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Abstract

A quasi-static mixed boundary value problem of incremental elasto-plasticity for a continuously inhomogeneous body is considered. Using the

two-operator Green–Betti formula and the fundamental solution of a reference homogeneous linear elasticity problem, with frozen initial or

tangent elastic coefficients, a boundary-domain integro-differential formulation of the elasto-plastic problem is presented, with respect to the

displacement rates and their gradients. Using a cut-off function approach, the corresponding localized parametrix of the reference problem is

constructed to reduce the elasto-plastic problem to a nonlinear localized boundary-domain integro-differential equation. Algorithms of mesh-

based and mesh-less discretizations are presented resulting in sparsely populated systems of nonlinear algebraic equations for the displacement

increments.
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1. Introduction

It is well known, see e.g. [1–5], that using a fundamental

solution of the reference linear elastic problem, with the initial

elastic coefficients, in the corresponding Green–Betty identity,

an elasto-plastic problem for a homogeneous body can be

reduced to a non-linear boundary-domain integral equation for

increments, with singular domain integrals and hyper-singular

boundary integrals. Using an iteration procedure, one can

further reduce the problem to a sequence of purely boundary

integral equations.

However, the reference fundamental solution is usually

highly non-local, which leads after discretization to a system of

algebraic equations with a dense matrix. Moreover, the

fundamental solution is generally not available in an explicit

form if the material is inhomogeneous (functionally graded),

i.e. the coefficients of the reference problem vary in space. In

addition, an evaluation of the singular volume integrals and

hyper-singular domain integrals increases the complexity of

the numerical code and reduces its accuracy.

To prevent similar difficulties for linear scalar (heat

transfer) equation in inhomogeneous medium, some
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parametrices (Levi functions) localized by cut-off function

multiplication were constructed and implemented in [6]. This

reduced the linear Boundary Value Problem (BVP) with

variable coefficient to a linear Localized Boundary-Domain

Integral or Integro-Differential equation (LBDIE or LBDIDE),

which leaded after a mesh-based or mesh-less discretization to

a linear algebraic system with a sparse matrix. Some mesh-

based numerical implementations of the linear LBDIE were

presented in [7,8]. Somewhat different LBDI(D)E formulations

and numerical realizations were presented in [9,10].

Extending approach of [6], the mixed BVP for a second

order scalar nonlinear (quasi-linear) elliptic PDE with the

variable coefficient dependent on the unknown solution was

reduced in [11,12], to quasi-linear LBDIDEs. For the case

when the variable coefficient depends also on the BVP solution

gradient, some quasi-linear two-operator LBDIDEs were

obtained in [13,12]. The approach was extended in [14,15] to

the mixed BVP for the system of quasi-linear partial

differential equations of physically nonlinear elasticity (with

small deformation gradients) for continuously inhomogeneous

body. Another approach based on local parametrices that are

Green functions for an auxiliary problem on local spherical

domains, was used in [16–19] reducing some linear and non-

linear problems for a body with a special inhomogeneity to

local boundary-domain integral equations solved numerically

by the mesh-less methods.
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In this paper, extending results of [20], we apply the

localization approach of [6,11–15] to the mixed BVP for the

system of incremental elasto-plasticity (with small deformation

gradients) for continuously inhomogeneous body. First, we

present reduction of the BVP to either a united direct two-

operator nonlinear BDIDE of the second kind for the

displacement rates (or increments) or to a partly segregated

direct two-operator nonlinear BDIDE of the third kind for the

displacement rates (or increments) and unknown boundary

tractions. The equations include at most the first derivatives of

the unknown solution, weakly singular integrals over the

domain and at most Cauchy-type singular integrals over the

boundary. Then we present a localized version of the BDIDEs

and describe their mesh-based and mesh-less discretizations.
2. Elements of incremental elasto-plasticity

Let u(x)Zui(x) be the displacement vector in R
n, where n is

either 2 or 3;

3ijðxÞ Z ½ui;jðxÞCuj;iðxÞ�=2 (1)

be the strain tensor, sij(x) be the stress tensor. The comma in

front of a superscript means derivative with respect to the

corresponding coordinate. Summation in repeated indices is

further supposed from 1 to n unless stated otherwise.

Constitutive equations of the incremental elasto-plasticity

can be written as

3ijðxÞ Z 3e
ijðxÞC3

p
ijðxÞ; (2)

sijðxÞ Z ae
ijklðxÞ3

e
klðxÞ; (3)

_3p
ijðxÞ Z Gijð3ðxÞ; sðxÞ; xÞGklð3ðxÞ;sðxÞ; xÞ _sklðxÞ

!H½Gpqð3ðxÞ;sðxÞ; xÞ _spqðxÞ� (4)

Here the over dot means derivative with respect to time;

ae
ijklðxÞ is a known function of the coordinates x, such that

ae
ijklðxÞZae

jiklðxÞZae
ijlkðxÞZae

klijðxÞ and

3kla
e
ijklðxÞ3klR0 c3kl; (5)

the symmetric tensor Gij(3,s,x) is a known functional on the

loading history, {3} and {s}, and of the current state, 3 and

s, at point x; the multiplier with the Heaviside function,

H½z� :Z
1; zR0;

0; z!0
;

(

is employed in (4) to ensure that the plastic strain increment

is zero during unloading, which follows particularly from

the Drucker principle in plasticity.

