from the depot to task i (and vice-
versa).

Without loss of generality we shall assume that

the tasks have been numbered in ascending start

time (s;) order.

. for any two tasks i and j (j>i) there is a

transition arc of cost c¢;; if it is possible for the
same crew to perform task i and then to perform
task j,

. we define a crew path (or more simply a path) to

be the (non-empty) set of tasks (arranged in as-
cending order) that will be performed by the same
crew,

. the problem therefore is to find crew paths (of

minimum total cost) such that each task is per-
formed exactly once and the total working time
involved in each path (where by working time we

mean the elapsed time between departure from

the depot and arrival back at the depot) does not

exceed the available working time 7.
Conceptually the problem is best viewed graphically
as in Fig. 1 (e.g. see [4,5,8,11,12,14]). In that figure
we have plotted time along the horizontal axis. The
tasks that have to be performed are the vertices (with
‘‘length’” equal to their duration). Vertices are linked
to each other by transition arcs. The depot is shown
twice, as O to represent the start of a crew path and
as N+ 1 to represent the end of a crew path. Be-
cause of the time dimension Fig. 1 is acyclic, i.e.
there are no cycles in the graph.

The problem therefore is to find K vertex (task)
disjoint paths from O to N + 1 in Fig. 1 such that:
1. all tasks are on a path,

2. the working time involved in each path does not

exceed T,

3. the total cost of the paths is a minimum.

Tasks

Time

Fig. 1. Note: Although 0 and N + 1 are shown above there are no fixed times associated with them (unlike tasks).

J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526 519

Since each task is performed exactly once the total
cost associated with performing the tasks L', d; is
the same for all feasible solutions and hence can be
neglected. The only cost term therefore comes from
the costs associated with the transition arcs.

Transition arcs play a key role in our formulation
of the CSP. Conceptually it is helpful to think of Fig.
1 as initially including the complete set of transition
arcs [(i,)IVi,Vj>i,fi< sj]. Transition arcs that
are infeasible are then deleted from that figure. For
example any transition arc (i, j) for which b, + (f;
— ;) +b;> T can be deleted.

In general the transition arcs that need to be
deleted are deduced from some underlying knowl-
edge of the situation being considered. For example
we may require a minimum rest period T for the
crew between two successive tasks (i.e. we require
(s;—f)> 7). Also if two tasks i and j are being
performed at different geographic locations then it
may simply not be physically possible for the crew
to travel from the ‘i location’’ to the ‘‘j location’’
in the time (s; — f;) available.

2. Literature survey

A number of the crew scheduling papers in the
literature can be classified in general terms as:

1. generate and cost an initial set (S) of candidate
feasible crew schedules

2. formulate the problem of selecting from S a
minimum cost subset that performs all tasks ei-
ther as a set covering problem (SCP) or as a set
partitioning problem (SPP)

3. solve the SCP/SPP using an appropriate algo-
rithm (e.g. linear programming (LP) based branch
and bound).

Some papers use column generation techniques to

expand the initial set S of candidate crew schedules

(typically based upon a shortest path calculation

utilising dual information from the solution to the LP

relaxation of the problem).

A number of additional constraints may also be
added to this SCP/SPP formulation of the problem
(e.g. crew base constraints in airline crew schedul-
ing).

In order to structure our literature survey we
consider airline crew scheduling, mass transit crew
scheduling and generic crew scheduling separately.

2.1. Airline crew scheduling

Graves, McBride, Gershkoff, Anderson and
Mahidhara [22] present an algorithm that follows the
general approach given above (SPP, no column gen-
eration) with the exception that the elastic SPP (which
allows constraints to be violated provided a penalty
cost is incurred) is used. Crew base constraints are
also considered. Limited computational results are
reported for problems involving up to 1716 tasks.

