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Abstract: In this paper we present a heuristic for Euclidean and rectilinear Steiner problems. This
heuristic is based upon finding optimal Steiner solutions for connected subgraphs of the minimal
spanning tree of the entire vertex set. Computational results are given for randomly generated problems

involving up to 10000 vertices.
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1. Introduction

Let i and j be any two points in the Euclidean
plane and let their coordinates be (x;, y;) and
(x s y,-), respectively. Define the cost of the edge
connecting i and j together to be equal to the
Euclidean distance [(x; —x;)* + (y, — y;)*]'/* be-
tween i and j. Then if V' is a set of n points
(vertices) in the plane, the Euclidean Steiner
problem is the problem of connecting together
the vertices in V' so as to minimise the total cost
of the edges used. It is well-known that the solu-
tion to this problem will be the minimal spanning
tree (MST) on some set of vertices VU § where S
is called the set of Steiner vertices.

The rectilinear Steiner problem is the same as
the Euclidean Steiner problem except that the
cost of the edge connecting any two points i and
J together is given by the rectilinear distance
Ixi_xj|+|yi_yj‘|-

Both of these problems are NP-complete [8,9].
They have received a fair amount of attention in
the literature and many algorithms, both heuristic
and optimal, have been proposed.

Since a comprehensive survey of work relating
to Euclidean and rectilinear Steiner problems has
recently been given by Hwang and Richards [18]
we shall not give a complete literature survey
here but instead concentrate upon heuristic algo-

rithms and upon work which reports computa-
tional experience. The reader interested in a more
complete description of the work that has been
done on Euclidean and rectilinear Steiner prob-
lems is referred to [18].

1.1. Euclidean problems

Optimal solution algorithms for the Euclidean
Steiner problem have been presented by Boyce
and Seery [4], Cockayne and Schiller [7], Winter
[34] and Cockayne and Hewgill [6].

These algorithms work by examining ‘topolo-
gies’ (a topology being a set of vertices and their
associated edges) corresponding to full Steiner
trees (FST’s). An FST is a Steiner tree containing
s + 2 original vertices, each with degree one, and
s Steiner vertices, each with degree three. Pic-
tures of FST’s for s =0, 1,...,7 can be found in
Gilbert and Pollak [10]. Optimal solution algo-
rithms can only solve problems involving up to 30
vertices.

Chang [5] presented an early heuristic algo-
rithm based upon inserting vertices into the MST
in order to reduce the cost of the tree. This is a
natural approach and has been used in many
algorithms (e.g. Korhonen [19] and Smith and
Liebman [31]). Smith, Lee and Liebman [30] pre-
sented an algorithm based upon Voronoi dia-
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grams and Delaunay triangulations. Lundy [22]
presented an algorithm based upon simulated
annealing.

1.2. Rectilinear problems

The only optimal algorithm for the rectilinear
Steiner problem that has been presented in the
literature is due to Yang and Wing [35,37,38].
This algorithm can only solve very small problems
involving up to 10 vertices.

Yang and Wing [35-38] also presented a
heuristic algorithm based upon branch and bound.
Lee, Bose and Hwang [21] presented an algo-
rithm similar to the Prim [24] algorithm for the
MST (see also Hwang [15]). Smith and Liebman
[31] and Smith, Lee and Liebman [29] presented
algorithms for the rectilinear problem similar to
their algorithms [30,31] for the Euclidean prob-
lem.

Servit [26] investigated the performance of
eight simple heuristics on example problems
drawn from the design of printed circuit boards.
Hsu, Pan and Kubitz [14] presented algorithms
based upon the Prim [24] and Kruskal [20] algo-
rithms for the MST. Basart and Huguet [1] pre-
sented an algorithm based upon dividing the rec-
tilinear plane into two. Richards [25] presented
an efficient implementation of an algorithm due
to Hanan [11]. Ho, Vijayan and Wong [13] pre-
sented an algorithm based upon transforming the
rectilinear MST into a rectilinear Steiner tree.

2. Heuristic

In this section we present the heuristic algo-
rithm we have developed and discuss its applica-
tion to Euclidean and rectilinear Steiner prob-
lems.