Relations (1)–(4) and condition (5) allow to express the

stress rate in terms of the displacement rate gradients,

_sijðxÞ Z aijklðsðxÞ; 3ðxÞ;V _uðxÞ; xÞ _uk;lðxÞ; (6)

where aijklðs; 3;V _u; xÞ is the current tangent moduli tensor,

given by the formula
aijklðs; 3;V _u; xÞ :

Z ae
ijklðxÞKgijðs; 3; xÞgklðs; 3; xÞH½gpqðs; 3; xÞ _up;qðxÞ�; (7)

gijðs; 3; xÞ :Z
ae

ijklðxÞGklðs; 3; xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 CGpqðs; 3; xÞa

e
pqrsðxÞGrsðs; 3; xÞ

p (8)

The counterparts of relation (7) without the Heaviside

function multiplier, commonly used in the boundary(-domain)

integral equations (see, e.g. [2]), are justified, strictly speaking,

only for plastic processes without unloading. Note that this

multiplier makes relation (6) and consequently all the

formulations below, nonlinear with respect to the displacement

rate.

Substituting (6) in the time derivative of the equilibrium

equation,

_sij;j Z _f i; (9)

where fi(x) is a known volume force vector (taken with the

opposite sign), and in the traction boundary conditions, we

arrive at the following mixed boundary-value problem of

incremental elasto-plasticity for a bounded inhomogeneous

body U2R
n,

½Likðs; 3; _uÞ _uk�ðxÞ : Z
v

vxj

aijklðsðxÞ; 3ðxÞ;V _uðxÞ; xÞ
v _ukðxÞ

vxl

� �
Z _f iðxÞ; x2U;

(10)

_uiðxÞ Z �uiðxÞ; x2vDU; (11)

½Tikðs; 3; _uÞ _uk�ðxÞ : Z aijklðsðxÞ; 3ðxÞ;V _uðxÞ; xÞ
v _ukðxÞ

vxl

njðxÞ

Z �t iðxÞ; x2vNU:

(12)

Here ni(x) is an outward normal vector to the boundary vU;

½Tðs; 3; _uÞ _u�ðxÞZ ½Tikðs; 3; _uÞ _uk�ðxÞ is the traction rate vector at

a boundary point x, while Tðs; 3; _uÞZTikðs; 3; _uÞ is the

nonlinear traction differential operator; �uðxÞ and �tðxÞ are

known displacement rate and traction rate vectors on the

parts vDU and vNU of the boundary, respectively. The left hand

sides of elasto-plasticity BVP (10)-(12) do not include time

explicitly and one may replace there the rates _uk by the

differentials Duk Z _ukDt.

If nZ2, BVP (10)–(12) describes the 2D elasto-plasticity

problems in the plane strain state. In the plane stress state, the

tensor aijkl is to be replaced by a corresponding combination of

its components.

For brevity, we will drop the arguments s and 3 of the

functionals gklðsðxÞ; 3ðxÞ; xÞ, aijklðsðxÞ; 3ðxÞ;V _uðxÞ; xÞ and oper-

ators Lðs; 3; _uÞ, Tðs; 3; _uÞ in the equations below but their

dependence on the process history and the actual stress and

strain tensors will be meant nevertheless.
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3. Two-Operator Green–Betti identities and direct

BDIDEs of incremental elasto-plasticity
3.1. Green-Betti identities

Let us fix a point y and consider the following reference

differential operators of linear elasticity with some constant

(frozen at the point y) coefficients, a*
ijklðyÞ,

½L
ðyÞ*
ik vk�ðxÞ :Z

v

vxj

a*
ijklðyÞ

vvkðxÞ

vxl

� �
;

½T
ðyÞ*
ik vk�ðxÞ :Z a*

ijklðyÞ
vvkðxÞ

vxl

njðxÞ:

Under the reference elastic coefficients a*
ijklðyÞZa*

ijklðV _uðyÞ; yÞ,
one can understand either the initial elastic moduli ae

ijklðyÞ

independent of the strain-stress history and the current strain rate,

or the current tangent moduli aijklðV _uðyÞ; yÞ dependent on both the

strain-stress history and the current strain rate. The same character

of dependence on (or independence of) the strain–stress history and

the current strain rate will then remain for all asterisk variables and

operators below. The particular choice of a*
ijklðV _uðyÞ; yÞ leads to

two different versions of the integro-differential equations.