Hoffman and Padberg [23] present an algorithm
that follows the general approach given above (SPP,
no column generation). The SPP (with additional
crew base constraints if necessary) is solved by a
branch and cut algorithm (which involves solving the
LP relaxation of the problem and incorporating cuts
derived from polyhedral considerations). Computa-
tional results are given for a large number of real-
world problems involving up to 825 tasks.

Gershkoff [21] discusses crew scheduling at
American Airlines. They use a heuristic procedure
for the SPP formulation of the problem (based upon
the work of Rubin [29]) whereby from an initial crew
schedule a (small) number of crew paths are chosen
and the subproblem (set of tasks) corresponding to
the selected crew paths is solved to optimality (via
explicit enumeration of all possible feasible crew
schedules and LP-based branch and bound). The
initial crew schedule can then be updated using this
optimal solution and the process repeated. Anbil,
Gelman, Patty and Tanga [1] provide an update on
the crew scheduling work at American Airlines.

Lavoie, Minoux and Odier [24] present an algo-
rithm that follows the general approach given above
(SCP, column generation). Column generation is
based upon a shortest path calculation on an acyclic
feasibility graph. Once the LP-based column genera-
tion procedure fails to generate any attractive candi-
date schedules it is suggested that the final SCP is
optimally resolved via branch and bound. Computa-
tional results are given for a number of real-world
problems involving up to 329 tasks.

Crainic and Rousseau [16] present a heuristic

520 J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526

algorithm that follows the general approach given
above (SCP, column generation). Column generation
is based upon a heuristic procedure. Once the col-
umn generation procedure fails to generate any at-
tractive candidate schedules the final SCP is solved
using a heuristic algorithm. Computational results
are given for three real-world problems involving
between 34 and 120 tasks.

Ball and Roberts [5] present a heuristic algorithm
based upon finding an initial solution by constructing
feasible crew paths in Fig. 1 guided by the solution
to a sequence of minimum cost matching problems.
This initial solution is then improved by looking at
the potential savings resulting from rearranging the
tasks in all pairs of crew paths. A minimum cost
matching problem is solved to determine which rear-
rangements to make. Computational results are given
for four real-world problems involving between 264
and 1058 tasks.

For other work on airline crew scheduling see
[2,3,25,26,29].

2.2. Mass transit crew scheduling

Sousa [31] presents an algorithm involving both
man—machine interaction and a simple heuristic.
Computational results are given for a real-world
problem.

Desrochers and Soumis [17] present an algorithm
that follows the general approach given above (SCP,
column generation). Column generation is based upon
a resource constrained shortest path calculation on an
acyclic graph. Computational results are given for
two real-world problems involving 167 and 235 tasks.

Smith [30] presents an algorithm that follows the
general approach given above (SCP, no column gen-
eration).

Falkner and Ryan [18] present an algorithm that
follows the general approach given above (SPP, no
column generation). Computational results are given
for two real-world problems.

Martello and Toth [27] present a heuristic algo-
rithm for minimising the number of crews used
based upon a zero—one formulation of the problem.
Their algorithm is a greedy procedure that builds
upon a partial solution, guided by the solution to a
number of matching problems. Computational results
are given for two real-world problems.

Ball, Bodin and Dial [4] present an algorithm that
is similar to the algorithm presented in [5] for airline
crew scheduling. Computational results are given for
a real-world problem involving 1602 tasks.

For other work on mass transit crew scheduling
see [9,10,13,28,32].

2.3. Generic crew scheduling

For the generic crew scheduling problem defined
above Beasley and Cao [8] present an algorithm
based upon dynamic programming together with
computational results for randomly generated prob-
lems involving up to 500 tasks.

Cao [11] considered both the generic problem and
various extensions to that problem (involving rest
periods in a crew path, multiple depots, multiple
vehicle types and task start time windows). His
algorithms used a variety of methods — heuristics,
lagrangean relaxation, lagrangean decomposition and
dynamic programming.