Essentially the heuristic considers all con-
nected subgraphs of the MST of V' which contain
four vertices, finds the optimal Steiner tree for
each such subgraph and adds to " selected Steiner
vertices from these subgraphs. The details are as
follows:

(1) Let T(K) represent the cost of connecting
a set K of vertices together via their MST and let
T4(K) represent the cost of connecting the same
set of vertices together via their optimal Steiner

tree. Let V|, be the initial vertex set and let ¢ be
an iteration counter. Set '=1/ and ¢ = 0.

(2) Find the MST of V. This can be easily
accomplished, e.g. using [24] or using [27,28] for
Euclidean problems and [16] for rectilinear prob-
lems. Update the iteration counter using ¢t = ¢+ 1.

(3) Define:

L ={lp,qrsllp,q, r,s€V;p, q,r,sal
distinct vertices and [p, g, r, s] consti-
tutes a connected subgraph with respect
to the MST of V}.

The set L is easily found since it is trivial to
show that to enumerate L we need only consider
those vertex sets [ p, g, r, s] for which we have
either:

(a) a path in the MST consisting of edges
p—q,q—rand r—s; or

(b) a ‘star’ configuration in the MST centred
on p and consisting of edges p —¢q, p —r and
p—s.

(4) For all vertex sets K€L -calculate the
reduction in cost (if any) which occurs when the
vertices in K are connected via their optimal
Steiner tree. This reduction is given by R(K) =
T(K) — T(K) where R(K) > 0.

(5) If max[R(K)| K € L] =0, then we have no
vertex set that we can use to reduce the cost of
the MST of V, so stop where, if V5 is the final
vertex set, the cost of connecting together the
vertices in ¥, has been reduced (in ¢ iterations)
from T(V,) to T(Vg) via introduction of the
Steiner vertices in Vi — V.

(6) Let M be a set of vertices where initially,
at each iteration ¢, M is empty. Sort the vertex
sets K € L into descending R(K) order and run
down this list where, for each such K, if |MnN
K| =0and R(K) >0, we:

(a) add the Steiner vertices associated with
T{(K) to V; and

(b) set M=M UK (i.e. add the vertices in K
to M).

Informally we are adding Steiner vertices asso-
ciated with the maximum reduction we can find
provided that we have no possibility of ‘interfer-
ing’ with previously added Steiner vertices.

(7) Find the MST of V' and let E be the set of
edges associated with this MST. If there exist any
vertices i € V' — V|, which have degree <2 with
respect to E, then remove these vertices from V'
(since plainly we reduce, or leave unchanged, the
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cost of the MST by so doing) and adjust E
accordingly.

(8) For each vertex i € VV—V,, which has de-
gree three with respect to E, move this vertex to
its optimal Steiner location (which is easily found)
and repeat this step until there is no further
reduction in the cost of the tree based on the
edge set E.

(9) If the problem is a Euclidean one then we
use the algorithm of Hwang [17] for constructing
full Steiner trees (FST’s) in an attempt to im-
prove the solution. This can be done as follows:

Find the MST of V and for each subtree
(vertex set V' *, cost C*) of this MST which has a
topology appropriate to a FST:

(a) apply the algorithm of Hwang [17] to find
the FST for the subtree;

(b) if the cost of this FST is less than C*,
move the vertices in V'* — 1V to the locations
given by the FST;

(c) if the cost of this FST is greater than C*,
then improve the current solution (if possible) by
removing from V the vertex i corresponding to

T(V* - {l}) =min[T(V*— []]) ljeV*-1,,
T(Vﬂ< - {]}) <C*]’

i.e. remove the vertex that leads to the lowest-cost
subtree after removal.

(10) Go to step (2).

In applying the above heuristic to Euclidean
and rectilinear Steiner problems, the only differ-
ence lies in the calculation of the optimal Steiner
tree Tg(K) where K =[p, g, r, s] consists of four
distinct vertices. We consider each problem type
in turn.