Integrating by parts, we have the first Green identities for

the differential operators ½Lð _uÞ _u�ðxÞZ ½Likð _uÞ _uk�ðxÞ and

½LðyÞ*v�ðxÞZ ½L
ðyÞ*
ik vk�ðxÞ,ð

U

viðxÞ½Likð _uÞ _uk�ðxÞdUðxÞ

Z

ð
vU

viðxÞ½Tikð _uÞ _uk�ðxÞdGðxÞ

K

ð
U

vviðxÞ

vxj

aijklðV _uðxÞ; xÞ
v _ukðxÞ

vxl

dUðxÞ;

ð
U

_uiðxÞ½L
ðyÞ*
ik vk�ðxÞdUðxÞ

Z

ð
vU

_uiðxÞ½T
ðyÞ*
ik vk�ðxÞdGðxÞ

K

ð
U

v _uiðxÞ

vxj

a*
ijklðV _uðyÞ; yÞ

vvkðxÞ

vxl

dUðxÞ;

where _uðxÞ and v(x) are arbitrary vector-functions for that the

operators and integrals in the above expressions have sense.

Subtracting the identities from each other and taking into

account the symmetry of the tensor aijkl, we derive the two-

operator second Green–Betti identity,ð
U

f _uðxÞ½LðyÞ*v�ðxÞKvðxÞ½Lð _uÞ _u�ðxÞgdUðxÞ

Z

ð
vU

f _uðxÞ½T ðyÞ*v�ðxÞKvðxÞ½Tð _uÞ _u�ðxÞgdGðxÞ

C

ð
U

½VvðxÞ� ~aðV _u; x; yÞV _uðxÞdUðxÞ; (13)
where

~aðV _u; x; yÞ Z ~aijklðV _uðxÞ;V _uðyÞ; x; yÞ :

Z aijklðV _uðxÞ; xÞKa*
ijklðV _uðyÞ; yÞ

Z ae
ijklðxÞKa*

ijklðV _uðyÞ; yÞ

KgijðxÞgklðxÞH½gpqðxÞ _up;gðxÞ�:

Note that for a homogeneous material ae
ijklðxÞZae

ijklðyÞ, which

implies ~aðV _u; x; yÞ is non-zero only when x or y if

a*
ijklðyÞZaijklðyÞ] is in the plasticity zone with active loading.

If moreover Lð _uÞZLðyÞ* , i.e. Lð _uÞ is a linear homogeneous

elasticity operator, then the last domain integral disappears in

(13), which thus degenerates into the classical second Green–

Betti identity.

For a fixed y, let FðyÞ*ðx; yÞZF
ðyÞ*
km ðx; yÞ be a fundamental

solution for the linear differential operator ½L
ðyÞ*
ik vk�ðxÞ with

constant coefficients, i.e.

½L
ðyÞ*
ik F

ðyÞ*
km ð$; yÞ�ðxÞ :Z a*

ijklðyÞ
v2F

ðyÞ*
km ðx; yÞ

vxjvxl

Z dimdðxKyÞ;

where dim is the Kronecker symbol and d(xKy) is the Dirac

delta-function.

If the material is isotropic and a*
ijklðxÞZae

ijklðyÞ, then

a*
ijklðyÞ Z l*ðyÞdijdkl Cm*ðyÞðdikdjl CdildjkÞ: (14)

In this case, F
ðyÞ*
im ðx; yÞ is the Kelvin–Somigliana solution,

F
ðyÞ*
im ðx; yÞ Z

K1

4p

Kdimln rKr;ir;m

l*ðyÞC2m*ðyÞ
C

Kdimln r Cr;ir;m

m*ðyÞ

� �
(15)

for the plane strain state; for the plane stress, l* in (14) and (15)

should be replaced by 2l*m*/(l*C2m*). In the 3D case,

F
ðyÞ*
im ðx; yÞ Z

K1

8pr

dimKr;ir;m
l*ðyÞC2m*ðyÞ

C
dim Cr;ir;m

m*ðyÞ

� �
(16)

Here r :Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi KyiÞðxiKyiÞ

p
, r;i :Zvr=vxiZ ðxiKyiÞ=r. For a*

ijkl

ðxÞZaijklðyÞ or for an initially anisotropic material, the

fundamental solution can be written down in an analytical

form for arbitrary anisotropy in the 2D case and for some

particular anisotropy in the 3D case; otherwise, it can be

expressed, e.g. as a linear integral over a circle [21–23].

Assuming _uðxÞ is a solution of nonlinear system (10) and

using the fundamental solution F(y)*(x,y) as v(x) in the Green

identity (13), we obtain, similar to the linear homogeneous

elasticity (see, e.g. [1–5]) or partial differential equations with

variable coefficients [24], the following non-linear two-

operator third Green identity,
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cðyÞ _uðyÞK

ð
vU

_uðxÞ½T ðyÞ*FðyÞ*ð$; yÞ�ðxÞdGðxÞ

C

ð
vU

FðyÞ*ðx; yÞ½Tð _uÞ _u�ðxÞdGðxÞ

K

ð
U

½VðxÞFðyÞ*ðx; yÞ� ~aðV _u; x; yÞV _uðxÞdUðxÞ

Z

ð
U

FðyÞ*ðx; yÞf ðxÞdUðxÞ; (17)

where the coefficient tensor c(y)Zcim(y) is such that cim(y)Z
dim if y2U; cim(y)Z0 if y; �U; cim(y)Z(1/2)dim if y is a

smooth point of the boundary (U; and cim(y)Zcim(a*(y),a(y)) is

a function of the reference tensor a*(y) and the interior space

angle a(y) at a corner point y of the boundary vU.
3.2. United nonlinear two-operator BDIDE