Cheddad [14] proposed various linear program-
ming and lagrangean relaxation based algorithms.
Extensions to the generic problem were also consid-
ered.

3. Formulation and lower bound

In this section we illustrate how the CSP, as
defined above, can be formulated as a zero—one
integer linear programming problem. We then con-
sider a lagrangean relaxation of this formulation
which provides a lower bound for the CSP.

3.1. CSP formulation

Recall here that the CSP is the problem of finding
K vertex (task) disjoint paths from O to N+ 1 in
Fig. 1 such that:
1. all tasks are on a path,
2. the working time involved in each path does not
exceed T,
3. the total cost of the paths is a minimum.
Define:

v o= 1 iftransitionarc(i,j) isused
Y |0 otherwise

J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526 521

then the CSP is:
minimise:

ZC., X (1)

subject to:

Yoxu=2x;j=1,....N (2)
k i

Yox;=1 i=1,....N (3)
J

Zx0j=K (4)
J

time limit constraints (5)
x,;€(0,1) Vi,j (6)

Note here that although Eq. (5), representing the
requirement that the working time involved in each
path does not exceed T, could be written in a
mathematical way we prefer it as presented above
for simplicity.

In this formulation of the CSP Eq. (2) specifies
that the number of arcs leaving a task is equal to the
number entering the task. Eq. (3) specifies that one
arc leaves each task (i.e. that each task is on exactly
one path so that the paths are task disjoint). Eq. (4)
specifies that K arcs originating at O are used (or to
phrase it differently, K tasks are chosen to be the
first task on some path). Eq. (6) specifies that each
arc can be used at most once (i.e. that the paths are
arc disjoint).

3.2. Lagrangean relaxation

Introducing multipliers (#;) and relaxing Eq. (3)
in the above CSP formulation in a lagrangean fash-
ion (see [7,19,20] for a detailed description of la-
grangean relaxation) we get:

minimise:

?Cu U+lZu(1—2xU) (7

=1

subject to:

ijk Zx” j=1,....N (8)
ZijzK 9

time limit constraints (10)
xije(o’l) Vi,j (11)

Egs. (7)-(11) imply that:

1. there are to be K time limit constrained arc
disjoint paths, each of which has a different first
task,

2. the objective function is to minimise the total
(lagrangean) cost of these K paths.

It is not easy to solve this problem, principally

because of the requirement that the paths are arc

disjoint (x,; € (0,1)Vi,j, Eq. (11)). Hence to make

the problem easier to solve we further relax Eq. (11)

to:

x,€(0,1) j=1,...,N (12)
x;;= Ointeger Vi#0,j (13)

to give the complete lagrangean relaxation as:
minimise:

ZCU X+ Zu(l—ZxU) (14)

i=1

subject to:

Yoxp=2x; j=1,....N (15)
k i

2 x,=K (16)
J

time limit constraints (17)
x,€(0,1) j=1,...,N (18)
x;; = Ointeger Vi#0,j (19)

Egs. (14)—(19) represent the problem of finding the
K least (lagrangean) cost time limit constrained paths,
each with a different first task. This problem can be
easily solved as follows:

1. for each task j in turn:

1.1. temporarily remove from Fig. 1 any tasks &
which, from the working time constraint
viewpoint, cannot be performed on the same
crew path as j (i.e. any k for which b+ (f,
—s)+b,>T)

1.2. find the least (lagrangean) cost path that
goes directly from O to j and ends at N + 1
in the resulting graph (this least cost path

522 J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526

calculation is easily accomplished (e.g. see
[15]) since the graph (Fig. 1) is acyclic)

2. the K smallest of these N least (lagrangean) cost
paths then constitute the solution to the la-
grangean relaxation (Eqgs. (14)-(19)) and provide
a lower bound on the optimal solution to the
original CSP.

