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1 Introduction

Linear inequality systems were studied by Fourier, Motzkin and Farkas (see [14])

but only in the late 1940s did the work of Dantzig in the USA and Kantorovich

in the former USSR make linear programming a leading research topic with wide

ranging applications to problems of planning and scheduling as found in business,

industry and government [14]. Dantzig developed the celebrated simplex method

(in the tableau form) for �nding the maximum or minimum of a linear function

subject to linear restrictions. The resulting optimization problem because of

its many planning applications was called linear programming (LP). Since that

time there has been considerable curiosity driven research, as well as applicable

research, on the topic of LP.

In Table 1 we have highlighted the major landmarks in theoretical devel-

opments. In Table 2 we have summarized some of the major computational

developments.

We would, however, like to outline how a number of important research topics

sprung out of LP and the simplex method and then became mature in their own

right. All through the 1960s and 1970s the industrial application of equation

solving technologies of large sparse systems continued to gain importance and

applicability. The basis factorization (inversion) strategies of the simplex method

were studied with considerable interest. A series of special conferences on the

topic of sparse matrices and sparse equation solving methods was started during

this period (Willoughby et al. [63, 69], Reid [60], Bunch and Rose [10], Du�

and Stewart [19]). Today there is a wide body of literature which covers these

developments. This has made a major contribution to the now established �eld of

computational methods for large sparse systems where data structures, software

implementation and exploitation of machine architecture continue to be leading

research issues.

It can be claimed that the study of computational complexity grew out of
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Table 1 Landmark contributions in theoretical developments of the simplex

method

Topic Area Main Researchers Date

1. Primal simplex method Dantzig 1947

2. Duality theory and dual simplex

algorithm

Lemke 1954

3. Degeneracy and cycling in LP Beale 1955

Lexicographic rules for anti-degeneracy Dantzig, Orden, Wolfe 1955

Wolfe 1963

Other approaches Bland 1977

4. Complexity of simplex algorithms

Worst case behaviour Klee, Minty 1972

Probabilistic/average behaviour Borgwardt, Smale 1982

5. Crossover: recovering an optimal basis

from a pair of primal and dual optimal

solutions

Megiddo 1991

the intractability of integer linear programs in contrast to linear programs. The

algorithmic behaviour of the simplex has been well understood. Its average be-

haviour and worst case behaviour have been studied and explained by Borgwardt

[6] and Klee and Minty [44], respectively. Karp in his Turing award lecture in

[42] explained the central role occupied by LP and its solution methods in the

area of computational complexity or in more practical terms the scalability of

algorithms.

Indeed Khachiyan [43] was motivated to �nd a (worst case) polynomial algo-

rithm for LP, however, computationally it performed very poorly. Karmarkar's

work [41] and the subsequent development of the interior point method (IPM)

resulted from his motivation to �nd a method which can dominate the simplex

method computationally both in its average behaviour and in the worst case.

The overwhelming computational success of IPM in turn strongly challenged the

simplex algorithm designers who responded with a whole series of extensions

and improvements. As a result the simplex algorithm continues to be the chosen

method within software systems designed to solve large LP problems of widely

varying structures. We believe simplex will continue to be widely used for the

following reasons:

(1) There are many industrial applications in which \warm start" from an

earlier solution of a slightly perturbed neighbouring LP problem provides

considerable computational advantage. In these cases IPM performs poorly

in contrast to simplex. Successive linear programming to solve non-linear

programming problems in the oil industry is an example of such an applica-

tion. Solution of subproblems in integer programming and post optimality

analysis of LPs provide other examples of repeated use of warm start.
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Table 2 Landmark contributions to the simplex-based computational solution

methods

Topic Area Main Researchers Date

1. Tableau simplex method Dantzig 1947

2. Revised simplex method Dantzig,

Orchard-Hays, Wolfe 1953/54

3. Simple upper bound algorithm Dantzig 1954

4. Generalized upper bound algorithm Dantzig, Van Slyke 1967

5. Basis factorization and the elimination Markowitz 1954

form of the inverse (EFI) Beale 1971

Hellerman, Rarick 1971/72

6. Sparse update procedures

Bartels, Golub Bartels, Golub 1969

Forrest, Tomlin Forrest, Tomlin 1972

Reid Reid 1976

7. Presolve procedures Brearley,

Mitra, Williams 1975

8. Composite Phase-I procedures Wolfe 1965

Maros 1986

9. Combined price and pivot choice

DEVEX procedure Harris 1973

Steepest edge pricing Goldfarb, Reid 1977

Forrest, Goldfarb 1992

(2) Shadow prices (costs) play a key role in the descriptive analysis of many

economic planning and business applications of LP. In these situations the

established theory relating to optimal basis simplex multipliers and dual

solution values have wide acceptance. This in turn requires that the sim-

plex method is used to compute these items of (economically) meaningful

descriptive information.

The simplex method has undergone very substantial improvement over the

past two decades. These improvements are mainly computational and have the

sole purpose of making the simplex solution method e�cient as well as reliable

in respect of solving a wide range of practical problems. This chapter sets out a

summary account of these developments.

The rest of the chapter is organized in the following way. In Section 2 we

state the linear programming problem and introduce di�erent types of variables.

In Section 3 the revised simplex method is set out in a summary form. Section 4

introduces the sparse simplex (SSX) method and the algorithmic developments

relating to preprocessing, starting basis, pricing, degeneracy, inverse represen-
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Table 3 Types of variables

Feasibility range Type Reference

xj = 0 0 Fixed variable

0 � xj � uj < +1 1 Bounded variable

0 � xj � +1 2 Non-negative variable

�1 � xj � +1 3 Free variable

tation and sparse updates. In short, we consider the major developments in

the algorithmic components of SSX. In Section 5 we cover the computational

issues relating to SSX. Thus we outline the information 
ow and computational

use of SSX, we present an analysis of benchmark problems and provide pro-

�ling information for benchmark problems in respect of the major algorithmic

components. We also set out comparative performance summaries of the two

leading solvers, FortMP and MINOS, o�ered by academic institutions and two

full strength commercial solvers, OSL and CPLEX. In Section 6 we summarize

the recent extensions of SSX for parallel computing architecture and we also dis-

cuss the related di�culties and explain why there is very limited development in

this �eld. We consider the integration of IPM and SSX in Section 7 and outline

our view of future research directions in Section 8.

2 Problem statement

2.1 The primal problem

We consider the following primal linear programming (LP) problem:

minimize c
T
x;

subject to Ax = b; (2.1)

l � x � u; (2.2)

where A is anm�nmatrix, c, x, l, and u are n vectors, and b is anm vector. Some

or all components of l and u can be �1 or +1, respectively. For computational

convenience, it is assumed that all �nite lower bounds in (2.2) are translated to

zero. A itself contains a unit matrix I, that is, A = [I; �A], so it is of full row

rank. Variables which multiply columns of I transform every constraint to an

equation and are often referred to as logical variables. Variables which multiply

columns of �A are called structural variables.

Based on the relation in (2.2), the variables (whether logical or structural)

can be categorized as shown in Table 3 (for further details, see [58]).

An x vector that satis�es (2.1) is called a solution. If, additionally, it satis�es

(2.2) it is called a feasible solution.

LP systems allow for other types of variables and constraints. Namely, a

variable can have in�nite lower bound and �nite upper bound (minus type vari-

able). Such variables are transformed during the setup phase into type-2, that is,

non-negative variables with zero lower bound. Similarly, a constraint can be of