Substituting boundary conditions (11) and (12) into the

integrands of identity (17) and using it at y2 �U, we arrive at a

united nonlinear two-operator Boundary-Domain Integro-

Differential Equation, BDIDE, of the second kind for _uðxÞ at

x2 �U

cðyÞ_uðyÞK

ð
vNU

_uðxÞ½T ðyÞ*FðyÞ*ð$;yÞ�ðxÞdGðxÞ

C

ð
vDU

FðyÞ*ðx;yÞ½Tð_uÞ _u�ðxÞdGðxÞ

K

ð
U

½VðxÞFðyÞ*ðx;yÞ� ~aðV _u;x;yÞV _uðxÞdUðxÞZFðyÞ; y2 �U;

(18)

FðyÞ :Z

ð
vDU

�uðxÞ½T ðyÞ*FðyÞ*ð$; yÞ�ðxÞdGðxÞ

K

ð
vNU

FðyÞ*ðx; yÞ�tðxÞdGðxÞ

C

ð
U

FðyÞ*ðx; yÞf ðxÞdUðxÞ:
3.3. Partly segregated nonlinear two-operator BDIDE

On the other hand, introducing a new vector variable ~tðxÞ
instead of the unknown traction vector rate ½Tð _uÞ _u�ðxÞ at

x2vDU and substituting �uðyÞ also for the out-of-integral term

at y2vDU, we may reduce the incremental plasticity problems

(10)–(12) to the following partly segregated BDIDE of the
third kind for _uðxÞ at x2UgvNU and ~tðxÞ at x2vDU,

c0ðyÞ _uðyÞK

ð
vN U

_uðxÞ½T ðyÞ*FðyÞ*ð,; yÞ�ðxÞdGðxÞ

C

ð
vDU

FðyÞ*ðx; yÞ½Tð _uÞ _u�ðxÞdGðxÞ

K

ð
U

½VðxÞFðyÞ*ðx; yÞ� ~aðV _u; x; yÞV _uðxÞdUðxÞ Z F0ðyÞ; y2 �U;

(19)

F0ðyÞ :Z c0ðyÞKcðyÞ
	
�uðyÞCFðyÞ; y2UgvU;



(20)

c0ðyÞ Z
0; if y2vDU;

cðyÞ; if y2UgvNU
:

(
(21)

BDIDEs (18) and (19) include at most the first space

derivatives of the unknown solution _uðxÞ, both directly in the

domain integral term in the left hand side and through the

coefficient aðV _uðxÞ; x; yÞ in the operator Tð _uÞ and in the function

~aðV _u; x; yÞ. The function [V(x)F(y)*(x,y)] is at most weakly

singular in U, and assuming that ~aðV _u; x; yÞ is bounded as x/y,

we obtain that the domain integral is a smoothing operator for

V _uðyÞ. The boundary integrals have at most the Cauchy-type

singularity.

The right hand side of BDIDEs (18) and (19) are

independent of V _u if the reference tensor a* is chosen as the

initial elastic tensor ae. Otherwise, when a* is chosen as the

tangent stiffness tensor a, the right hand side dependence on V _u
will be present.

Some other (e.g. segregated) BDIDEs can be obtained if one

also considers the unknown boundary displacement rate _u on

vNU as a new vector variable formally segregated from _u in U,

or applies the boundary traction operator to (18) or (19).

Each of BDIDEs (18) and (19) can be reduced after some

discretization to a system of nonlinear algebraic equation and

solved numerically. The system will include unknowns not

only on the boundary but also at internal points. Moreover,

since the fundamental solutions, c.f. (15) and (16), are highly

non-local, the matrix of the system will be fully populated and

this makes its numerical solution more expensive. To avoid this

difficulty, we present below some ideas of constructing

localized parametrices and consequently Localized BDIDEs

(LBDIDEs).
4. Localized parametrix and LBDIDEs of incremental

elasto-plasticity

4.1. Localization

Let c(x,y) be a cut-off function, such that c(y,y)Z1 and

c(x,y)Z0 at x not belonging to closure of an open localization

domain u(y) (a vicinity of y), see Fig. 1, and let

P
ðyÞ*
u ðx; yÞZcðx; yÞFðyÞ*ðx; yÞ.



Fig. 1. Body U with localization domains u(yi).
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The simplest example is
cðx; yÞ Z
1; x2 �uð22Þ

0; x; �u
0

(

PðyÞ*
u ðx; yÞ Z

FðyÞ*ðx; yÞ; x2 �uðyÞ

0; x; �uðyÞ

( (22)
Other examples of the cut-off functions having different

smoothness are presented in [6,12] for some shapes of the

localization domains u.