3.3. Subgradient optimisation

The multipliers (#,) in the above lagrangean re-
laxation are updated with the subgradient optimisa-
tion method (see [7,19,20] for a detailed description
of subgradient optimisation). Given initial values
(u?) for the multipliers a sequence (u]) can be
produced by:

u,’-'+l=u:'+tn(1—2xi"j) i=1,...,N (20)
J

where (x;) is the optimal solution of the lagrangean

relaxation at the n'” iteration (of value Z(x")) and 1,

is a positive scalar step size given by:

N 2
weNz -2/ X (1-Tw) e
i=1 j

where Z* is set to two times the best lower bound
found. This is done because we did not, in many of
the example test problems solved, have any initial
feasible solution. A is a scalar parameter which is set
to 2 initially and divided by 2 after 30 iterations if
there has been no increase in the best value of the
lower bound (Z(u")) found so far.

If at any iteration the solution to the lagrangean
relaxation is feasible for the original CSP then it is
also optimal as we have relaxed equality constraints.
Otherwise the subgradient optimisation procedure
was artificially terminated when A fell below 107¢
(in which case no solution, neither feasible nor opti-
mal, will have been obtained).

4. Tree search procedure

As mentioned above the subgradient optimisation
procedure may terminate without having found the
optimal solution to the original CSP. In order to find
the optimal solution we need to resort to a tree

search (branch and bound) procedure. In this section
we describe the procedure that we adopted.

4.1. Initial tree node

We first calculated a lower bound on the problem
using lagrangean relaxation and subgradient optimi-
sation as detailed above.

4.2. Other tree nodes

4.2.1. Forward branching — selection of a branching

node
In forward branching we choose the tree node

with the minimum lower bound value and not having
been either branched or fathomed to branch on. The
logic for this was essentially twofold:

1. as we did not have an upper bound for most of
the problems we solved (and hence no means of
pruning /curtailing the tree from lower bound
considerations) the alternative of a depth-first tree
search procedure may have led to excessively
large trees,

2. early computational experience indicated that the
maximum lower bound achieved by lagrangean
relaxation and subgradient optimisation was very
close to the optimal CSP solution.

Hence it seemed best to branch from the tree node

with the minimum lower bound value as that tree

node was most likely to lead to the optimal solution.

4.2.2. Forward branching — selection of a branching

variable
In forward branching from a tree node we

branched by examining the solution ((X;;), say) as-
sociated with the best lower bound at that tree node.
Letting (D,) represent the task outdegrees (i.e.

D;=Y,X,;;i=1,...,N) we choose a branching vari-

able in the following way:

1. let p be the task such that D, =max[D,| D, #
1,i=1,...,N] (ties broken arbitrarily),

2. let (p,j) be the transition arc for which X,;=
max[X ok |k=1,...,N] (ties broken arbitrarily),
then we branched by setting X,;= 1. Computa-

tionally this can be achieved by amalgamating tasks

p and j into a single ‘‘pseudo-task’ in an obvious

fashion.

J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526 523

4.2.3. Lower bound

At each tree node we performed the same lower
bound calculation as at the initial tree node except
that A was set to 0.005 initially and halved after five
iterations had occurred without any increase in the
maximum lower bound found. In addition, we did at
most 150 subgradient iterations at a tree node.

The initial set of multipliers (u;) at each tree node
were the set associated with the best lower bound
found at the predecessor tree node. Z* was set to the
value of a feasible solution when a feasible solution
was first found and updated whenever a better feasi-
ble solution was found.