2.1. Euclidean problems

It is well-known (e.g. see [10]) that for Eu-
clidean problems any Steiner vertices in the opti-
mal Steiner tree must have (vertex) degree three
with 120 degrees between the edges incident at
the Steiner vertex. Then T¢(K) is either:

(a) the MST of the vertex set K; or

(b) one of the four cases where we have three
vertices from K joined via a single Steiner vertex
(v,, say) and the remaining vertex (i, say) con-
nected to its nearest vertex in K — {i}; or

(c) one of the two cases where, ordering the
vertices in K such that the four edges p —gq,

(a)

(b)

(c)

Vi V2

Figure 1

qg—r, r—s and s —p constitute a quadrilateral
whose interior angles add up to 360 degrees, we
have p, g, r and s connected via two Steiner
vertices (v, and v,, say).

Figure 1 illustrates this diagrammatically. For
a proof of the fact that (a), (b) and (c) above are
sufficient to define the optimal Steiner tree for
four vertices, see Gilbert and Pollak [10]. Note
here that, depending upon the position of p, g, r
and s, some of the cases in (b) and (c) above may
be redundant (i.e. it may not be possible to find
Steiner vertices).
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In order to locate the single Steiner vertex
associated with three vertices some simple formu-
lae are used (e.g. see Thompson [33]). To locate
the two Steiner vertices associated with four ver-
tices some simple geometry is used (e.g. see
Melzak [23]).

2.2. Rectilinear problems

For rectilinear problems 7T4(K) can be calcu-
lated directly using the inner-rectangle construc-
tion given by Hanan [12]. However the difficulty
with this construction, from our point of view, is
that it does not uniquely define the position of
the Steiner vertices. This contrasts with the situa-
tion when we are connecting three vertices to-
gether where the position of the Steiner vertex is
uniquely defined (see Hanan [12]). Hence, for
this reason, we prefer to regard T4(K) as being
either:

(a) the MST of the vertex set K; or

(b) one of the four cases where we have three
vertices from K joined via a single Steiner vertex
(v,, say) and the remaining vertex (i, say) con-
nected to its nearest vertex in K — {i} + {v,}; or

(c) defined via the inner-rectangle construc-
tion of Hanan [12].

The advantage of this approach is that we can
adopt (a) or (b) above (thereby uniquely defining
the position of the Steiner vertex (if any)) if the
value for T4(K) calculated from (a) or (b) above
is equal to the value for T4(K) calculated from
(c) above.

The location of the single Steiner vertex asso-
ciated with three vertices i, j and k is (median
(x;, x;, x;), median (y;, y;, y,)) (see Hanan [12]).
In the event that T4(K) was defined from the
inner-rectangle construction ((c) above) we took
as Steiner vertices those corners of the inner
rectangle which had at least one vertex of K
transferred to them (see Hanan [12]).

3. Computational results

The heuristic presented in this paper was pro-
grammed in FORTRAN and run on a Cray X-
MP /28 using the CF77 compiling system (with
maximum optimisation) for a number of ran-
domly generated problems. These problems con-
sisted of n points randomly distributed in a unit

square where, for each value of n, 15 test prob-
lems were generated. Note here that all of the
test problems considered in this paper are publi-
cally available via electronic mail from OR-
Library [3].

Each test problem was solved both as a Eu-
clidean problem and as a rectilinear problem.
The results are shown in Table 1. In that table we
give, for each value of n, the minimum, mean,
maximum and standard deviation for:

(a) the number of iterations;

(b) the percentage reduction achieved [100(T

(c) the number of Steiner vertices [| Vg | —nl;
and

(d) the total time (in Cray X-MP /28 seconds).

Note here that a least-squares linear regres-
sion using the results shown in Table 1 indicates
that the average computer time required to solve
a problem on the Cray X-MP /28 is O(n'3'7) for
Euclidean problems and O(n!?*?) for rectilinear
problems.

In Tables 2 and 3 we compare the average
percentage reduction and the average computer
time for the heuristic presented in this paper with
the results presented by other workers (for vary-
ing values of n). It is clear from those tables that
the heuristic presented in this paper gives larger
percentage reductions (better-quality solutions)
in most instances.

Recently Richards [25] reported solving recti-
linear problems of size n = 10000 with an average
percentage reduction ranging from 3.95 to 3.99%.
In order to compare the heuristic presented in
this paper with this result we generated and solved
one problem of size n = 10000. The percentage
reduction achieved was 9.981% in 6 iterations,
involved. 4438 Steiner vertices and was obtained
in 291.305 Cray X-MP /28 seconds. When this
problem was solved as a Euclidean problem the
percentage reduction achieved was 3.000% in 15
iterations, involved 4005 Steiner vertices and was
obtained in 2728.923 Cray X-MP /28 seconds.