Then P
ðyÞ*
u ðx; yÞ is a localized parametrix (localized Levi’s

function) of the linear operator L(y)*, i.e.
L
ðyÞ*
ik P

ðyÞ*
kmuðx; yÞ Z dimdðxKyÞCR

ðyÞ*
imuðx; yÞ;
where the remainder
R
ðyÞ*
imu ZKL

ðyÞ*
ik ðð1KcÞF

ðyÞ*
km Þ

Z a*
ijklðyÞ F

ðyÞ*
km

v2c

vxjvxl

C
vF

ðyÞ*
km

vxj

vc

vxl

C
vF

ðyÞ*
km

vxl

vc

vxj

" #
is at most weakly singular at xZy if c is smooth enough on

�uðyÞ. The parametrix P
ðyÞ*
u ðx; yÞ has the same singularity as

FðyÞ*ðx; yÞ at xZy. Both P
ðyÞ*
u ðx; yÞ and R

ðyÞ*
u ðx; yÞ are localized

(non-zero) with respect to x only on u(y).

Suppose c(x,y) is smooth in x2 �uðyÞ but not necessarily

zero at x2vu(y), c.f. (22). Then P
ðyÞ*
u ðx; yÞ is a discontinuous

localized parametrix at x2R
n, and P

ðyÞ*
u ðx; yÞZR

ðyÞ*
u ðx; yÞZ0

if x; �uðyÞ. Substituting P
ðyÞ*
u ðx; yÞ for v(x) in (13), replacing U

by the intersection u(y)hU and repeating the same arguments

as for the fundamental solution above, we arrive at the

localized parametrix-based two-operator third Green identity

on �uðyÞh �U,
cðyÞ _uðyÞK

ð
�uðyÞhvU

f _uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞKPðyÞ*

u ðx; yÞ

!½Tð _uÞ _u�ðxÞgdGðxÞK

ð
UhvuðyÞ

f _uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞ

KPðyÞ*
u ðx; yÞ½Tð _uÞ _u�ðxÞgdGðxÞ

K

ð
uðyÞhU

f½VðxÞPðyÞ*
u ðx; yÞ� ~aðV _u; x; yÞV _uðxÞ

KRðyÞ*
u ðx; yÞ _uðxÞgdUðxÞ

Z

ð
uðyÞhU

PðyÞ*
u ðx; yÞf ðxÞdUðxÞ: (23)

The second term in the last integral in the left hand side of (23)

disappears if c(x,y) is given by (22).
4.2. United nonlinear two-operator LBDIDE

Substituting boundary conditions (11) and (12) into the

integral terms of (23) and employing it at y2 �U, we arrive at

the united formulation of nonlinear two-operator Localized

Boundary-Domain Integro-Differential Equation (LBDIDE) of

the second kind, for _uðxÞ, x2 �U,

cðyÞ _uðyÞK

ð
�uðyÞhvNU

_uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞdGðxÞ

C

ð
�uðyÞhvDU

PðyÞ*
u ðx; yÞ½Tð _uÞ _u�ðxÞdGðxÞ

K

ð
UhvuðyÞ

_uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞdGðxÞ

C

ð
UhvuðyÞ

PðyÞ*
u ðx; yÞ½Tð _uÞ _u�ðxÞdGðxÞ

K

ð
uðyÞhU

½VðxÞPðyÞ*
u ðx; yÞ� ~aðV _u; x; yÞV _uðxÞdUðxÞC

(24)

ð
uðyÞhU

RðyÞ*
u ðx; yÞ _uðxÞdUðxÞ Z FuðyÞ; y2 �U; (25)

FuðyÞ :Z

ð
�uðyÞhvDU

�uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞdGðxÞ

K

ð
�uðyÞhvN U

PðyÞ*
u ðx; yÞ�tðxÞdGðxÞ

C

ð
uðyÞhU

PðyÞ*
u ðx; yÞf ðxÞdUðxÞ: (26)



Fig. 2. Localization domain u(xi) and a total localization domain ~ui associated

with a collocation point xi of a body U for (a) mesh-based and (b) mesh-less

discretizations.
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4.3. Partly segregated nonlinear two-operator LBDIDE

On the other hand, substituting �uðyÞ also for the out-of-

integral term u(y) at y2vUD and introducing a new vector

variable ~tðxÞ for the unknown traction vector [T(u)u](x) at

x2vUD in (25), one can reduce BVP (10)-(12) to the following

partly segregated nonlinear two-operator direct LBDIDE of the

third kind, for u(x) at x2UgvNU and ~tðxÞ at x2vUD,

c0ðyÞ _uðyÞK

ð
�uðyÞhvN U

_uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞdGðxÞ

C

ð
�uðyÞhvDU

PðyÞ*
u ðx; yÞ~tðxÞdGðxÞ

K

ð
UhvuðyÞ

_uðxÞ½T ðyÞ*PðyÞ*
u ð$; yÞ�ðxÞdGðxÞ

C

ð
UhvuðyÞ

PðyÞ*
u ðx; yÞ½Tð _uÞ _u�ðxÞdGðxÞ

K

ð
uðyÞhU

½VðxÞPðyÞ*
u ðx; yÞ� ~aðV _u; x; yÞV _uðxÞdUðxÞ

C

ð
uðyÞhU

RðyÞ*
u ðx; yÞ _uðxÞdUðxÞ Z F0

uðyÞ; y2 �U;

(27)

F0
uðyÞ :Z ½c0ðyÞKcðyÞ� �uðyÞCFuðyÞ: (28)

The very last integrals in the left hand sides of (25) and (27)

disappear if c(x,y) is given by (22). On the other hand, if a cut-

off function c(x,y) vanishes at x2vu(y) with vanishing normal

derivatives, then the integrals along Uhvu(y) disappear in

(25) and (27).
5. Discretization of nonlinear two-operator LBDIEs of

incremental elasto-plasticity

The discretization algorithms of LBDIDEs of the incre-

mental elasto-plasticity described below follow mainly the

same scheme as in [6–15], although have some special features.