4.2.4. Backtracking
We can backtrack in the tree when a feasible
solution is obtained or when Z(u") > Z*.

5. Computational results

5.1. Test problem generation

The tree search algorithm described above was
programmed in FORTRAN and run on a Silicon
Graphics Iris Indigo workstation for a number of
randomly generated test problems involving from 50
to 500 tasks. These test problems were the same test
problems as were solved in our previous work [8]
and were generated in the following manner:

1. set the time limit 7 = 480 (minutes),

2. set the start time s; of each task i to be an integer
randomly generated from [1,1440] and set b, = d,
=¢o;=Ciy+1=0

3. the finish time f, of task i was defined by

1

producing an integer v randomly generated from

Table 1
Computational results — from 50 to 250 tasks
Number Number of Number Initial tree node Tree search Optimal
of tasks transition arcs of crews Number of Duality Time : value
iterations zap (%) (seconds) Number of Time
tree nodes (seconds)
50 173 31 249 - 1 - - 1872
30 357 - 1 - - 2092
29 795 0.000028 2 2 1 2399
28 251 - 1 - - 2706
27 512 - 2 - - 3139
100 715 48 430 - 7 - - 3905
47 490 - 8 - - 4107
46 558 - 9 - - 4310
45 347 - 6 - - 4514
44 495 - 8 - - 4812
150 1355 73 461 - 18 - - 5347
72 893 0.009059 34 2 7 5551
71 544 - 21 - - 5754
70 1279 0.166753 48 31 96 5999
69 1040 0.406412 39 63 111 6275
200 2543 97 504 - 43 - - 6288
96 575 - 49 - - 6430
95 505 - 43 - - 6583
94 608 - 51 - - 6747
93 720 - 61 - - 6914
250 4152 112 584 - 100 - - 7707
111 633 - 108 - - 7863
110 639 - 109 - - 8023
109 1686 0.110470 287 24 469 8212
108 1199 - 205 - - 8406

524

J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526

[1,240 — 15] and setting f;=s;+ 15 + v (hence
ensuring that task durations were neither too long
nor too short),

once all the task start and finish times had been
generated the tasks were relabelled in increasing
start time order and for all pairs of tasks (i,j) for
which a transition arc potentially exists (i.e. f; <'s;
and b, +(f;—s) +b,<T):

4.1. let v be an integer randomly generated from
[1,240],

the transition arc exists if f;+v<s,, else
not,

if the transition arc exists it is of cost (1 + r)
(s;— f;), rounded up to the nearest integer,
where r is a real random number sampled
from U(0,1).

4.2.

4.3.

In order to decide the number of crews K to use we
applied a simple crew path construction heuristic,

1.

2.

let P, be the set of tasks in crew path k, L be the
number of crew paths,

set L=1, P, = [1] and recall that the tasks are
labelled in increasing start time order,

consider each task i (i =2,...,N) in turn:

3.1. if it is feasible to add i to the end of the
crew path in P, (for some & < L) then do so,
ties broken by adding i to the end of the
crew path that incurs the minimum transition
cost from the task at the end of the crew path
to i,

if it is not possible to add i to any crew path
thenset L=L+ 1 and P, =[i].

After all tasks have been considered we will have

3.2

a feasible solution (of a certain cost) involving L
crews.

In the computational results presented below we,

for each of the test problems, first found a value for

namely: L using the above heuristic and then solved the

Table 2

Computational results - from 300 to 500 tasks

Number Number of Number Initial tree node Tree search Optimal

of tasks transition arcs of crews Number of Duality Time : value

iterations gap (%) (seconds) Number of Time
tree nodes (seconds)

300 6108 133 785 - 237 - - 9026
132 2225 0.000114 672 51 644 9200
131 692 - 209 - - 9378
130 860 - 260 - - 9580
129 infeasible

350 7882 148 1438 0.004873 622 29 831 10378
147 1123 0.000038 488 22 508 10525
146 992 0.000049 430 6 63 10677
145 1520 0.000159 659 4 112 10833
144 1059 0.000010 458 2 1 10991

400 10760 163 730 - 489 - - 11696
162 752 - 504 - - 11848
161 2315 0.004422 1561 16 884 12006
160 792 - 532 - - 12163
159 1970 0.084993 1316 209 15860 12341

450 13510 186 2034 0.025153 1918 126 13739 12232
185 1217 0.000055 1149 6 218 12357
184 1841 0.033843 1739 603 39661 12497
183 1810 0.031439 1714 95 8885 12639
182 1736 0.034019 1631 127 16204 12785