In order to compare the heuristic presented in
this paper with some optimal solutions we solved
the 46 test problems given by Soukup and Chow
[32]. For a number of these test problems the
Euclidean optimal solution is known from previ-
ous work [32]. In order to generate rectilinear
optimal solutions for these test problems each
rectilinear test problem was converted into an
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Table 4
Computational results — Soukup and Chow [32] test problems ?
Problem n  Euclidean Rectilinear
number Heuristic Optimal Heuristic Optimal
solution  solution solution  solution

1 5 1.66440 . 1.87 -

2 6 1.50050 - 1.68 1.64

3 7 2.07767 - 2.36 -

4 8 2.13879 - 2.54 -

5 6 2.04405 - 2.29 2.26

6 12 2.22239 2.1842 2.48 2.42

7 12 2.20529 n/k € 2.54 2.48

8 12 217779 - 2.42 2.36

9 7 1.58783 n/k 1.72 1.64
10 6 1.64728 1.5988 1.84 1.77
11 6 1.27411 - 1.44 -
12 9 1.64853 n/k 1.80 -
13 9 1.27338 n/k 1.50 -
14 12 2.20492 - 2.60 -
15 14 1.23041 - 1.48 n/k
16 3 1.16678 - 1.60 -
17 10 1.64279 n/k 2.01 2.00
18 62 3.85130 n/k 4.06 n/k
19 14 1.72225 n/k 1.90 n/k
20 3 1.03962 - 1.12 -
21 5 1.81818 n/k 2.16 1.92
22 4 0.50329 - 0.63 -
23 4 0.51303 - 0.65 -
24 4 0.25282 - 0.30 -
25 3 0.19897 - 0.23 -
26 3 0.12435 - 0.15 -
27 4 1.17817 - 1.33 -
28 4 0.20442 - 0.24 -
29 3 1.46598 - 2.00 -
30 12 1.03323 n/k 1.10 -
31 14 2.34009 n/k 2.60 n/k
32 19 2.85677 n/k 3.23 n/k
33 18 2.22953 n/k 2.69 n/k
34 19 2.13813 n/k 2.54 n/k
35 18 1.35545 n/k 1.54 n/k
36 4 0.87891 - 0.90 -
37 8 0.76603 n/k 0.90 -
38 14 1.43501 1.4248 1.66 n/k
39 14 1.43125 - 1.66 n/k
40 10 1.41803 n/k 1.62 1.55
41 20 1.97672 n/k 2.24 n/k
42 15 1.31535 n/k 1.53 -
43 16 2.36719 n/k 2.66 n/k
44 17 2.19744 n/k 2.61 n/k
45 19 1.93584 n/k 2.26 n/k
46 16 1.42209 n/k 1.50 -

2 The average computation time needed to produce the
heuristic results was 0.060 Cray X-MP /28 seconds for Eu-
clidean problems and 0.012 Cray X-MP /28 seconds for
rectilinear problems.

— means that the optimal solution is the same as the
heuristic solution.

¢ n/k means that the optimal solution is not known.

b

equivalent Steiner problem on a graph (see Hanan
[12]) and this was then solved using the algorithm
given by Beasley [2]. The results are shown in
Table 4.

Examining Table 4 it is clear that, as we would
expect, when n < 4 the heuristic presented in this
paper always finds the optimal solution (for Eu-
clidean or rectilinear problems).

Of the 13 Euclidean problems with n > 5 for
which the optimal solution is known, the heuristic
presented in this paper finds the optimal solution
in all but 3 instances.

Of the 21 rectilinear problems with n > 5 for
which the optimal solution is known, the heuristic
presented in this paper finds the optimal solution
in all but 10 instances.

4. Conclusions

In this paper we have presented a heuristic for
Euclidean and rectilinear Steiner problems based
upon finding optimal Steiner solutions for con-
nected subgraphs of the minimal spanning tree of
the entire vertex set. Computational results indi-
cated that this heuristic gives better-quality solu-
tions than other heuristics.
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