To reduce quasi-linear LBDIDE (25) or (27) to a sparsely

populated system of quasi-linear algebraic equations, e.g. by

the collocation method, one has to employ a local interpolation

or approximation formula for the unknown function _uðxÞ, for

example associated with a mesh-based or mesh-less

discretization.

5.1. Mesh-based discretization

5.1.1. Mesh-based interpolation

Suppose the domain U is covered by a mesh of closures of

disjoint domain elements ek with nodes set up at the corners,

edges, faces, or inside the elements. Let J be the total number

of nodes xi(iZ1,2,.J). One can use each node xi as a

collocation point for the LBDIDE with a localization domain

u(xi). Let the union of closures of the domain elements that
intersect with u(xi) be called the total localization domain ~ui,

Fig. 2(a). Evidently the closure �uðxiÞh �U belongs to ~ui. If

u(xi) is sufficiently small, then ~ui consists only of the elements

adjacent to the collocation point xi. If u(xi) is ab initio chosen

as consisting only of the elements adjacent to the collocation

point xi, then ~uiZ �uðxiÞ. Let _uf ~uig be the array of the function

values _uðxjÞ at the node points xj 2 ~ui and J ~ui be the number of

those node points.

Let _uðxÞZ
P

j _uðx
jÞfkjðxÞ be a continuous piece-wise

smooth interpolation of _uðxÞ at any point x2U along the

values _uðxjÞ at the node points xj belonging to the same element

�ek 3U as x, and the shape functions fkj(x) be localized on �ek.

Collecting the interpolation formulae, we have for any x2 ~ui,
_uðxÞ Z
X
xj2~ui

_uðxjÞFjðxÞ;

FjðxÞ Z
fkjðxÞ if x; xj 2 �ek

0 otherwise

( (29)
V _uðxÞ Z
X
xj2~ui

_uðxjÞVFjðxÞ;

VFjðxÞ Z
VfkjðxÞ if x; xj 2 �ek

0 otherwise

( (30)
Consequently, Fj(x)ZPFj(x)Z0 if x2 ~ui but xj ; ~ui.

Since interpolation (29) is piece-wise smooth, expressions

(30) deliver non-unique values for V _uðxÞ on the element

interfaces and particularly at the apexes xi of different adjoint

elements ek. This brings no complications for the choice of the

reference elastic moduli as a*
ijklðyÞZae

ijklðyÞ since they and

consequently all other asterisk variables and operators do not

depend on V _uðyÞ, which then appears either in the domain

integrals or in the boundary integrals with the gradients taken

from the corresponding side of the boundary. On the other

hand, for the reference elastic tensor chosen as the current

tangent tensor, a*
ijklðyÞZaijklðV _uðyÞ; yÞ, one has to estimate

Pu(y) to calculate the coefficient aðV _uðyÞ; yÞ and, conse-

quently ~aðV _u; x; yÞ, T(y)*(u), P(y)*(u;x,y) and R(y)*(u;x,y) at the

collocation points yZxi. A possible way out is to assign
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VuðxiÞ :Z
X
�ekHxi

akðx
iÞ

aðxiÞ
VukðxiÞ;

VukðxiÞ :Z
X
xj2�ek

uðxjÞVfkjðx
iÞ;

(31)

where a(xi) is an interior space angle at the apex xi of the

element ek and aðxiÞZ
P

�ekHxi akðx
iÞ.

For discretization of the partly segregated LBDIDE, we can

also use a local interpolation of the unknown flux variable ~tðxÞ
along only boundary nodes belonging to ~uihvDU,

~tðxÞ Z
X

xj2~uihvDU

~tðxjÞF0
jðxÞ; x2 ~uihvDU: (32)

Here F0
jðxÞ are the shape functions on the boundary obtained

similar to Fj(x) in (29).
5.1.2. Mesh-based discretization of the partly segregated

LBDIDE

After substituting the above interpolations in LBDIDE (27)

of the partly segregated formulation at the collocation points

yZxi 2 �U, and taking into account (11), we derive the

following system of J!n quasi-linear algebraic equations for

J!n unknowns: _uðxjÞ, xj2UgvNU and ~tðxjÞ, xj2vDU,

c0ðxiÞ _uðxiÞC
X

xj2~uinvDU

K0
ijð _uf ~u

igÞ _uðxjÞ

C
X

xj2vDUh ~ui

Qijð _uf ~u
igÞ~tðxjÞ

Z F0
uðx

iÞK
X

xj2vDUh ~ui

K0
ijð _uf ~u

igÞ �uðxjÞ; xi 2 �U

(33)