500 16695 208 1358 0.006114 2463 12 2540 12772
207 685 - 1251 - - 12899
206 925 - 1683 - - 13032
205 1024 0.015231 1880 25 4893 13169
204 856 - 1545 - - 13302

J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526 525

problemusing K=L+2, K=L+1, K=L, K=L
— 1l and K =L — 2 i.e. each test problem was solved
five times, each time with a different value for the
number of crews K. This implies that, except for
K =L, we do not have an initial feasible solution,
providing an upper bound on the problem, available.
Indeed, for K=L — 1 and K = L — 2, there may not
be a feasible solution (i.e. the problem may be
infeasible, although this only happened for one of
our test problems — see below).

Note here that all of these test problems are now
publically available via e-mail from OR-Library [6].

5.2. Results

Tables 1 and 2 give the results for the algorithm
presented in this paper when applied to these test
problems. In those tables we give, for each problem:
1. the number of tasks, the number of transition arcs

(excluding arcs to/from the depot) and the num-

ber of crews,

2. the number of subgradient iterations at the initial
tree node,

3. the percentage duality gap between the best lower
bound at the initial tree node and the optimal
solution (as measured by 100(optimal value - best
lower bound) /(optimal value)),

4. the computation time in Silicon Graphics Iris
Indigo cpu seconds for the initial tree node,

5. the number of tree search nodes,

6. the total computation time in Silicon Graphics Iris
Indigo cpu seconds for the tree search nodes (note
here that this means that the total algorithm time
is found by adding the time for the initial tree
node to the time for the tree search nodes),

7. the value of the optimal solution.

Examining these tables we find that:

- most of the test problems were solved without
branching being necessary, indeed only 19 of the
49 test problems required branching

- for those problems requiring branching the num-
ber of tree nodes was reasonable in most cases

- over all 49 test problems the average duality gap
was 0.018919% and the average (total) computer
time was 2701 cpu seconds.

Comparing these results with the results obtained in

our previous work [8] (in which the average duality

gap was 0.019558% and the average (total) computer

time was 13685 cpu seconds) it is clear that the
algorithm presented in this paper is (computation-
ally) superior to the algorithm presented in [8].

6. Conclusions

In this paper we presented an algorithm for the
crew scheduling problem based upon lagrangean re-
laxation of a zero—one integer linear programming
formulation of the problem, together with subgradi-
ent optimisation and a tree search procedure for
optimally resolving the problem.

Computational results indicated that the algorithm
was able to solve relatively large problems.

References

[1] R. Anbil, E. Gelman, B. Patty and R. Tanga, Recent ad-
vances in crew-pairing optimization at American Airlines.
Interfaces 21(1) (1991) 62-74.

[2] EK. Baker, L.D. Bodin, W.F. Finnegan and R.J. Ponder,
Efficient heuristic solutions to an airline crew scheduling
problem. AIIE Transactions 11 (1979) 79-85.

[3] E. Baker and M. Fisher, Computational results for very large
air crew scheduling problems. OMEGA 9 (1981) 613-618.

[4] M. Ball, L. Bodin and R. Dial, A matching based heuristic
for scheduling mass transit crews and vehicles. Transporta-
tion Science 17 (1983) 4-31.

[5] M. Ball and A. Roberts, A graph partitioning approach to
airline crew scheduling. Transportation Science 19 (1985)
107-126.

[6] J.E. Beasley, OR~Library: distributing test problems by elec-
tronic mail. Journal of the Operational Research Society 41
(1990) 1069-1072.

[7] J.E. Beasley, Lagrangean relaxation. In Modern Heuristic
Techniques for Combinatorial Problems, C.R. Reeves (ed.),
Blackwell Scientific Publications, Oxford (1993).