(no sum in i). For fixed indices i, j, the n!n tensors K0
ijð _uf ~u

igÞ

and Qijð _uf ~u
igÞ are

K0
ijð _uf ~u

igÞ ZK

ð
�uðxiÞhvN U

FjðxÞ½T
ðxiÞ*PðxiÞ*

u ð$; xiÞ�ðxÞdGðxÞ

K

ð
UhvuðxiÞ

FjðxÞ½T
ðxiÞ*PðxiÞ*

u ð$; xiÞ�ðxÞdGðxÞ

C

ð
UhvuðxiÞ

PðxiÞ*
u ðx; xiÞ½Tð _uf ~uigÞFj�ðxÞdGðxÞ

K

ð
uðxiÞhU

½VðxÞPðxiÞ*
u ðx; xiÞ� ~að _uf ~uig; x; xiÞVFjðxÞdUðxÞ

C

ð
uðxiÞhU

RðxiÞ*
u ðx; xiÞFjðxÞdUðxÞ:

(34)
Qijð _uf ~u
igÞ Z

ð
�uðxiÞhvDU

PðxiÞ*
u ðx; xiÞ½Tð _uf ~uigÞFj�ðxÞdUðxÞ; (35)

(no sum in i).

Note that the term with R
ðxiÞ*
u disappears in the last integral

in the right hand side of (34) if the parametrix P
ðxiÞ*
u ðx; xiÞ is

given by (22). On the other hand, if the cut-off function c(x,xi)

and its normal derivative are equal zero at x on the boundary

vu(xi), then the second integral (along Uhvu(xi)) disappears

in the right hand side of (34).

5.1.3. Mesh-based discretization of the united LBDIDE

Substituting interpolation formulae (29) and (30) in

LBDIDE (25), we arrive at the following system of J!n

quasi-linear algebraic equations for J!n unknowns _umðx
jÞ,

xj 2 �U, mZ1,.,n,

cðxiÞ _uðxiÞC
X
xj2~ui

Kijð _uf ~u
igÞ _uðxjÞ Z Fuðx

iÞ;

xi 2 �U; no sum in i:

(36)

Here

Kijð _uf ~u
igÞ Z K0

ijð _uf ~u
igÞC

ð
�uðxiÞhvDU

PðxiÞ*
u ðx; xiÞ

!½Tð _uf ~uigÞFj�ðxÞdGðxÞ; (37)

(no sum in i).

The approximate tangent stiffness tensor að _uf ~uig; xÞ and

consequently ~að _uf ~uig; x; xiÞ and the traction operator Tð _uf ~uigÞ

in (34), (35) and (37) are expressed in terms of the set of

unknowns _uf ~uig :Zf _uðxjÞ; xj 2 ~uig. The expressions are

obtained after substituting interpolation formulae (30) for V _u
ðxÞ in the coefficient aðV _uðxÞ; xÞ in the definitions for ~aðV _u; x; yÞ

and Tð _uÞ. In fact, the coefficients also depend on the strain-

stress history (assumed to be already known) at each point. For

the choice a*ðyÞZaðV _uðyÞ; yÞ, the asterisk functions and

operators depend on a*ðV _uðxiÞ; xiÞ and thus on V _uðxiÞ, which

is expressed by interpolation formula (31) in terms of _uf ~uig.

5.2. Mesh-less discretization

5.2.1. Mesh-less approximation

For a mesh-less discretization, one needs a method of local

interpolation or approximation of a function along randomly

distributed nodes xi. We will suppose all the approximation

nodes xi belong to �U and will use them also as collocation

points for the LBDIDE discretization. Let, as before, J be the

total number of nodes xi(iZ1,2,.,J) in �U, from which JD

nodes are posed on the boundary vDU. Let us consider a mesh-

less method, for example, the moving least squares (MLS) (see

e.g. [16–19,25]), that leads to the following approximation of a

function _uðxÞ

_uðxÞ Z
X

xj2u0ðxÞ

ûðxjÞFjðxÞ; x2U: (38)
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Here Fj(x) are known smooth shape functions such that Fj(x)Z
0 if xj;u0(x), u0(x) is a localization domain of the

approximation formula, and ûðxjÞ are unknown values of an

auxiliary function ûðxÞ at the nodes xj, that is, the so-called

d-property is not assumed for approximation (38).

Let u(xi) be a localization domain around a node xi. Then

for any x2 �uðxiÞ, the total approximation of _uðxÞ can be written

in the following local form,

_uðxÞ Z
X
xj2~ui

ûðxjÞFjðxÞ; V _uðxÞ Z
X
xj2~ui

ûðxjÞVFjðxÞ;

x2 �uðxiÞ;

(39)

where ~ui :Zgx2�uðxiÞh �Uu0ðxÞ is a total localization domain,

Fig.2(b). Consequently, Fj(x)ZPFj(x)Z0 if x2 �uðxiÞ and

xj ; ~ui. Let J ~ui be the number of nodes xj 2 ~ui and ûf ~uig be the

array of the function values ûðxjÞ at the node points xj 2 ~ui.