[8] J.E. Beasley and B. Cao, An algorithm for the crew schedul-
ing problem. Working paper, The Management School, Im-
perial College, London SW7 2AZ (1993).

[9] L.D. Bodin and B.L. Golden, Classification in vehicle rout-
ing and scheduling. Networks 11 (1981) 97-108.

[10] L. Bodin, B. Golden, A. Assad and M. Ball, Routing and
scheduling of vehicles and crews — the state of the art.
Computers & Operations Research 10 (1983) 63-211.

[11] B. Cao, Algorithms for crew scheduling problems. PhD
thesis, Imperial College, London (1992).

[12] P. Carraresi and G. Gallo, Network models for vehicle and
crew scheduling. European Journal of Operational Research
16 (1984) 139-151.

526 J.E. Beasley, B. Cao / European Journal of Operational Research 94 (1996) 517-526

[13] P. Carraresi, G. Gallo and J.-M. Rousseau, Relaxation ap-
proaches to large scale bus driver scheduling problems.
Transportation Research 16B (1982) 383-397.

[14] H. Cheddad, Algorithms for crew scheduling problems. PhD
thesis, Imperial College, London (1987).

[15] N. Christofides, Graph theory: an algorithmic approach. Aca-
demic Press, London (1975).

[16] T.G. Crainic and J.-M. Rousseau, The column generation
principle and the airline crew scheduling problem. INFOR
25 (1987) 136-151.

[17] M. Desrochers and F. Soumis, A column generation ap-
proach to the urban transit crew scheduling problem. Trans-
portation Science 23 (1989) 1-13.

[18] J.C. Falkner and D.M. Ryan, A bus crew scheduling system
using a set partitioning model. Asia-Pacific Journal of Oper-
ational Research 4 (1987) 39-56.

[19] M.L. Fisher, The lagrangian relaxation method for solving
integer programming problems. Management Science 27
(1981) 1-18.

[20] M.L. Fisher, An applications oriented guide to lagrangian
relaxation. Interfaces 15(2) (1985) 10-21.

[21] 1. Gershkoff, Optimizing flight crew schedules. Inferfaces
19(4) (1989) 29-43.

[22] G.W Graves, R.D. McBride, 1. Gershkoff, D. Anderson and
D. Mabhidhara, Flight crew scheduling. Management Science
39 (1993) 736-745.

[23] K.L. Hoffman and M. Padberg, Solving airline crew schedul-
ing problems by branch-and-cut. Management Science 39
(1993) 657-682.

[24] S. Lavoie, M. Minoux and E. Odier, A new approach for
crew pairing problems by column generation with an applica-
tion to air transportation. European Journal of Operational
Research 35 (1988) 45-58.

[25] R.E. Marsten, M.R. Muller and C.L. Killion, Crew planning
at Flying Tiger: a successful application of integer program-
ming. Management Science 25 (1979) 1175-1183.

[26] R.E. Marsten and F. Shepardson, Exact solution of crew
scheduling problems using the set partitioning model: recent
successful applications. Networks 11 (1981) 165-177.

[27] S. Martello and P. Toth, A heuristic approach to the bus
driver scheduling problem. European Journal of Operational
Research 24 (1986) 106—117.

[28] J.-M. Rousseau, Computer Scheduling of Public Transport 2.
North-Holland, Amsterdam (1985).

[29] J. Rubin, A technique for the solution of massive set cover-
ing problems with application to airline crew scheduling.
Transportation Science 7 (1973) 34-48.

[30] B.M. Smith, IMPACS - a bus crew scheduling system using
integer programming. Mathematical Programming 42 (1988)
181-187.

[31] J.F. de Sousa, A computer based interactive approach to crew
scheduling. European Journal of Operational Research 55
(1991) 382-393.

[32] A. Wren (ed.), Computer Scheduling of Public Transport:
Urban Passenger Vehicle and Crew Scheduling. North-Hol-
land, Amsterdam (1981).