Since our approximation (39) for _u is smooth, its gradient

approximation in (39) is continuous, and we do not need

special formulae like (31) for calculating gradients V _uðxðiÞÞ at

the collocation points x(i) if the reference stiffness tensor is

chosen as a*ðyÞZaðV _uðyÞ; yÞ.

5.2.2. Mesh-less discretization of the partly segregated

LBDIDE

After substitution of approximation (39) in LBDIDE (27)

and in the Dirichlet boundary conditions (11), we arrive at the

following quasi-linear system of (JCJD)!n algebraic

equations with respect to J!n unknowns ûmðx
jÞ, xj 2 �U, mZ

1,.,n, and JD!n unknowns ~tmðx
jÞ, xj 2 �U, mZ1,.,n,X

xj2~ui

½c0ðxiÞFjðx
iÞCK0

ijðûf ~u
igÞ�ûðxjÞ

C
X

xj2vDUh ~ui

Qijð _uf ~u
igÞ~tðxjÞ Z F0

uðx
iÞ; xi 2 �U; no sum in i:

(40)

X
xj2~ui

ûðxjÞFjðx
iÞ Z �uðxiÞ; xi 2vDU: (41)
5.2.3. Mesh-less discretization of the united LBDIDE

Alternatively, one can substitute approximation (39) in

LBDIDE (25) and arrive at the following system of quasi-linear

system of J!n algebraic equations with respect to J!n

unknowns ûmðx
jÞ, xj 2 �U, mZ1,.,n,X

xj2~ui

½cðxiÞFjðx
iÞCKijðûf ~u

igÞ�ûðxjÞ Z Fuðûf ~u
ig; xiÞ;

xi 2 �U; no sum in i:

(42)

For any i, j, the n!n tensors K0
ij, Qij and Kij in (40) and (42)

are given by expressions (34), (35) and (37), respectively, with

the shape functions Fj from (39), and _uf ~uig replaced by ûf ~uig.

Again, they also depend on the strain–stress history (assumed

to be already known) at each point. Expressions for að _uf ~uig; xÞ

and consequently for ~aðûf ~uig; x; xiÞ and Tðûf ~uigÞ in terms of the

set of unknowns ûf ~uig :ZfûðxjÞ; xj 2 ~uig in (37) are obtained
after substituting approximation formulae (39) for V _u in the

coefficient aðV _uðxÞ; xÞ in the definitions for ~aðV _u; x; yÞ and Tð _uÞ.
For the choice a*ðyÞZaðV _uðyÞ; yÞ, the asterisk functions and

operators depend on a*ðV _uðxiÞ; xiÞ and thus on V _uðxiÞ, which is

expressed for the mesh-less approach by the same smooth

approximation formula (39) in terms of ûf ~uig.
6. Conclusion

Nonlinear BDIDEs (18) and (19) as well as LBDIDEs (25)

and (27) are integro-differential reformulations of elasto-

plastic BVP (10)–(12). Depending on the choice of the

reference elastic tensor a* as the initial elastic or currant

tangent stiffness tensor, one can obtain two different versions

of the BDIDEs and LBDIDEs. Different strategies can be

chosen for the numerical solution of the BDIDEs or LBDIDEs

to obtain the complete evolutionary solution of the problem.

One of them is to split the process into the time steps ti and

solve either of the integral equations with respect to the

displacement rate _ukðx; tiÞ employing the necessary stress and

strain fields s(x,ti), 3(x,ti) obtained at the previous step. Then

one finds the stress rate from (6) and approximate the

displacement increment during the time step as Dukðx; tiÞZ
_ukðx; tiÞðtiC1KtiÞ and strain and stress increments similarly.

This allows to calculate the stress and strain fields at time tiC1.

While discretizing LBDIDEs (25) and (27), we have from

the definitions in both mesh-based and mesh-less methods that

FjðxÞZVFjðxÞZ ½Tð _uÞFj�ðxÞZ ½T ðyÞ*Fj�ðxÞZ0 if x2 �uðxiÞ

but xj ; ~ui. Consequently KijZ0, K0
ij Z0 and QijZ0 if

xj ; ~ui, and moreover, Kij, K0
ij and Qij depend only on _uf ~uig

or ûf ~uig, respectively. Thus, each algebraic equation in (33),

(36), (40) or (42) has not more than J ~ui !n/J !n non-zero

entries, i.e. the systems are sparse. The number of the nodal

points, J ~ui in the total localization domain ~ui depends on the

type of the domain elements, the choice of the localization

domains and the local interpolation/approximation formulae. If

during re-meshing the element types are roughly the same, and

the localization domains and the support of the interpolation/

approximation formulas are related with the domain elements

near collocation points, then the number of the nonzero entries

of each equation, J ~ui !n, will be practically independent of re-

meshing.

The second kind structure of the nonlinear united LBDIDEs

and of the corresponding mesh-based discrete systems look

very promising for constructing simple and fast converging

iteration algorithms for their numerical solution without

preconditioning, thus outperforming other available numerical

techniques.
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